
DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

DEPARTMENT OR UNIT NAME.
DELETE FROM MASTER SLIDE IF
N/A

Department of Electrical & Computer Engineering

Advances In System Isolation
For Cyber Attack Mitigation

Dr. Christophe Bobda

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Agenda

◼ Motivation

◼ Security through Isolation

◼ Cloud in FPGA-Accelerated Clouds

◼ Security in System-On-Chips

◼ Design Framework

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evolving Threat to National Infrastructure

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Challenges

◼ While well-known computer security techniques certainly work, they
are not sufficient

→ size, scale, and scope inherent in complex national
infrastructure

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Defense Mechanism

◼ Deception

◼ Separation

◼ Diversity

◼ Consistency

◼ Depth

◼ Discretion

◼ Collection

◼ Correlation

◼ Awareness

◼ Response

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Cybersecurity Mitigation

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

System Isolation

◼ Firewalls

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Physical Separation

◼ Air Gapping

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Application Sandbox Type B

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

TrustZone

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Secure Enclave

◼ Intel Secure Guard Extension (SGX)

◼ C3 runs MapReduce + Code and Data Secret

◼ HEAVEN: Shields trusted applications in untrusted cloud

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Research

• Increased adoption of FPGAs into:
• Embedded Systems

• Commercial scale PaaS/SaaS cloud computing systems

• Amazon’s EC2 F1

• Microsoft’s Azure

• Baidu

• Huawei’s FACS

• Intel datacenters, etc.

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

IaaS Resources Provisioning

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

IaaS Resources Provisioning

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

IaaS Resources Provisioning

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

IaaS Resources Provisioning

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

New Challenges: Security

◼ Remote side channel attacks

◼ Power monitoring (Zhao & Suh SP 18)

◼ Leaking wires (Giechaskiel et al. ASIACCS’18)

◼ Line probing (Ramesh et al. FCCM 18)

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

New Challenges: Security

◼ Remote side channel attacks

◼ Power monitoring (Zhao & Suh SP 18)

◼ Leaking wires (Giechaskiel et al. ASIACCS’18)

◼ Line probing (Ramesh et al. FCCM 18)

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Hardware Isolation

• Shared FPGAs can be better protected by:
• Extending separation kernel policies within
hardware components, and

• Enforcing corresponding access decision rules
directly in the hardware

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Domain separation in software
environments

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Domain separation in software
environments

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Domain separation in software
environments

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Using Workflows to Isolate vFPGAs (vFs)
execution

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Using Workflows to Isolate vFPGAs (vFs)
execution
1. Inherit runtime separation kernel’s policies within the

vFPGAs.

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Using Workflows to Isolate vFPGAs (vFs)
execution
2. Enforce access decisions directly in the FPGA through an

access controller (AC) circuit.

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Using Workflows to Isolate vFPGAs (vFs)
execution
3. Isolate vFs from shared resources through a hardware

sandbox

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Implementation Details

◼ Provisioning vFPGAs to VMs

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Implementation Details

◼ Provisioning vFPGAs to VMs

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Implementation Details

◼ Runtime management of access decisions

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Implementation Details

◼ Preserving VM-vFPGA IO path integrity through chained
authentication

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation - Setup

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation I

• Security performance
• Secure by design

• Solution implements “deny by default” rule by design.

• Access decision is made by the OS kernel according to its
security policy.

• Correctness of decisions depends on policy definition.

• Access is granted only if the security policy explicitly allows
it.

• E.g., On CentOS 7, 200K+ test labels could not gain access to
accelerators since policy didn’t define the requested access

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation I

◼ Security operations overhead on VM users’ applications

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Performance Improvement

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Performance Improvement

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Performance Improvement

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation II

◼ Resource Overhead FPGAs resources

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation III

◼ VM-vFPGA IO path performance and scalability analysis

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation IV

◼ VM-vFPGA IO path performance and scalability analysis

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Summary

• Proposed solution provides to VMs, secure and isolated
execution of vFPGA objects for FPGA-accelerated IaaS
cloud.

• Isolation benefits path costs at worst ~11 clock cycles on
FPGA.

• Proposed solution is fully compatible with existing cloud
software

42

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Architecture Diversification in Cloud
Computing Systems

ONR Award Nr: N00014-16-1-2014

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Hardware Trojan

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Research Rationale

◼ Trojans can be hidden in IPs, but as longer as they don’t manifest,
the system is safe.

◼ Trojans and their manifestations have the same relationship as errors
as faults.

◼ The rationale of our research is therefore the same as fault-tolerant
systems, namely to design and built systems along with dynamic
methods, capable of detecting manifestation of Trojans at run-time
and to prevent potential damage to the system.

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

On-Chip Module Isolation

Isolated

Module

Isolated

Module

Non-Isolated

Module

Checker

Protected System Resource

Memory Files Peripherals
On/Off Chip (system)

Communication

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

HW Sandboxing: SoC-Integration

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

HW Sandboxing Concepts

1. Managed Code

2. In-Line Reference Monitor

3. Hardware Memory Isolation

4. Resource Virtualization

Controllers

V-USB

Rules enforcement

Status/Config Registers

V-UART V-MEM V-VGA

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation
Design Trojan Class Checker Type Area

Overhead
Delay
Overhead

T-300 Info leak Cycle Sequence 243 LUT (1.38%) -0.729 ns

T-400 Info leak Cycle Sequence 278 LUT(1.58%) -0.046 ns

T-400 DoS Cycle Sequence 269 LUT (1.52%) -0.174 ns

T-900 DoS Cycle Sequence 265 LUT (1.51%) - 0.149 ns

OVL(Open Verification Library)

• CC(0): xmitH == ’1’

• CC(1) to CC(16): uart xmit doneH == ’0’ AND uart xmit == ’0’

• CC(17+(16*i)) to CC(16+(16*(i+1))): uart xmit doneH == ’0’ AND uart xmit ==

xmit data(i), where i is the index of xmit data, range [0,7]

• CC(145) to CC(175): uart xmit doneH == ’0’ AND uart xmit == ’1’

• CC(176): uart xmit doneH == ’1’

ARFL SFFP Award 2015 - 2016

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation

Virtual Resource Area Overhead Delay Overhead

VGA (V-VGA) 23 LUT (0.13%) -0.037 ns

RS232-UART (V-UART) 120 LUT (0.68%) -0.567 ns

ARFL SFFP Award 2015 - 2016

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Evaluation

⚫ Spectrum controller in the 2.4 GHz band using the DSM2 DSSS-based
technology.

⚫ Receiver decodes transmitted signals into seven channels to control the
drone
⚫ throttle (throttle), ailerons (aile), elevators (elev), rudder (rudd), gear

(gear), auxiliary1 (aux1), and auxiliary2 (aux2).
⚫ PWM between 5% and 9%

⚫ Adapt cycle sequence to the dynamic nature of PWM

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Design Flow: Proposed Approach

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Interface Specification
❑ A interface automaton F = <Q, q

0
, Q

f
, AI, AO, AH, δ> consists of

❑ a finite set Q of states,

❑ an initial state q
0
∈ Q; Q

f
∈ Q; set of final states,

❑ three pairwise disjoint sets AI , AO, and AH of input, output,

and hidden actions,

❑ a set δ ⊆ Q × A × Q of transitions,
where A = AI ∪ AO ∪ AH is the set of all actions.

NSF SATC: In Review

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Interface Specification

❑ Compositionality Given two IA
❑ S = <QS, q

0S
, Q

fS
, AS

I, AS
O, AS

H, δS> and

❑ T = <QT, q0T
, Q

fT
, AT

I, AT
O, AT

H, δT>

❑ The 𝑆 ⊗ 𝑇 product of S and T is defined as

𝑆 ⊗ 𝑇 = <QS⊗T, q0S⊗T, QfS⊗T, A
I
S⊗T, A

O
S⊗T, A

H
S⊗T, δS⊗T> with

❑ QS⊗T= QS X QT

❑ q0S⊗T = (q
0S

, q
0T

)

❑ AI
S⊗T = AS

I ⋃ AT
I – Share(S,T),

❑ AO
S⊗T = AS

O ⋃ AT
O – Share(S,T)

❑ AH
S⊗T = AS

H ⋃ AT
H ⋃ Share(S,T)

❑ δS⊗T = {(q,s), a, (q’,s) | (q,a,q’) ∈ δS ∧ a ∉ Share(S,T) ∧ s ∈
QT}⋃ {(q,s), a, (q,s’) | (s,a,s’) ∈ δT ∧ a ∉ Share(S,T) ∧ q ∈QS}

⋃
{(q,s), a, (q’,s’) | (q,a,q’) ∈ δS ∧ (s,a,s’) ∈ δT ∧ a ∈ Share(S,T) }

NSF SATC: In Review

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Interface Specification

❑ Illegal states

Illegal(S,T) = {(q,s) ∈ QS X QT| ∃a ∉ Share(S,T),

st (a ∈ AS
O(q) ∧ ∉ AT

I(q)) or (a ∈ AT
O(q) ∧ ∉ AS

I(q))}

❑ A component, C, is a tuple (U, I) where

❑ U is the core function of C

❑ I =< Q, q0, Qf, A
I, AO, AH, δ > is an interface through which C

interacts with other components

❑ Goal: Use component-based design and compose interfaces for

❑ compatibility check

❑ resource optimization

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Interface Specification

❑ Assumption in IA: Environment will behave legally

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Property Specification Language
⚫ PSL: Assertion Based Verification language

⚫ Originated from the IBM Sugar language used for model
checking, and evolved into an IEEE standard (1850-2005).

⚫ PSL can be used to specify temporal properties of systems
− combination of Linear Time Logic (LTL) and regular expression

⚫ PSL consists of 4 layers
− Boolean layer (not reset and rd_en) or (reset && rd_en).
− Temporal layer

⚫ always start -> next busy
⚫ {[*]; req; ack} |=> {start; busy[*]; done}

− Verification layer: assert → control verification
− Modelling layer

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Property Specification Language
⚫ PSL/SERE (Sequential-Extended Regular Expression)

⚫ Definition
⚫ If b is a Boolean expression and r, r1 and r2 are SERES

then the following expression are SERE
⚫ b
⚫ {r}
⚫ r1: r2 (concatenation)

⚫ r1; r2 (fusion)

⚫ r1| r2 (or)

⚫ r1&& r2 (length matching and)

⚫ [*0]

⚫ r[*] (Kleene)

⚫ Sugaring
⚫ always start -> next busy
⚫ {[*]; req; ack} |=> {start; busy[*]; done}

Regular

expressions

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Component Interconnect for Data Access

59

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Component Interconnect for Data Access

60

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Components & Flow

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Security Integration
The Flask Architecture Model

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

MEXT (Multiprocessor On-Chip
Exploration Tool)
◼ Funded By The German Research Foundation (DFG) 2005 - 2010

◼ Simplify the Design of MPSoCs

◼ Vendor independent framework based on Java and XML

◼ Abstract System Specification → Platform-dependent description files

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Automatic Generation of the MPSoC
Infrastructure
Input: Platform-independent Abstract Specification (CPU,
Memory, CommMedium, Periphery and HWaccelerator)

• Transforming of an Abstract Specification into a
Platform-dependent Concrete Specification
(e.g.: Platform → Xilinx ML310, CPU → PowerPC,
Memory → BRAM, CommMedium → PLB,...)

• Generation of the platform-dependent hardware
description files (Concrete Component Description)

Output: FPGA configuration file

• The Concrete Specification can also be the result of the architectural synthesis

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Security and Resiliency Integration

Configure Component

Interface Integration

Security/Reliability Extension

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Ongoing Work

◼ Continuous development – Open Source

◼ Hardware/Software Systems

◼ Cloud Protection

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Publications

◼ F. Hategekimana, J.M. Mbongue, J. H. Pantho and C. Bobda, “Inheriting Software Security Policies
Within Hardware IP Component," 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), Boulder, CO, 2018.

◼ F. Hategekimana, T. Whitaker, M. J. H. Pantho and C. Bobda, "Shielding non-trusted IPs in
SoCs," 2017 27th International Conference on Field Programmable Logic and Applications (FPL),
Ghent, 2017, pp. 1-4.

◼ Festus Hategekimana and Christophe Bobda. 2017. Towards the application of flask security
architecture to SoC design: work-in-progress. In Proceedings of the Twelfth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis Companion
(CODES '17).

◼ F. Hategekimana, T. Whitaker, M. J. H. Pantho and C. Bobda, "Secure Integration of non-trusted IPs
in SoCs," 2017 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST), Beijing, 2017

◼ F. Hategekimana, P. Nardin and C. Bobda, "Hardware/Software Isolation and Protection
Architecture for Transparent Security Enforcement in Networked Devices," 2016 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, PA, 2016, pp. 140-145.

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

Publications

◼ Christophe Bobda, Taylor J. L. Whitaker, Charles A. Kamhoua, Kevin A. Kwiat, Laurent Njilla: Automatic
Generation of Hardware Sandboxes for Trojan Mitigation in Systems on Chip (Poster). FPGA 2017: 289

◼ Taylor Whitaker and Christophe Bobda. CAPSL: A Tool for Automatic Generation of Hardware Sandboxes
for IP Security (Poster) in 2015 IEEE International Symposium on Field-Programmable Custom Computing
Machines (FCCM 2017):

◼ Festus Hategekimana and Christophe Bobda: Applying The Flask Security Architecture to Secure SoC
Design (Poster) in 2015 IEEE International Symposium on Field-Programmable Custom Computing
Machines (FCCM 2017):

◼ C. Bobda, T. Whitaker, C. Kamhoua, K. Kwiat, and L. Njilla. Synthesis of Hardware Sandboxes for Trojan
Mitigation in Systems on Chip (poster) in IEEE International Symposium on Hardware Oriented Security
and Trust (HOST 2017)

◼ Joshua Mead, Christophe Bobda, Taylor J. L. Whitaker: Defeating drone jamming with hardware
sandboxing. IEEE Asian Hardware-Oriented Security and Trust, AsianHOST 2016, Yilan, Taiwan, December
19-20, 2016. : 1-6

◼ F. Hategekimana, A. Tbatou, C. Bobda, C. Kamhoua and K. Kwiat, "Hardware isolation technique for IRC-
based botnets detection," 2015 International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Mexico City, 2015, pp. 1-6.

http://dblp2.uni-trier.de/pers/hc/w/Whitaker:Taylor_J=_L=
http://dblp2.uni-trier.de/pers/hc/k/Kamhoua:Charles_A=
http://dblp2.uni-trier.de/pers/hc/k/Kwiat:Kevin_A=
http://dblp2.uni-trier.de/pers/hc/n/Njilla:Laurent
http://dblp2.uni-trier.de/db/conf/fpga/fpga2017.html#BobdaWKKN17
http://dblp2.uni-trier.de/db/conf/fccm/fccm2015.html#SaldanhaB15
http://dblp2.uni-trier.de/db/conf/fccm/fccm2015.html#SaldanhaB15
http://dblp2.uni-trier.de/db/conf/fccm/fccm2015.html#SaldanhaB15
http://dblp2.uni-trier.de/pers/hc/m/Mead:Joshua
http://dblp2.uni-trier.de/pers/hc/w/Whitaker:Taylor_J=_L=
http://dblp2.uni-trier.de/db/conf/host/asianhost2016.html#MeadBW16

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

DEPARTMENT OR UNIT NAME. DELETE FROM MASTER SLIDE IF N/A

smartsystems.ece.ufl.edu

