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Evolving Threat to National Infrastructure
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Challenges

◼ While well-known computer security techniques certainly work, they 
are not sufficient 

→ size, scale, and scope inherent in complex national 
infrastructure
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Defense Mechanism

◼ Deception

◼ Separation

◼ Diversity

◼ Consistency

◼ Depth

◼ Discretion

◼ Collection 

◼ Correlation

◼ Awareness

◼ Response 
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Cybersecurity Mitigation
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System Isolation

◼ Firewalls
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Physical Separation

◼ Air Gapping
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Application Sandbox Type B
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TrustZone
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Secure Enclave

◼ Intel Secure Guard Extension (SGX)

◼ C3 runs MapReduce + Code and Data Secret

◼ HEAVEN: Shields trusted applications in untrusted cloud
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Research

• Increased adoption of FPGAs into:
• Embedded Systems

• Commercial scale PaaS/SaaS cloud computing systems

• Amazon’s EC2 F1

• Microsoft’s Azure

• Baidu

• Huawei’s FACS

• Intel datacenters, etc.
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IaaS Resources Provisioning
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IaaS Resources Provisioning
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IaaS Resources Provisioning
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IaaS Resources Provisioning
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New Challenges: Security

◼ Remote side channel attacks

◼ Power monitoring (Zhao & Suh SP 18)

◼ Leaking wires (Giechaskiel et al. ASIACCS’18)

◼ Line probing (Ramesh et al. FCCM 18)
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Hardware Isolation

• Shared FPGAs can be better protected by:
• Extending separation kernel policies within 
hardware components, and

• Enforcing corresponding access decision rules 
directly in the hardware
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Domain separation in software 
environments
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Domain separation in software 
environments
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Domain separation in software 
environments
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Using Workflows to Isolate vFPGAs (vFs) 
execution
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Using Workflows to Isolate vFPGAs (vFs) 
execution
1. Inherit runtime separation kernel’s policies within the 

vFPGAs.
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Using Workflows to Isolate vFPGAs (vFs) 
execution
2. Enforce access decisions directly in the FPGA through an 

access controller (AC) circuit.
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Using Workflows to Isolate vFPGAs (vFs) 
execution
3. Isolate vFs from shared resources through a hardware 

sandbox
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Implementation Details

◼ Provisioning vFPGAs to VMs
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Implementation Details

◼ Provisioning vFPGAs to VMs



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Implementation Details

◼ Runtime management of access decisions
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Implementation Details

◼ Preserving VM-vFPGA IO path integrity through chained 
authentication
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Evaluation - Setup



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation I

• Security performance
• Secure by design

• Solution implements “deny by default” rule by design.

• Access decision is made by the OS kernel according to its 
security policy.

• Correctness of decisions depends on policy definition.

• Access is granted only if the security policy explicitly allows 
it.

• E.g., On CentOS 7, 200K+ test labels could not gain access to 
accelerators since policy didn’t define the requested access
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Evaluation I

◼ Security operations overhead on VM users’ applications
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Performance Improvement
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Performance Improvement
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Evaluation II

◼ Resource Overhead FPGAs resources
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Evaluation III

◼ VM-vFPGA IO path performance and scalability analysis
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Evaluation IV

◼ VM-vFPGA IO path performance and scalability analysis
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Summary

• Proposed solution provides to VMs, secure and isolated 
execution of vFPGA objects for FPGA-accelerated IaaS 
cloud.

• Isolation benefits path costs at worst ~11 clock cycles on 
FPGA.

• Proposed solution is fully compatible with existing cloud 
software  

42
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Architecture Diversification in Cloud 
Computing Systems

ONR Award Nr: N00014-16-1-2014
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Hardware Trojan
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Research Rationale

◼ Trojans can be hidden in IPs, but as longer as they don’t manifest, 
the system is safe.

◼ Trojans and their manifestations have the same relationship as errors 
as faults.

◼ The rationale of our research is therefore the  same as fault-tolerant 
systems, namely to design and built systems along with dynamic 
methods, capable of detecting manifestation of Trojans at run-time 
and to prevent potential damage to the system. 
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On-Chip Module Isolation

Isolated

Module

Isolated

Module

Non-Isolated 

Module

Checker

Protected System Resource

Memory Files Peripherals
On/Off Chip (system) 

Communication
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HW Sandboxing: SoC-Integration
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HW Sandboxing Concepts

1. Managed Code

2. In-Line Reference Monitor

3. Hardware Memory Isolation

4. Resource Virtualization

Controllers

V-USB

Rules enforcement

Status/Config Registers

V-UART V-MEM V-VGA



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation
Design Trojan Class Checker Type Area 

Overhead
Delay 
Overhead

T-300 Info leak Cycle Sequence 243 LUT (1.38%) -0.729 ns

T-400 Info leak Cycle Sequence 278 LUT(1.58%) -0.046 ns

T-400 DoS Cycle Sequence 269 LUT (1.52%) -0.174 ns

T-900 DoS Cycle Sequence 265 LUT (1.51%) - 0.149 ns

OVL(Open Verification Library) 

• CC(0): xmitH == ’1’

• CC(1) to CC(16): uart xmit doneH == ’0’ AND uart xmit == ’0’

• CC(17+(16*i)) to CC(16+(16*(i+1))): uart xmit doneH == ’0’ AND uart xmit == 

xmit data(i), where i is the index of xmit data, range [0,7]

• CC(145) to CC(175): uart xmit doneH == ’0’ AND uart xmit == ’1’

• CC(176): uart xmit doneH == ’1’

ARFL SFFP Award 2015 - 2016
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Evaluation

Virtual Resource Area Overhead Delay Overhead

VGA (V-VGA) 23 LUT (0.13%) -0.037 ns

RS232-UART (V-UART) 120 LUT (0.68%) -0.567 ns

ARFL SFFP Award 2015 - 2016
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Evaluation

⚫ Spectrum controller in the 2.4 GHz band using the DSM2 DSSS-based 
technology.

⚫ Receiver decodes transmitted signals into seven channels to control the 
drone 
⚫ throttle (throttle), ailerons (aile), elevators (elev), rudder (rudd), gear 

(gear), auxiliary1 (aux1), and auxiliary2 (aux2).
⚫ PWM between 5% and 9%

⚫ Adapt cycle sequence to the dynamic nature of PWM
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Design Flow: Proposed Approach
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Interface Specification
❑ A  interface automaton F = <Q, q

0
, Q

f
, AI, AO, AH, δ> consists of

❑ a finite set Q of states,

❑ an initial state q
0
∈ Q; Q

f
∈ Q; set of final states,

❑ three pairwise disjoint sets AI , AO, and AH of input, output, 

and hidden actions,

❑ a set δ ⊆ Q × A × Q of transitions, 
where A = AI  ∪ AO  ∪ AH is the set of all actions.

NSF SATC: In Review
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Interface Specification

❑ Compositionality Given two IA
❑ S = <QS, q

0S
, Q

fS
, AS

I, AS
O, AS

H, δS> and 

❑ T = <QT, q0T
, Q

fT
, AT

I, AT
O, AT

H, δT>

❑ The 𝑆 ⊗ 𝑇 product of S and T is defined as

𝑆 ⊗ 𝑇 = <QS⊗T, q0S⊗T, QfS⊗T, A
I
S⊗T, A

O
S⊗T, A

H
S⊗T, δS⊗T>  with

❑ QS⊗T= QS X QT

❑ q0S⊗T = (q
0S

, q
0T

)

❑ AI
S⊗T = AS

I ⋃ AT
I – Share(S,T), 

❑ AO
S⊗T = AS

O ⋃ AT
O – Share(S,T)

❑ AH
S⊗T = AS

H ⋃ AT
H ⋃ Share(S,T)

❑ δS⊗T = {(q,s), a, (q’,s) | (q,a,q’) ∈ δS ∧ a ∉ Share(S,T) ∧ s ∈
QT}⋃ {(q,s), a, (q,s’) | (s,a,s’) ∈ δT ∧ a ∉ Share(S,T) ∧ q ∈QS} 

⋃
{(q,s), a, (q’,s’) | (q,a,q’) ∈ δS ∧ (s,a,s’) ∈ δT ∧ a ∈ Share(S,T) }

NSF SATC: In Review
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Interface Specification

❑ Illegal states

Illegal(S,T) = {(q,s) ∈ QS X QT| ∃a ∉ Share(S,T),

st (a ∈ AS
O(q) ∧ ∉ AT

I(q)) or (a ∈ AT
O(q) ∧ ∉ AS

I(q))}

❑ A component, C, is a tuple (U, I) where

❑ U is the core function of C

❑ I =< Q, q0, Qf, A
I, AO, AH, δ > is an interface through which C 

interacts with other components

❑ Goal: Use component-based design and compose interfaces for

❑ compatibility check

❑ resource optimization
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Interface Specification

❑ Assumption in IA: Environment will behave legally



DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Property Specification Language
⚫ PSL: Assertion Based Verification language

⚫ Originated from the IBM Sugar language used for model 
checking, and evolved into an IEEE standard (1850-2005). 

⚫ PSL can be used to specify temporal properties of systems
− combination of Linear Time Logic (LTL) and regular expression

⚫ PSL consists of 4 layers
− Boolean layer (not reset and rd_en) or (reset && rd_en).
− Temporal layer 

⚫ always start -> next busy
⚫ {[*]; req; ack} |=> {start; busy[*]; done} 

− Verification layer: assert → control verification
− Modelling layer
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Property Specification Language
⚫ PSL/SERE (Sequential-Extended Regular Expression)

⚫ Definition
⚫ If b is a Boolean expression and r,  r1 and r2 are SERES 

then the following expression are SERE
⚫ b
⚫ {r}
⚫ r1: r2 (concatenation)

⚫ r1; r2 (fusion)

⚫ r1| r2 (or)

⚫ r1&& r2 (length matching and)

⚫ [*0]

⚫ r[*] (Kleene)

⚫ Sugaring
⚫ always start -> next busy
⚫ {[*]; req; ack} |=> {start; busy[*]; done} 

Regular 

expressions
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Component Interconnect for Data Access

59
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Component Interconnect for Data Access

60
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Components & Flow
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Security Integration
The Flask Architecture Model
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MEXT (Multiprocessor On-Chip 
Exploration Tool)
◼ Funded By The German Research Foundation (DFG) 2005 - 2010

◼ Simplify the Design of MPSoCs

◼ Vendor independent framework based on Java and XML

◼ Abstract System Specification  → Platform-dependent  description files
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Automatic Generation of the MPSoC 
Infrastructure
Input: Platform-independent Abstract Specification (CPU, 
Memory, CommMedium, Periphery and HWaccelerator)

• Transforming of an Abstract Specification into a 
Platform-dependent Concrete Specification 
(e.g.: Platform → Xilinx ML310, CPU → PowerPC, 
Memory → BRAM, CommMedium → PLB,...) 

• Generation of the platform-dependent hardware 
description files (Concrete Component Description)

Output: FPGA configuration file

• The Concrete Specification can also be the result of the architectural synthesis
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Security and Resiliency Integration

Configure Component

Interface Integration

Security/Reliability Extension
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Ongoing Work

◼ Continuous development – Open Source

◼ Hardware/Software Systems

◼ Cloud Protection
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