Timing Analysis of Software Executing
on Undocumented Multicore Processors

Bjorn Andersson

Carnegie Mellon University
Software Engineering Institute


Presenter
Presentation Notes
This is for the Keynote at SBESC in November_2019 in Natal, Brazil. The title is: Timing_Analysis_of_Undocumented_Multicore_Processors.
The expected duration is 80 minutes (including introduction and questions from the audience).



SBESC 2019

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-
IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM19-0890

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© . ) ind © 2019 Carnegie Mellon University unlimited distribution. 2
Software Engineering Institute



@ SBESC 2019
Systems Interact with Their Physical Environment

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . . © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute


Presenter
Presentation Notes




SBESC 2019

Systems Include Software
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Systems Include Software
That Has Real-Time Requirements
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Satisfying Real-Time Requirements
IS a Challenge for These Systems in General
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Satisfying Real-Time Requirements

Is a Challenge for ...

“The trick there, when you’re processing flight critical information, it has to be a

deterministic environment, meaning we know exactly where a piece of data is going to be

exactly when we need to — no room for error,” Langhout says. “On a multi-core processor

there’s a lot of sharing going on across the cores, so right now we’re not able to do that.”
- Jeff Langhout, Acting Director, U.S. Army Aviation and Missile Research
Development and Engineering Center (AMRDEC)

Source: “Army still working on multi-core processor for UH-60V,” May 2017, Available at
https://www.flightglobal.com/news/articles/army-still-working-on-multi-core-processor-for-uh-6-436895/.
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Satisfying Real-Time Requirements

Is a Challenge for ...

“A majority of avionics today are running on single-core processors, or multicore processors
with all but one core disabled.”

“The root of the problem is shared resources, which most of the time creates some kind of
interference.”

Source: “It’s time: Avionics need to move to multicore processors,” January 2018, Available at http://www.intelligent-
aerospace.com/articles/2018/01/it-s-time-avionics-needs-to-move-to-multicore-processors.html.
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Satisfying Real-Time Requirements

Is a Challenge for ...

“In safety-critical domains such as avionics, the multicore “predictability problem” is
currently dealt with by turning off all but one core if highly-critical system components
exist.”

Source: C. J. Kenna et al., “Making Shared Caches More Predictable on Multicore Platforms,” RTSS'2012.
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Satisfying Real-Time Requirements

Is a Challenge for ...

“Currently, avionics manufacturers resolve the multicore “predictability problem” by turning
off all but one core if highly critical system components exist.”

Source: B. C. Ward et al., “Making Shared Caches More Predictable on Multicore Platforms,” ECRTS’2013.
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Commonality of these Systems
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Commonality of these Systems
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Commonality of these Systems
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Commonality of these Systems
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What Makes it Challenging to Satisfy Real-Time Requirements?
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What Causes Delay of Software?
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What Causes Delay of Software?

Time
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What Causes Delay of Software?
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Time when one thread Deadline Time
in the software system arrives
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What Causes Delay of Software?

Thread executes
one path
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What Causes Delay of Software?

Thread executes another path
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Time when one thread Deadline Time
in the software system arrives
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What Causes Delay of Software?

Preemption:
Another thread uses
the processor.
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What Causes Delay of Software?
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What Causes Delay of Software?

Thread requests a
critical section held by
another thread

S 4§ e

Time when one thread Deadline Time
in the software system arrives

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 26
Software Engineering Institute



SBESC 2019

What Causes Delay of Software?

Thread experiences extra cache
misses because of preemptions
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What Causes Delay of Software?

Thread experiences extra cache
misses because of preemptions

N 4§ N

Time when one thread Deadline Time
in the software system arrives
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What Causes Delay of Software?

How large can the response time be?

Thread experiences extra cache
misses because of preemptions

I TN N

Time when one thread Deadline Time
in the software system arrives
\ J
Y
The response time in this scenario
C‘drnegie ylell()n L'niversil,'v Tv;gwwnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?xTEMENT A] Approved for public release and 29

Software Engineering Institute



SBESC 2019

What Causes Delay of Software?

Does it hold for all scenarios that the response time is at most the deadline?
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What Causes Delay of Software?

Does it hold for all scenarios that the response time is at most the deadline?
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What Causes Delay of Software?

Does it hold for all scenarios that the response time is at most the deadline?

Deadline

A
[ |

Thread experiences extra cache
misses because of preemptions

N 4§ N

Time when one thread Deadline Time
in the software system arrives
\ J
Y
The response time in this scenario
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁl‘tg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 32

Software Engineering Institute



SBESC 2019

What Causes Delay of Software?

Does it hold for all threads,
that for all arrivals of the thread,
that for all scenarios,
that the finishing time is at most the deadline?

Thread experiences extra cache
misses because of preemptions
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What Causes Delay of Software?

Does it hold for all threads,
that for all arrivals of the thread,
that for all scenarios,
that the finishing time is at most the deadline?

If “yes,” we say the set of threads is schedulable.
Otherwise, the set of threads is unschedulable.

Thread experiences extra cache
misses because of preemptions
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What Causes Delay of Software?

Does it hold for all threads,
that for all arrivals of the thread,
that for all scenarios,
that the finishing time is at most the deadline?

If “yes,” we say the set of threads is schedulable.
Otherwise, the set of threads is unschedulable.

The process of determining whether a set of threads is Thread experiences extra cache
schedulable is called schedulability analysis. misses because of preemptions
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Time when one thread Deadline Time
in the software system arrives
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Conclusions so far
Many systems interact with the physical world

This interaction requires correct timing

Correct timing depends on the whether the delay of the software is at most a certain bound
There are many causes of the delay of software (even on a computer with a single core)

Many systems today disable all processor cores except one in order to be confident
about timing
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Real-Time Requirements of
Software Executing on a Multicore Processor

Hardware Trends
« All computers are multicores. Core 1 Core 2 Core 3 Core N
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Real-Time Requirements of

Software Executing on a Multicore Processor
Hardware Trends

« All computers are multicores. Core 1 Core 2 Core 3 Core N
» Most chip makers do not offer
single core.
Carncgie Mellon L'niv(\rsil,.v Timing Analysis of Sollwan? Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

38



SBESC 2019

Real-Time Requirements of

Software Executing on a Multicore Processor

Hardware Trends

 All computers are multicores.
* Most chip makers do not offer

single core.

* Most multicores have shared
memory.
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Processes { ' ' .
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How Co-Runners Impact Speed of Execution
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How Co-Runners Impact Speed of Execution
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Processes { '

Problem: For each process,
compute an upper bound on
its response time.
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Issues

» Shared hardware resources
impact timing.
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How Bad?

Slowdown
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Multiple studies have shown the effect of the previously explained delays in the execution time of a task. In the figure we show six studies that show a how many times longer a task can take to execute if it has interference by other tasks in other cores. In our own study (labeled Kim14 – the student last name) we discovered a 14X increase, meaning that if a task takes only 10 milliseconds to run when it is running by itself in one core of a processor and the other cores are idle, when some heavy load tasks are running in other cores (it was tested in a four core processor), it took 140 milliseconds. In The Yun15 study the authors discovered a 103X increase. Using the same 10 ms task it would have taken 1030 ms.
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lssues Processes { '

» Shared hardware resources
impact timing.

» 103 times slowdown has been
observed.*
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*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.
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lssues Processes { ' ' .

* Shared hardware resources
impact timing. Core 1 Core 2 Core 3

» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

This slowdown is caused by Miss-Status Holding Register (MSHR).

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.
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lssues Processes { ' ' .

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3
» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR.

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.
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lssues Processes { ' ' .

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3
» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR. There was no

schedulability analysis that incorporated MSHR.
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*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.
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lssues Processes { ' ' .

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3
» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR. There was no

schedulability analysis that incorporated MSHR. Even today, there is no schedulability analysis
that incorporates the timing effects of MSHR.
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*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.
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Issues Processes .

* Shared hardware resources
impact timing. Core 1 Core 2 Core 3

» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

MSHR was an unknown unknown.

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.
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lssues Processes { ' ' .

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3
» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

The resource that cause the worst slowdown is a resource that the real-time systems research
computing community can neither analyze nor manage.
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lssues Processes { '

» Shared hardware resources
impact timing.

» 103 times slowdown has been
observed [Yun15].
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Different reasons for treating

resources as undocumented
« Resources are Processes ‘
undocumented

» Resources are documented but

i .. Core 1 Core 2 Core 3

documentation is incorrect

« Resources are documented but L1/L2 L1/L2 L1/L2
one believes the documentation to I I
be incorrect ;‘ I

 Resources are documented and Last-Level Cache (L3)
one believe documentation to be |
correct but it is laborious to create | Memory Bus (and Mem Controller)
a timing model for schedulability I 1 1 1 1
analysis (and it needs to be " DRAM | DRAM | DRAM  DRAM DRAM
changed when one buys a new . Bank0 | Bank1 Bank2 Bank3 '*" BankB
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The consequences of analyzing timing of software executing on multicores using
documentation

Treating multicore processors as undocumented hardware has the potential to create a
model that can be used for processors in the future even for processors that we
currently do not know about.
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What is the water temperature?

If possible: Describe a system with quantities that you can
measure.
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General ideas for abstractions in other disciplines
1. Describe a system with parts

2. Describe each part with an abstraction
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General ideas for abstractions

Describe a system with parts
A software system comprises a set of tasks.

Describe each part with an abstraction
Each task is described with a T (period), D (deadline), and C (execution time).

Obtain specific values of the abstraction (e.g., using measurements) for each part
Obtain T from source code. Obtain D from software requirement specification.
Obtain C by measuring the execution of the program; then add margin.

(or run WCET tool)

Ask questions: calculate the answer to the questions
Will all deadlines be met if tasks are scheduled by Rate-Monotonic on a single
processor?
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General ideas for abstractions

Describe a system with parts
A software system comprises a set of tasks.

Describe each part with an abstraction
Each task is described with a T (period), D (deadline), and C (execution time).
Describe the effect of the memory system on execution speed of a task.
Obtain specific values of the abstraction (e.g., using measurements) for each part
Obtain T from source code. Obtain D from software requirement specification.
Obtain C by/measuring the execution of the program; then add margin.
(or run WCET tool)
Obtain parameters (e.g., using measurements)

Ask questions: calculate the answer to the questions
Will all deadlines be met if tasks are scheduled by Rate-Monotonic on a single
processor?
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Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented

Core 2
L1/L2

& & e

Core 3
L1/L2

hardware?

.- Core 1l
Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2
Before discussing them, let us discuss: | I

1. Other approaches (DONE)

2. General ideas for abstractions in

other disciplines (DONE)

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

What are the requirements of a good
abstraction?
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Core 3
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hardware?

L Corel
Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2
What are the requirements of a good | I

abstraction?

1. It should be as small as possible

(few numbers; few bits)
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Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented

& & e

hardware?
- Core 1 Core 2 Core 3
Q2: How to create a schedulability TG
analysis that uses this abstraction? L1/L2 L1/L2
What are the requirements of a good ! I I I
abstraction? i Last-Level Cache (L3)
1. It should be as small as possible
(few numbers; few bits) , Memory Bus (and Mem Controller)
2. It should allow us to do prediction/ I I I 1
analysis that we care about " DRAM  DRAM DRAM  DRAM DRAM
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Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented ‘
hardware?
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analysis that uses this abstraction? L1/L2 L1/L2 LLULZ
What are the requirements of a good I I I
abstraction? | Last-Level Cache (L3)
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Considerations in creating an

abstraction for multicore ' '
Let speed(i,t) denote the speed of ‘

execution of task 1at time t. Let cor(i,t) = g Core 2 Core 3
denote the set of tasks, other than task i, ;
that executes at time t. L1/L2 L1/L2 L1/L2
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Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of

execution of task i at time t. Let cor(i,t)

& & e

Core 3

Core 1l

denote the set of tasks, other than task i,

that executes at time t.

One abstraction could be:

1
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Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of

execution of task i at time t. Let cor(i,t)
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Core 3

Core 1l

denote the set of tasks, other than task i,

that executes at time t.

One abstraction could be:
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Drawback of abstraction:

L1/L2

Core 2
L1/L2

L1/L2

!

!

=

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

- Does not reflect that different co- I I I 1
runners can have different effecton | praM |  DRAM | DRAM = DRAM DRAM
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive?

Core 1l

L1/L2

Core 2
L1/L2

Core 3

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive?

Core 1 Core 2 Core 3

Consider DRAM bank B and its row
buffer. L1/L2 L1/L2 L1/L2

1 ! !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
_________________________________________________________________________________________________________
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive? ‘

Example:

" Core 1 Core 2 Core 3
Red task (victim):
1. load address x to register y L1/L2 L1/L2 L1/L2
2. load address X'’ to register z III ______________

Last-Level Cache (L3)

x and x’ are in the same row In

DRAM bankB" | Memory Bus (and Mem Controller)
But x and x’ are in different columns | 1 1 I I I

(different addresses)
DRAM DRAM DRAM DRAM DRAM
[N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C;lrncgie Mellon L'nivorsil,'v Timing ’Ana\‘ysws of Sonwf\re Executing on Undocumented Multicore Processors [DII_S'I'_?IE(L;_T:Q[:VISTATEMENT A] Approved for public release and
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive? ‘

Example: Core 1 Core 2 Core 3
Red task: Lo
1. load address x to register y L1/L2 L1/L2
2. load address X’ to register z I I I
Last-Level Cache (L3)
Memory Bus (and Mem Controller)
" DRAM  DRAM  DRAM | DRAM DRAM
. 'Bank0O| Bankl Bank2 Bank3 °°° BankB
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive? . ‘

Example:

Core 1l Core 2 Core 3
Red task:
1. load address x to register y L1/L2 L1/L2 L1/L2
2. load address X’ to register z I I
Green task: ;‘
1. load address a (where ais in Last-Level Cache (L3)
same bank as x but in
different row) I Meriory Bus (a%d Mem Ccinroller) I
DRAM DRAM DRAM DRAM DRAM
Bank0 Bankl| Bank2 | Bank3 °°° BankB
Carnegie Mellon University Timing Analysi of Software Execuing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public reease and
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive? . . ‘

Example:

Core 1 Core 2 Core 3
Red task:
1. load address x to register y L1/L2 L1/L2 L1/L2
2. load address X’ to register z I I
Green task: ;‘
1. load address a (where ais in Last-Level Cache (L3)
same bank as x but in
different row) Memory Bus (and Mem Controller)
Blue task: 3 I I I 1
1. load address b (wherebisin | pDrRAM | DRAM  DRAM  DRAM DRAM
same bank as x but in . BankO | Bank1l Bank2  Bank3 °°° BankB
different row) |
Carnegie Mellon University Timing Analysi of Software Execuing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for pubiic release and

. . . 0. | sity unlimited distribution. 1 55
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in
different row)

Blue task:

1. load address b (where b is in
same bank as x but in
different row)

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 156
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in ,
different row) Memory Bus (and Mem Controller), \
Blue task: I 1
1. load address b (where b is in " DRAM | DRAM | DRAM  DRAM DRAM
same bank as x but in . BankO| Bankl Bank2 Bank3 °°° BankB
different row) ,
Observation: Green can evict Red’s |

data in the row buffer.
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:
1. load address a (where ais in
same bank as x but in

different row) Memory Bus (and MemController)
Blue task:
1. load address b (where b is in " DRAM  DRAM | DRAM DRAI\/I\
same bank as x but in . BankO Bankl Bank2 @ Bank3
different row) ,
Observation: Blue can evict Red’s e |

data in the row buffer.
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in
different row)

Blue task:

I

1. load address b (where b is in " DRAM | DRAM | DRAM  DRAM

same bank as x but in . BankO| Bank1l| Bank2 Bank3
different row) ,
Observation: If Blue has evicted Red’s |

data in the row buffer, then Green cannot evict it more.
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in
different row)

Blue task:

I

1. load address b (where b is in " DRAM | DRAM | DRAM  DRAM

same bank as x but in . BankO| Bank1l| Bank2 Bank3
different row) | ,
Observation: If Green has evicted Red’s |

data in the row buffer, then Blue cannot evict it more.
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Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in
different row)

Blue task:

1 1

1. load address b (where b is in " DRAM | DRAM | DRAM  DRAM
same bank as x but in . BankO| Bank1l| Bank2 Bank3
different row) ,
Red experiences a slowdown due to |

Blue or Green but the slowdown is not greater by both.

C;lrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
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Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Consider Last-Level Cache (L3).

Assume associativity = 2.

Consider one specific cache set.

Core 3
L1/L2

Core 1l

L1/L2

Core 2
L1/L2

!

!

1

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

1 1

I

[N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
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Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Core 1 Core 2 Cofeg'3
Example:
Red task (victim): L1/L2 L1/L2 L2
1. load address x to register y I I I
2. load address x to register z " !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

_________________________________________________________________________________________________________
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Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Corel Core 2 Core'3
Example:
Red task (victim): L1/L2 L1/L2 /L2
1. load address x to register y I I
2. load address x to register z
Green task: § Last-Level Cache (L3)

1. load address a (where ais in i
same cache set x) I Meriory Bus (a%d Mem Ccinroller) I

DRAM DRAM DRAM DRAM DRAM

Bank0| Bankl Bank2| Bank3 °°° BankB
_________________________________________________________________________________________________________
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Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y

2. load address x to register z i
Green task: § Last-Level Cache (L3)

1. load address a (where ais in i
same cache set x) I Meriory Bus (a%d Mem Ccinroller) 1

DRAM DRAM DRAM DRAM DRAM

Bank0 Bankl 'Bank2  Bank3 °°° | BankB
Observation: Green’s data and Red’s
data fit in the cache. No capacity =~ T
miss.
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Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Core 2
Example:
Red task (victim): 1/L.2
1. load address x to register y I I ______________
2. load address x to register z " ‘i

Last-Level Cache (L3)\

Memory Bus (and Mem Controller)
Blue task: 1 1 1 I I

1. load address b (where b is in DRAM DRAM DRAM DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB
Observation: Blue’s data and Red’s
data fit in the cache. No capacity
missS.

_________________________________________________________________________________________________________
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Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y I I ______________
2. load address x to register z i' ‘i
Green task: Last-Level Cache (L3)
1. load address a (where a is in |
same cache set X) Memory Bus (and Mem Controller)
Blue task: I I 1 1 1
1. load address b (where b is in . DRAM | DRAM  DRAM  DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB

Observation: Blue’s data, Green’s
data, and Red’s data do not fit in the
cache. Capacity miss.

_________________________________________________________________________________________________________

C;lrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . < © 2019 Carnegie Mellon University unlimited distribution. 167
Software Engineering Institute



SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y I I ______________
2. load address x to register z i' ‘5
Green task: Last-Level Cache (L3) ™

1. load address a (where ais in

Memory Bus (and Mem Controller)

same cache set x)
Blue task: I I 1 1 1
1. load address b (where b is in . DRAM | DRAM  DRAM  DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB

Observation: Green alone does not
cause slowdown of Red.

_________________________________________________________________________________________________________
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Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y I I ______________
2. load address x to register z i' ‘5
Green task: Last-Level Cache (L3) ™

1. load address a (where ais in

Memory Bus (and Mem Controller)

same cache set x)
Blue task: I I 1 1 1
1. load address b (where b is in . DRAM | DRAM  DRAM  DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB

Observation: Blue alone does not
cause slowdown of Red.

_________________________________________________________________________________________________________
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Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y I I ______________
2. load address x to register z i' ‘5
Green task: Last-Level Cache (L3) ™

1. load address a (where ais in

Memory Bus (and Mem Controller)

same cache set x)
Blue task: I I 1 1 1
1. load address b (where b is in . DRAM | DRAM  DRAM  DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB

Observation: But Green and Blue
cause slowdown of Red.

_________________________________________________________________________________________________________

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 170
Software Engineering Institute



SBESC 2019

Considerations in creating an
abstraction for multicore

Speed of execution of a task as a . . ‘

function of co-runners can be either
(i) Additive
(i) Sub-additive L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3

(i) Super-additive I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
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Considerations in creating an
abstraction for multicore

Speed of execution of a task as a . . ‘

function of co-runners can be either
(i) Additive
(i) Sub-additive L1/L2 L1/L2 L1/L2

(i) Super-additive I I I

Last-Level Cache (L3)

Core 1 Core 2 Core 3

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

Bank O Bank 1 Bank 2 Bank 3 Bank B
If speed is not additive, how can we desci'l'Eié"é'ﬁé'e"ﬁ'é"§'é"f[jﬁ'c':'t'iéﬁ'6i‘"c':'6"r'ij'r'{ﬁ'é'r'§5 """""""""""""""""""
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Considerations in creating an
abstraction for multicore

Speed of execution of a task as a . . ‘

function of co-runners can be either
(i) Additive
(i) Sub-additive L1/L2 L1/L2 L1/L2

(i) Super-additive I I I

Last-Level Cache (L3)

Core 1 Core 2 Core 3

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

BankO| Bankl| Bank2| Bank3| °°° BankB
For each task: Enumerate the set of possible co-runner set.
C‘drnegit‘ Mellon lfniversil,y Tw;wgwwv;gcglgi\”y:rwj;‘ﬂ Suii‘bv:’:z»e Executing on Undocumented Multicore Processors LE:‘I"SI;I‘?EIE;‘Q%\:‘?J:TEMENT A] Approved for public release and 173
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Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
lowerboundspeed;°"
< speed(i,t) <1

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
For each task: Enumerate the set of possible co-runner set.
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1

L1/L2

L1/L2

Core 3

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1
{cyan} 0.5

Core 1l

L1/L2

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie x/lt‘,"()n L’niversil,y T'7?)‘1”9903?:g‘])\/esr‘\feﬁgmsl\ﬁ[\b\évrzlty\? Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?;:TEMENT A] Approved for public release and 176

Software Engineering Institute



SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1
{green} 0.45

Core 1l

L1/L2

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1
{brown} 0.45

Core 1l

L1/L2

Core 2
L1/L2

Core 3

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1
{blue} 0.25

Core 1l

L1/L2

Core 2
L1/L2

Core 3

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1

{cyan, brown} 0.18

Core 3

Core 1l

L1/L2

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1

{cyan, blue} 0.12

Core 1l

L1/L2

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
 Co-runner set | Speed |
{} 1

Core 3

Core 1l

L1/L2

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

reen,brown} 0.13
e DRAM = DRAM  DRAM | DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1

Core 3

Core 1l

L1/L2

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
{green, blue}  0.19 Bank0| Bank1 | |('Bank2  Bank3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cg=4

red

{} 1
{cyan} 0.5
{green} 0.45
{brown} 0.45
{blue} 0.25

{cyan, brown} 0.18
{cyan, blue} 0.12

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

reen,brown i
{green,brown} 0.13 DRAM DRAM DRAM DRAM DRAM
L C N
{green, blue}  0.19 Bank O Bank 1 Bank 2 Bank 3 Bank B
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Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cg=4

red

{} 1
{cyan} 0.5
{green} 0.45
{brown} 0.45
{blue} 0.25

{cyan, brown} 0.18
{cyan, blue} 0.12

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

se e
{green, blue}  0.19 Bank O Bank 1 Bank 2 Bank 3 Bank B
Describe resource consumption of other tasks analogously.
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Considerations in creating an
abstraction for multicore

Core 2

L1/L2

& & e

Core 3
L1/L2

Main idea:
For each task i, c
) orel
for each co-runner set of task i do
lowerboundspeed;°" L1/L2
< speed(i,t) <1 I

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
Bank 0 | Bank1 Bank2| Bank3| °°° BankB
: Isn’t that exponential?
For each task: Enumerate the set of possible co-runner set. .
P Couldn't this be bad?
umented Multicore Processors LDnllﬁn'l'i:‘\'eldB;Jigﬁ)g\:ﬂ?J:TEMENT A] Approved for public release and l 86
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Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
lowerboundspeed;°"
< speed(i,t) <1

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
ntaSkS _ 1 nprocessors—1
Given a task i: #co-runner sets of task i < < + 1)
nprocessors — 1
C‘drnegie ylell()n L'niversil,'v Tv;gwwnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?xTEMENTA]Approved for public release and 187

Software Engineering Institute



SBESC 2019

Considerations in creating an

abstraction for multicore '
Main idea: ‘

For each task i,

for each co-runner set of task i do
lowerboundspeed;°" L1/L2 L1/L2 L1/L2

< speed(i,t) <1 I I I

Last-Level Cache (L3)

Core 1 Core 2 Core 3

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

Bank O Bank 1 Bank 2 Bank 3 Bank B
Given a task i: #co-runner sets of task i < polynomial If number of processors is fixed.
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁl‘tg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 188
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Considerations in creating an

abstraction for multicore '
Main idea: ‘

For each task i,

for each co-runner set of task i do
lowerboundspeed;°" L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3

< speed(i,t) <1 I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

Bank O Bank 1 Bank 2 Bank 3 Bank B
Given a task i: #co-runner sets of task i < ntasks If number of processors = 2.
Carnegie Mellon L:niversil,'v T\v;g\wnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgi::ggﬂ?xTEMENT A] Approved for public release and 189
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Considerations in creating an

abstraction for multicore '
Main idea: ‘

For each task i,

for each co-runner set of task i do
lowerboundspeed;°" L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3

< speed(i,t) <1 I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
BankO| ' Bank1l 'Bank2| |Bank3 °°° BankB

Given a task i: #co-runner sets of task i < < If number of processors = 3.

ntasks — 1 2
— +1

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 190
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Considerations in creating an

abstraction for multicore '
Main idea: ‘

For each task i,

for each co-runner set of task i do
lowerboundspeed;°" L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3

< speed(i,t) <1 I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
BankO| ' Bank1l 'Bank2| |Bank3 °°° BankB

Given a task i: #co-runner sets of task i < < If number of processors = 4.

ntasks — 1 3
B — +1

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 19 l
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Considerations in creating an
abstraction for multicore

Given a task i: A job of task i can

experience different co-runner set at

different times.

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 192
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How Co-Runners Impact Speed of Execution

Core 1l >
L1/L2 .
Core 2 >
L1/L2 R
Core 3

L1/L2

ArrivesT Finishes Time

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N . . c © 2019 Carnegie Mellon University unlimited distribution. l 9 3
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How Co-Runners Impact Speed of Execution

Core 1l >
L1/L2 [ ;
e o [ :

L1/L2

ArrivesT Finishes Time

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N . . . © 2019 Carnegie Mellon University unlimited distribution. 194
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Considerations in creating an
abstraction for multicore

Given a task i: A job of task i can

experience different co-runner set at

different times.

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
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Considerations in creating an
abstraction for multicore '

In some computer systems, there are ‘
some resources (e.g., memory bus)

where the arbitration depends on the e
processor id of the requestor. L1/L2 L1/L2

Core 1 Core 2 Core 3

! ! !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
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unschedulable schedulable
( . \ ( . \
Core 1 Core 2 Core 3 Core 1 Core 2 Core 3
L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 L1/L2
4 t t . 1 __________________________ 1 _________________________ I __________
v v v
| Last-Level Cache (L3) | | Last-Level Cache (L3) |
. Memory Bus (and Mem Controller) | . Memory Bus (and Mem Controller) |
1 ] 1 il 1 1 1 i}
DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM
Bank 0 Bank 1 Bank 2 Bank 3 ***Bank B Bank 0 Bank 1 Bank 2 Bank 3 ***Bank B
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Considerations in creating an
abstraction for multicore '

In some computer systems, there are ‘
some resources (e.g., memory bus)

where the arbitration depends on the e
processor id of the requestor. L1/L2 L1/L2

Core 1 Core 2 Core 3

! ! !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
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Considerations in creating an
abstraction for multicore

The program behavior may change

over time.

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon L'niversity Iw;\?)Hnggcglgi\]‘yes’wwse”ogwiowl‘tve\/;rwe Executing on Undocumented Multicore Processors Lﬂ?{;ﬁ?;‘;{ﬁmﬂ:TEMEm A] Approved for public release and 199
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Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

while (1) {
s = wait_until_next _sample()

Core 1l

L1/L2

o -

Core 3
L1/L2

Core 2
L1/L2

update_ datastructures(s)

!

!

a = compute_actuation_command()

Last-Level Cache (L3)

actuate_command(a)

¥ Memory Bus (and Mem Controller)
DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:!]‘ypskfpﬁg‘wstjif‘tgzl;ye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 200
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Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

while (1) {
s = wait_until_next _sample()
—»update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

Core 1l

L1/L2

o -

Core 3
L1/L2

Core 2
L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

The program
behavior here DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁf‘tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 201
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Considerations in creating an

abstraction for multicore

The program behavior may change

over time.

while (1) {

s = wait_until_next _sample()

actuate_command(a)

}

—»update_datastructures(s)
a = compute_actuation_commandOQe !

& & e

Core 3
L1/L2

Core 1l

L1/L2

Core 2
L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

The program
behavior here DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
Is different from
the program
behavior here.
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:{\]‘y:’wjpﬁgwsﬂtvpvr:lwe Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 202
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Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

while (1) {
s = wait_until_next _sample()

Core 1l

L1/L2

Core 2
L1/L2

& & e

Core 3
L1/L2

update_ datastructures(s) ;

!

!

a = compute_actuation_command()

!

Last-Level Cache (L3)

actuate_command(a)

}

Memory Bus (and Mem Controller)

I

1 1

I

Describe a task as a sequence of segments
where each segment may have different DRAM ' DRAM gRAl‘('\g SRAl‘('\g ER?('\Q
description of lower bound on speed Bank 0| Bank1 an an an
as a function of co-runners. !

C‘drnegit‘ Mellon l;ni\‘t‘rsily Twv;:)wwnggcglg:{\"y:rwjp‘«‘);‘ﬁfwl‘tgSa‘lt'»e’ Executing on Undocumented Multicore Processors LE:‘IHS[;I‘?EIE;‘Q%\:“?J:TEMENT A] Approved for public release and 203
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Taskset example

7| =5 procs(I1) =

Tl = 1.500 Dl
Cl =0.250 pd;

Tg = 2.000 D2
C} =0.250 pd,

T3 =2.000 Ds
C} =0.250 pd;

Tq_ = 2.000 D4
CI =0.250 pd,

Ts  =2.250 Ds
C: =0.500 pds
CZ =0.125 pds

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

{PI&PZ]

Vs =
CO5
CO?

_{é
{

_{?1}
{

= (o]

prio; =3 proc; =1
prio; = 2 procs =1

prios =3 procz =2

)
({v}}.1.0). ({3}, 0.5)}

{v) priog = 2 procg = 2
= {({v!},0.5), ({01}, 1.0)}

{Ué,vg] prios = 1 procs = 2

= {({v!},1.0), ({01}, 1.0)}
= {({v}},0.5), ({vi}. 1.0)}

J
= {({v3},1.0), ({4}, 0.5), ({vs}, 1.0), ({vZ}. 1.0))

}
({03},0.5), ({v}}, 1.0), ({vi}, 1.0). ({02}, 1.0))

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT Al Approved for public relea:
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Taskset example

7| =5 procs(IT) = {Py, Py} S TaSk
T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =2.250 Ds =2250 Vs={ovl v} prios=1 procs=2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution. 205
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Taskset example

2 processors

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =2.250 Ds =2250 Vs={ovl v} prios=1 procs=2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution. 206
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Taskset example

7| =5 procs(IT) = {Py, Py}
T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1
1 g = 1 _ 1 1 1 2 Task 1
Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1
C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2
C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}
T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2
CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}
Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2
C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}
CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.
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Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Task 2

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University unlimited distribution.
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Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T3 =2.000 D3 =2.000 V3= {ovl} prios = 3 procs = 2

C; =0.250 pd; =0.500 CO}={({v]},1.0).({v;},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution.
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Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 D, =2.000 V;={vl} priog = 2 procy = 2

C[ o 0 250 1 o 1 ! 1 1 TaSk 4
o=, pd; =0.500 CO} = {({v}},0.5). ({01}, 1.0)}

Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution.
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Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)} Task 5
CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution.
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Taskset example

z|,= 5 procs(TT) = {P;. Py}
Minimum inter-arrival times of tasks

T, =1.500] D; = 1.500

Cl =0.250 pd; =0.500

C

T, =2.000| D, = 2.000
1 _ 1 _
1 =0.250 pd) =0.500

T, =2.000] D3 = 2.000

1 _ I _
C; =0.250 pd; = 0.500

T, =2.000| D, = 2.000

1 _ 1 _
C, =0.250 pd, =0.500

Ty =2.250| Ds =
C: =0.500 pdi =
CZ =0.125 pdi =

2.250
1.000
0.500

Vi = {v}] prio; =3 proc; =1

CO;7 = {({v3},1.0), ({v3},0.5), ({vi}, 1.0). ({v5},1.0)}

Vo = {Ué] prio, = 2 procy; =1
{

0
Q.
I

Vi = {03!] prios =3 procz =2
{({v}},1.0), ({v}}, 0.5)}

D!
o
=
Il

Vi = {Ui] priog = 2 procy =2
COj = {({v]},0.5), ({05}, 1.0)}

Vs = {vé,z;g] prios = 1 procs = 2
CO: = {({v]},1.0). ({03}, 1.0)}
COZ = {({v]},0.5). ({0}, 1.0)}

({031, 0.5), ({13}, 1.0), ({vi}, 1.0), ({vi}, 1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
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Taskset example

7| =5

procs(I1) =

{P1, P2}

Deadlines of tasks

T, =1.500 [D,

= 1.500

Cl =0.250 pd;

= 0.500

Tg = 2.000 D2

= 2.000

1
C; =0.250 pd,

= 0.500

T, =2.000 |Ds

= 2.000

C} =0.250 pd;

= 0.500

Tq_ = 2.000 D4

= 2.000

1
C; =0.250 pdy

= 0.500

Ts =2.250 |Ds =

2.250

C: =0.500 pdi =
CZ =0.125 pdi =

1.000
0.500

Vi ={v ] prio; =3 proc; =1

COl = {({v;}, 1.0), ({v}},0.5), ({vi}, 1.0), ({v%}. 1.0)}

Vo = {Ué] prio, = 2 procy; =1

CO; = {({v3}.0.5), ({vy}, 1.0), {4}, 1.0), ({05}, 1.0))
V3 = {vé] priog = 3 procs = 2

CO; = {({v]},1.0). ({vy}.0.5)}

Vi = {Ui] priog = 2 procy =2

COj = {({v]},0.5), ({05}, 1.0)}

Vs = { ; 2] pri05:1 procs = 2

Co? = (((v}), 1.0). ({01}, 1.0))

COzZ = {({v!},0.5). ({v3},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
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Taskset example

7| =5 procs(IT) = {Py, Py}

Sets of segments for each task
T, =1500 D; =1.500[V;={of} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))

T, =2.000 Dy =2.000[V;={vl} prio, = 2 procy =1
{

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))

T; =2.000 D3y =2.000[ Va={ol} prios = 3 procs = 2
C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2.000| Vy={ov}} priog = 2 procy = 2
CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

.Ug prios = 1 procs = 2

1
f(lv}}, 1.0), ({01}, 1.0)}
{({0l},0.5). ({01}, 1.0)}

——

Ts =2250 Ds =2.250| V5=
C: =0.500 pds =1.000 CO!
CZ =0.125 pdi =0.500 CO?

é)

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . c © 2019 Carnegie Mellon University unlimited distribution. 2 14
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Taskset example
] =5

Tl = 1.500 D1

Cl =0.250 pd;

pd;

Tg = 2.000 D2

C; =0.250 pd,
T; =2.000 Ds
C} =0.250 pd;
Tq_ = 2.000 D4
CI =0.250 pd,

Ts =2.250 Ds

Cs =0.500 pds
2
C: =0.125 pd;

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

procs(IT) = {Py, Py}

prio; =3 proc; =1

1
}
1
CO;7 = {({v3},1.0), ({v3},0.5), ({vi}, 1.0). ({v5},1.0)}

Task 1 has 1 segment.

Vo = {Ué] prio, = 2 procy; =1

CO; = {({v3}.0.5), ({vy}, 1.0), {4}, 1.0), ({05}, 1.0))
V3 = {vé] priog = 3 procs = 2

CO; = {({v]},1.0). ({vy}.0.5)}

Vi = {Ui] priog = 2 procy =2

COj = {({v]},0.5), ({05}, 1.0)}

Vs = {vé,v%] prios = 1 procs = 2

CO: = {({v]},1.0). ({03}, 1.0)}

COZ = {({v]},0.5). ({0}, 1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University
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Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1
Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))

T, =2000 D, =2.000 Vp={v
C} =0.250 pdy =0.500 CO}=

} prio, = 2 procy; =1
({031, 0.5), ({13}, 1.0), ({vi}, 1.0), ({vi}, 1.0)}

T; =2.000 D3y =2.000 Vi3={v
C: =0.250 pd; =0.500 CO}=

} priog = 3 procs = 2
({1}, 1.0). ({3}, 0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2
CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ty =2.250 Ds =2.250 |Vs=
C: =0.500 pds =1.000 CO!
CZ =0.125 pdi =0.500 CO?

[ ——.

v, 5] prios = 1 procs =2 Task 5 has 2 segments.
{({0!},1.0), ({01}, 1.0)}
{({0l},0.5). ({01}, 1.0)}

Ca[‘negie Mellon Universitv Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . c © 2019 Carnegie Mellon University unlimited distribution. 2 16
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Taskset example
] =5

Tl = 1.500 D1
Cl =0.250 pd;

Tg = 2.000 D2
C} =0.250 pd,

T3  =2.000 Ds
C} =0.250 pd;

Tq_ = 2.000 D4
CI =0.250 pd,

Ts  =2.250 Ds
C: =0.500 pds
CZ =0.125 pds

procs(IT) = {Py, Py

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

iDriorities for each task
Vi = {v}] prio; = 3] proc; =1

CO;7 = {({v3},1.0), ({v3},0.5), ({vi}, 1.0). ({v5},1.0)}

Vo = {Ué] prio, = 2| procy; =1

CO; = {({v3}.0.5), ({vy}, 1.0), {4}, 1.0), ({05}, 1.0))
V3 = {vé] prios = 3| procs = 2

CO; = {({v]},1.0). ({vy}.0.5)}

Vi = {Ui] priog = 2| procy = 2

COj = {({v]},0.5), ({05}, 1.0)}

Vs = {vé,v%] prios = 1| procs = 2

CO: = {({v]},1.0). ({03}, 1.0)}

COZ = {({v]},0.5). ({0}, 1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
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Taskset example

IT] =5 procs(IT) = {Py, Py} ] .
Processor to each task is assigned

T, =1500 D; =1.500 V;= {v}] prio; = 3 |proc; =1

€l =0250 pdj =0.500 CO}={({v;}.1.0).({v}}.0.5), {vl}. 1.0). ({v?}. 1.0)}

T, =2.000 D, =2000 V;={ov} prio, = 2 [proc; =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))

T; =2.000 Dy =2000 V;={ovl} prios = 3 | procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 | procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =2250 Ds =2250 Vs={vs,v? pri05 =1 |procs =2

C: =0500 pdi =1.000 CO!= {({v1 0), {03}, 1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors

© 2019 Carnegie Mellon University
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Taskset example

7] =5

procs(Il) =

{P1, P}

Execution requwement for each segment of each task

T, =1.500 D,
Cl =0.250| pd;

Tg = 2.000 D2
C!  =0.250| pdj

T: _=2.000 Ds
C} =0.250| pd;

T, =2.000 D,
CI =0.250| pd}

Ty =2.250 Ds =
C: =0.500| pdi =
C? =0.125| pd: =

= 1.500 V; = {v}}
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

2.250
1.000
0.500

prio; =3 proc; =1

COl = {({vg}, 1.0), ({v}},0.5), ({vi}, 1.0), ({v%}. 1.0)}

vy = {v;) prio, = 2 procy = 1
{

Vs = {03} prio3 =3 procs =2
{({v}},1.0), ({v}}, 0.5)}

Vi = {Ui] priog = 2 procy =2
COj = {({v]},0.5), ({05}, 1.0)}
Vs = {vé 2)2 pri05 =1 procs =2
CO! = {({v!},1.0), ({01}, 1.0)}
COz = {({v;},0.5). ({vy},1.0)}

({031, 0.5), ({13}, 1.0), ({vi}, 1.0), ({vi}, 1.0)}
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Taskset example

7| =5 procs(IT) = {Py, Po}

Tl = 1.500 D1
Cl =0.250 pd;

Tg = 2.000 D2
C} =0.250 pd,

T3  =2.000 Ds
C} =0.250 pd;

T4 = 2.000 D4
CI =0.250 pd,

Ts  =2.250 Ds
C: =0.500 pds
CZ =0.125 pds

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

Speed as function of co-runners

Vi = {v]) prio; =3 proc; = 1

CO;7 = {({v3},1.0), ({v3},0.5), ({vi}, 1.0). ({v5},1.0)}

Vo = {U;] prio, = 2 procy; =1
Cco! = {({v!l}.0.5). {v!}. 1.0), {01}, 1.0), ({v?}.1.0))
Va={v priog =3 procy = 2

1
21
CO; = {({v]},1.0). ({vy}.0.5)}

= {Ui] priog = 2 procg = 2

COj = {({v]},0.5), ({05}, 1.0)}

Ve ={ovl vl prios=1 procs=2

CO: = {({v]},1.0). ({03}, 1.0)}
CO? = {({v1},0.5). ({01}.1.0))

Carnegie Mellon University

Software Engineering Institute
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Taskset example

7| =5

Ty =1.500
C; =0.250
I, =2.000
C; = 0.250
T3 =2.000
Cy =0.250
T, =2.000
C; =0.250
T;  =2.250
Cs =0.500
Cz =0.125

procs(II) = {P;. P;}

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

Vi = {o])

CO; = {({v3}.1.0),

V2 = {v;)

prio; =3 proc; =1

({v;},0.5)

If segment 1 of task 1 executes

in parallel with segment 1 of task 4,
then Segment 1 of task 1 executes
with speed 0.5.

({va}, 1.0), ({2}, 1.0)}

priop = 2 procy =1

CO! = {({01},0.5). ({ol}. 1.0). ({v1}.1.0). ({v2}. 1.0))

Vs = {v3)

Vi = {vy)

prios =3 procz =2
CO; = {({v1},1.0). ({vy}.0.5)}

priog = 2 procy = 2
COj = {({v]},0.5). ({0}, 1.0)}

Vs = {vd, 08} prios =1 procs =2

CO; = {({v]},1.0). ({vy}. 1.0)}
COZ = {({v]},0.5). ({v,}. 1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
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Taskset example If segment 1 of task 1 executes in parallel with a segmentset for
which information in CO is not available, then segment 1 of task 1
7l =5 procs(Il) = {P1. P2} executes with speed 0.5.
I, =1500 D; =1.500 V= {UII] prio; =3 proc; =1
C] =0.250 {pd; =0.500] CO} = {({vi}.1.0).({v;},0.5), {vi}. 1.0). ({vi}. 1.0))

T, =2.000 D, =2000 V,={vl} prio, = 2 procy = 1

Cl =0.250 pd) =0.500 COJ={({vl},0.5).({vi},1.0),({vl},1.0),({v2}.1.0))

T; =2.000 D; =2.000 V;={v}} prios = 3 procs = 2
C! =0.250 pd; =0.500 CO!={({v!},1.0),({v}},0.5)}

T, =2.000 Dy =2000 V;={v;) priog = 2 procy = 2

CI =0.250 pdy =0.500 CO}={({v!},0.5).({v}},1.0)}

Ts =2.250 Ds =2.250 V5= {vé,ugl prios = 1 procs = 2
C: =0.500 pdi =1.000 CO!={({v!},1.0), ({0}, 1.0)}
CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 222
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Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented

hardware? (DONE)

Core 2
L1/L2

& & e

Core 3
L1/L2

!

!

.- Core 1l
Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2
Before discussing them, let us discuss: | I

1. Other approaches (DONE)

2. General ideas for abstractions in

other disciplines (DONE)

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
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Big Research Questions

Q1: What is a good abstraction that

describes the effect of undocumented ' ' ‘
hardware?

Core 2 Core 3
Q2:ydow to create a schedulability Lo
analys™at uses this abstraction? L1/L2 L1/L2

Core 1l

Let us discuss Q2. I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Tgg‘wnggcﬁrlg:!pypsr‘jpﬁgmstﬁ[\tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 224
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Big Research Questions

Q1: What is a good abstraction that ‘

describes the effect of undocumented

hardware? ‘

Core 1l Core 2 Core 3

Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2 L1/L2 L1/L2
In order to simplify our discussion III """"""""
initially, let us consider a taskset with | Last-Level Cache (L3) i
only Red and Brown task. Also, letus |
consider that the minimum inter-arrival Memory Bus (and Mem Controller)
time of each of these tasks is infinity I I I 1
(i.e., generates just a single job). " DRAM  DRAM | DRAM  DRAM DRAM

. BankO Bank1l Bank2 Bank3 " BankB

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Mulicore Processors [DISTRIBUTION STATEMENT | agproved o pui laseand 995
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Let durg,4, denote

the cumulative duration

that the set of tasks

" that execute is the set
{red}.

v

Core 1

L1/L2

Core 2 >
L1/L2 R
Core 3
>
Red - T ’ - :
Arrives Finishes Time
task
dureq
(jarnegie Mellon l}ni\‘t‘rsil,}' Tgg‘wnggcglg::‘py:r‘jp\‘\)rjmsxﬁwftgsawl;ye Executing on Undocumented Multicore Processors ﬂ?{;z:g;:?gﬂ?xTEMENT A] Approved for public release and 226
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Let durg,4, denote
Core 1 the cumulative duration

L1/L2 _- that the set of tasks

that execute iIs the set

v

v

{red}.
Core 2 >
L1/L2 ~ Let dur{red,brqwn} deno_te
"~ the cumulative duration
that the set of tasks
that execute iIs the set
Core 3 _ {red,brown}.
L1/L2
Red ArriveST Finishes Time
task k Y S
dur{red,brown}
durgeq)
(jarnegie Mellon University Twv;gwwnggclaxrugi\vy:;?‘r‘;gmsﬂbg?; Executing on Undocumented Multicore Processors L?‘llisr;:gsgigggﬂ?;’:TEMENT A] Approved for public release and 297
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Maximize
Corel dur{red,brown} +

e T ~durgey

" subject to
O'45*dur{red,brown} +
1.00*durgeq < Cieq

v

Core 2 >
*
L1/L2 ~ 0.6%durgeq prowny *
1.0*du r{brown} = Cbrown
Core 3
L1/L2
R ves | - .
ed  Arrives Finishes Time
task x Y N
du r{red,brown}
durgeq)
Carnegie x/lt‘,"()n L’niversil,y I\v;gunggc:rlg§;¥es’¥?eﬁ>g‘wstjiftg:|;3 Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?;:TEMENT A] Approved for public release and 228
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Corel > dur{red,brown} +
dur
L1/L2 _- R *{red}
subject to
M' dur{red,brown} +
1.00*durgeq < Cieq
Core 2 >
L1/L2 ~ 0.6%durgeq prowny *
1. J*dur{brown} < Cbrown
Lower bound on
Core 3 the spe_ed of
L1/L2 > execution of Red
when it executes
Red - T - _ in parallel with
Arrives Finishes Time
task x Y N Brown.
dur{red,brown}
durgeq
(jarnegie Mellon University Twv;gwwnggcgugi\vy:rw;‘«‘)rjmsuim:u; Executing on Undocumented Multicore Processors er)‘llisr;:g?gigggﬂ?xTEMENT A] Approved for public release and 299

Software Engineering Institute



SBESC 2019

Maximize
Corel dur{red,brown} +

e T ~durgey

" subject to
O'45*dur{red,brown} +
1.00*durgeq < Cieq

v

Core 2 >
L1/L2 .8 dUrgeq prowny *
> *
1.0 dur{brown} < Cbrown
Lower bound on
Core 3 the spe_ed of
L1/L2 > execution of
Brown
Red  ppi T Einish - when it executes
rrves Ime . .
task S T NISHes in parallel with
d ur{red,brown} R e d .
durgeq
(jarnegie Mellon University Twv;gwwnggclaxrugi\vy:;?‘r‘;gmsﬂbg?; Executing on Undocumented Multicore Processors L?‘llisr;:gsgigggﬂ?;’:TEMENT A] Approved for public release and 230
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v

Corel d ur{red,brown} +

L1/L2 _- R dur{fed}

" subject to
O'45*dur{red,brown} +
1.00*duryeq < Cieq

Core 2 >
*
/ 0.6 dur{red,brown} +
L1/L2 , . )
1.0*du r{brown} = Cbrown
Core 3 0< dur{red,brown}
ore
, 0=dur,.,
Lz 0= dur{brown}
Red ArriveST Finishes Time
task x Y N
du r{red,brown}
durgeq)
C‘drnegie ylell()n L'niversil,'v Tv;gwwnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?xTEMENT A] Approved for public release and 231
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Corel d ur{red,brown} +

L1/L2 _- . dUr ey

" subject to
O'45*dur{red,brown} +
1.00*duryeq < Cieq
O'6~k(:h'"‘{red,brown} +

v

v

Core 2
*
1.0 dur{brown} s Cbrown
L1/L2 . oo
0= dur{red,brown}
ore _ Solving this
L1/L2 optimization problem
g yields an upper bound
Re ArrivesT Finishes Time on the response time
task k X ) f Red
dur{red,brown} O ea.
dureq
(jarnegie Mellon University Twv;gwwnggcgugi\vy:rw;‘«‘)rjmsuim:u; Executing on Undocumented Multicore Processors er)‘llisr;:g?gigggﬂ?xTEMENT A] Approved for public release and 232
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SBESC 2019 MaXImlze
Corel d ur{red,brown} +

L1/L2 _- . dUr ey

" subject to
O'45*dur{red,brown} +
1.00*duryeq < Cieq
O'6*dl'"‘{red,brown} +

v

v

Core 2
*
/ 1.0 dur{brown} s Cbrown
L1/L2 . oo
0< dur{red,brown}
0 = duryeq
C 3 0 = dur{brown} o
ore ~ Let us formulate this in
L1/L2 general.
Red ArriveST Finishes Time
task x Y N
dur{red,brown}
durgeq)
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁl‘tg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 233
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Core 1

L1/L2

v

v

Core 2
L1/L2

v

Core 3
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Carnegie Mellon lfniversil,y T‘ggj‘wvl)gcgI;S:‘uy:r‘;e\‘\)rjﬁfwmvy:I;yer Executing on Undocumented Multicore Processors ﬂ?{;z?;‘g?gijEMENT A] Approved for public release and 235

Software Engineering Institute
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Core 1 » taskset.
L ~ Let[] denote the
- computer platform.
Given task i, find a
Core 2 » value of t such
L1/L2 ‘ that an upper bound
" on the duration of
time during which
the processor
core3 _ (Processor 3) is busy
L1/L2 executing task i or
higher priority tasks
Task i ArrivesI | Time is equal to
(vietim) Let us coﬁsider a time L.
interval of duration t
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L1/L2 ‘ that an upper bound
" on the duration of
time during which
the processor
core3 _ (Processor 3) is busy
L1/L2 executing task i or
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Task i ArrivesI | Time is equal to
(vietim) Let us consider a time L.
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Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug

i’ €hep(r,IL,%) 1 EV»' seS(r, 0,4 k")

subject to

Vi’ € hep(r,I1,1). Vo € Vi, Z pwh S\{(f gy X dig <
seS(r,IL,i' k')
Vi’ € top(7. 11, i)_.‘v’z,nf,' € Vi, Zp“’;c:,g\{(z",k')} x dug < xUB(7.IL.7, K .t)

seS(r,I0,i" k')A
(3" k") s.t. (i" €hep(T,IT 1))/‘\(( /" kY es))

Vs € S(r,I0) s.t. (30" E”) s.t. (i € hep(r. IL 1)) A ((i", k") € s)), dus € Rsg

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11
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Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize D ) > du For a given taskset, for

thep(‘rHL)l €V,SEQ(TH1’ k")

subject to

a given t, this is a linear

program.
Vi’ € hep(7.11, i), Yoy, € Vi, Z pWj) S\{(z’ gy X dug <
seS(r,IL,i' k')
Vi’ € top(7. 11, i)_.‘v’-uf]l e Vi, prgﬂ\{(i' gy X dug < xUB(7, II, i K1)
seS(r,I0,i" k')A |
(3" k") s.t. (i" €hep(T,IT 1))/‘\(( /" kY es))
Vs € S(r,I0) s.t. (30" E”) s.t. (i € hep(r. IL 1)) A ((i", k") € s)), dus € Rsg
Schedulability analysis (timing verification) is done as follows:
THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11
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Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize D ) > du For a given taskset, for
i’ €hep(T HL)1 €V,SEQ(TH@’ k") . .. .

a given t, this is a linear

program beca hese
nstants.

subject to

Vi’ € hep(r, 1L, i), Vol € Vi, Z PWﬁ__s\{(i’,kf)} x dug <
s€S(r,ILi’ k') |
Vi’ € top(7. 11, i).‘v’-u,fil e Vy, Z})\R.-'i-‘}:g\{@,___k,)} x dug <KUB(B77h 1)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,I1, 1))/\(( /" kY es))

Vs € S(7,II) s.t. (3", k") s.t. (" € hep(7,IL1)) A (", k") € s)),dus € R>q

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11
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Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

HIAXIIILZE > X >, du A linear program can
i/ Ehep(*rl'[z)l €V,SEQ(TH@’ k") .
be solved in

subject to . .

polynomial time.

Vi’ € hep(r,I1,1). Vo € Vi, Z pwh S\{(f gy X dig <
seS(r,IL,i' k')

Vi’ € top(7. 11, i)_.‘v’-uf]l € Vi, Zp“’iﬁ:s\{(i’,k’)} x dug < xUB(7.IL.7, K .t)

seS(r,I0,i" k')A
(3" k") s.t. (i" €hep(T,IT 1))/‘\(( /" kY es))

Vs € S(r,I0) s.t. (30" E”) s.t. (i € hep(r. IL 1)) A ((i", k") € s)), dus € Rsg

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11
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Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug Givenrt, I, it
7 7 ") ’
i’ €hep(7,IL%) vk’ eV, SES(T.ILY E’) . .
B evaluating reqlp(t,I1,i,t)

can be done in
polynomial time.

subject to

Vi’ € hep(r,I1,1). Vo € Vi, > pwi S\{(z’ gy X dug <
seS(r,IL,i' k')
Vi’ € top(7. 11, i)_.‘v’-z,.',fff € Vi, Zp\x{.‘ig\{@,!k,)} x dug < xUB(7.IL.7, K .t)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,IT 1))/‘\(( /" kY es))

Vs € S(7,II) s.t. (3", k") s.t. (" € hep(7,IL1)) A (", k") € s)),dus € R>q

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11
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Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug

i’ €hep(r,IL,%) 1 EV»' seS(r, 0,4 k")
subject to
Vi’ € hep(r. 11, -z‘)._v-z:i}{ e Vir, Z pu p S\{(f Ky} X dug <
seS(r,IL,i' k')

VZI.; S tOp(T_. H i)_.V'L‘,gEI = I"'yg',f_. Z 1)\7\-"'5:3\{(1-;,;;;)} X dus < XU'B(T_. HT 2.}_- }L";-. f)

seS(r,I0,i" k')A
(3" k") s.t. (i" €hep(T,IT 1))/‘\(( /" kY es))

Vs € S(r,I0) s.t. (30" E”) s.t. (i € hep(r. IL 1)) A ((i", k") € s)), dus € Rsg

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. | (Vr; € 7, (3t € [0, D;],reqlp(7, 11,4, 1) < 1)) = 7 is schedulable on 11

Evaluating this can be done in pseudo-polynomial time.

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

N f . . © 2019 Carnegie Mellon University unlimited distributi
Software Engineering Institute

243



SBESC 2019

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug

i'Chep(7,IL7) vk eV, s€S(T.IL" k')
subject to
‘v/z" c hep(fr? H__ -g‘)__\V/"{,‘i;{ — I;r Z p“ i’ S\{(%" k') } X dus -~
scS(r,ILi k")

Vi’ € top(7. 11, i)_.‘v’-z,.',fff € Vi, Zp\x{.‘ig\{@,!k,)} x dug < xUB(7.IL.7, K .t)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,IT 1))/‘\(( /" kY es))

Vs € S(7,II) s.t. (3", k") s.t. (" € hep(7,IL1)) A (", k") € s)),dus € R>q

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

This is a generalization of the classic response-time analysis for Rate-Monotonic.
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Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

’
maximize g E g dug

i’ €hep(T HL)1 Ev,q6Q(TH@’ k")

subject to

Vi’ € hep(r. 11, z‘).v-z:i}{ c Vi, Z P“icf S\{@knyy X dug <
seS(r,IL,i' k')

Vi’ € top(r, 11, 1), Vol e Vi, Zp\viﬁzg\{@,___k,)} x dug < xUB(7, 114", K, #)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,I1, 1))/\(( /" kY es))

Vs € S(7,10) s.t. (3", k") s.t. (" € hep(7, TL 1)) A ({7, k")

€ s)),dug € R>g

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

For details (about this theorem and other results about the model), see
B. Andersson et al., “'Schedulability Analysis of Tasks with Co-Runner-Dependent Execution

Times," ACM TECS, 2018.
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Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug

i'Chep(7,IL7) vk eV, s€S(T.IL" k')
subject to
Vi’ € hep(r. 11, 1), Vol € Vi, Z Wy, s\{(z’ wryp X dis <
scS(r,ILi k")

Vi’ € top(r, 11, 1), Vol e Vi, Z})\R.-'i-‘}:g\{@,___k,)} x dug < xUB(7, 114", K, #)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,I1, 1))/\(( /" kY es))

Vs € S(7,II) s.t. (3", k") s.t. (" € hep(7,IL1)) A (", k") € s)),dus € R>q

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

We have a schedulability analysis for tasks with co-runner dependent execution times.
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Comparing this result to classic Rate-Monotonic Analysis

Work Model Time Complexity | Formulation Time Complexity
(Execution of Exact of Schedulability of Schedulability
Time Depends | Schedulability Test Test
on Corunners) | Analysis
Previous | No < Pseudo- (Vz; € r, (3t € [0,D;], | Pseudo-polynomial
work polynomial >, [%]C i<t))
jehep(z,ILi)
& schedulable
This Yes Co-NP-hard (Vz; € 7,(3t € [0,D;], | Pseudo-polynomial
article in the strong reqlp(r,I1,i,t) <t)) | if the number of
sense = schedulable processors in I1
is fixed
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This result generalizes classic Rate-Monotonic Analysis to
undocumented multicore

Work Model Time Complexity | Formulation Time Complexity
(Execution of Exact of Schedulability of Schedulability
Time Depends | Schedulability Test Test
on Corunners) | Analysis
Previous | No < Pseudo- (Vz; € r, (3t € [0,D;], | Pseudo-polynomial
work polynomial >, [%]C i<t))
jehep(r, i)
& schedulable
This Yes Co-NP-hard (Vz; € 7,(3t € [0,D;], | Pseudo-polynomial
article in the strong reqlp(r,I1,i,t) <t)) | if the number of
sense = schedulable processors in I1
is fixed
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This looks very
theoretical. Does this
really work in reality?
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| understand that for
each task, the set of co-
runner sets is

polynomial in the
number of tasks
assuming that the
number of processors is
fixed.
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But I still wonder how

one can obtain the
lower bound of speed
of execution of one task
given co-runners.
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A measurement-based

approach:

5.2  Obtaining Taskset Parameters for a Given Software System

Every scheduling theory that provides 100% guarantees on timing relies on a model. Traditional
scheduling theory relies on knowledge of an upper bound on the execution time of a program,
and therefore, the research community has developed methods for finding an upper bound on the
execution requirement of a program when the program runs in isolation on a single-core processor
(Wilhelm et al. 2008). One can distinguish between (1) static methods that take the program as
input and compute an upper bound without running the program, (2) hybrid methods that measure
execution times of parts of a program and then use static methods to compute an upper bound for
the entire program, and (3) dynamic methods where a software practitioner uses domain knowledge
to identify a set of worst-case inputs/initial states of the program and then measures the execution
time of the program for these inputs/initial states; sometimes the program is run multiple times
with variations of inputs/initial state and sometimes a safety margin is added based on engineering
judgment. The dynamic method is in common use in industry today.

The model used in this article, however, also requires that a task/segment is described with a
lower bound on its speed as a function of corunners. Unfortunately, the current state of the art does
not offer any method for obtaining such a lower bound while considering all the complexities of
modern memory systems. Therefore, in order to use our scheduling theory (in practice and also
in our case study/validation in Section 5.3), we need to develop a method for obtaining such a
lower bound. We will do so by using method (3) mentioned above but extending it so that it also
provides a lower bound on its speed as a function of corunners. The new method is shown below
as pseudo-code:

(1) Let SS be an integer indicating the sample size used in our experimental method. Assign

avalue to S8 (for example 85 := 100).

(2) For each task 7;  r, for each vf eV, do

(a) Run a job of task r; on the computer platform s.t. no other tasks execute on this plat-
form.

(b) Repeat the measurement SS times and let CMI:‘ denote the set of these measurements
(execution times from measurements of a task executed in isolation).

(3) For each task ; € r, for each vf €V, do Cf = Mo X-
(4) For each task 7; € r, for each Ui" € V.do

(a) Find an upper bound on the number of memory accesses performed by a segment of
a job of task r;. (This can be obtained using performance monitoring counters.) Run
these measurements SS times. Let Hf‘ denote the largest measurement.

(b) Find an upper bound on the time for a single memory access assuming that we do not
know the corunners. Let MA denote this (e.g., MA could be 500 nanoseconds).

(©) pd} = mAX, comi ﬁ‘fxﬂ

(5) For each task 7; € r, for each Uf‘ eV, do CO’E‘ =0.
(6) For each task ;  r. for each Ui" € V. for each s € S(r.ILi.k). do

(a) co:=s\ [{i,k}}.

(b) For those segments in co, keep running all of them continuously (i.e., if segment Uf,' is
in co, then when v:‘,’ has finished execution, let this segment 'U‘k.v start execution again
immediately).

(c) While the segments in (b) execute continuously, execute a single job of segment v¥ of
task r; and measure the execution time of vf‘ Repeat this measurement S5 times and
let CMC{(D denote the set of measurements (execution times from measurements of
a task executed with co-runners).
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OK, | buy that you can
obtain these lower
bounds on the speed of

execution through
measurements. But |
wonder how
trustworthy these
numbers are. Have you
done any validation?
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OK, | buy that you can
obtain these lower
bounds on the speed of
execution through

measurements. But |
wonder how
trustworthy these
numbers are. Have you
done any validation?
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You could do a case
study. Choose a set of
tasks and use your
measurement-based
approach to obtain speed
as a function of co-
runners. Now, you have a
taskset. Then run your
schedulability analysis on
this taskset.
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Then run the system and
measure response times
of each task. If you
observe one case where
the observed response
time > calculated upper
bound on response time,
then you have falsified
your theory; otherwise,
you have corroborated
your theory.

OK, | buy that you can
obtain these lower
bounds on the speed of
execution through

measurements. But |
wonder how
trustworthy these
numbers are. Have you
done any validation?
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53 Validation of Model and Schedulability Analysis

We want to compare the computed upper bound on the response time of a task against the mea-
sured response times of jobs of this task in order to find out if there is any case in practice where the
measured respon sk exceeds the et bound on the response time of this task. If
so, the schedulability analysis would be unsafe. To get insight into this question, we pursue a case
study with a specific taskset and a real embedded platform (ARM Cortex-A% quad-core processor).

ne of this ta

To avoid cache-related preemption del
of Li
We constructed a taskset as follows. |

v, we used the software cache partitioni
/RK (Kim et al. 2013)° and assigned a private cache partition to each t

2 implementation

cwe created

nthetic programs with different inten-

sities of memory accesses on the target platform. We

call each such program a building block. There
characterize the execution time and corunner
ction with 55 := 100, The corunner description is
ng block is characterized for each possible set of corun
s from these building blocks as follows: Task ; o ts of executing build-
ing block 1. Hence, we model task ry as having a single ent. Task 2 consists of executing
ing block 2 and then executing building block 3. Hence, we model task r; as having two seg-
ments. Task ry consists of executing building block 4. Hence, we model task ry as having a single
segment. Task 1y consists of executing building block 5. Hence, we model task r; as having a
single segment. Task rg consists of executing building block 6. Hence, we model task rg aving
e segment. Task 1, consists of executing building block 2 and then executing building block
6. Hence, we model task 1, as having two

We assign tasks to processors and ass

is no shared variable between building blocks.
interference using the method in the previous
complete; that is, the build

TS,

Then we create

e

s to tasks 2

ad assign T and D parameters and
“his

lots of space; these parameters are available at the end of the source-code file of the tool that
performs schedulability testing,
Our tool yields the following upper bounds on respon
0.132 for 3, 0.
We run the

0.113 for 1y, 0.554 for 1z,

for 4, 0.146 for 5, and 0.407 for 75 (units in seconds).

stem for 1000 seconds and measure the response times of jobs, For task 7, we
mum response time of a job of this task and let r; denote it. From the experiment,
L rp = 0,483, ry = 0,127, ry = 0,137, rs = 0,142, ry = 0,365 (units in seconds).
at the response time oven

record the

we oblai

With these figure
by less than 15%. From
response |

mates the observed response times

ent, we see that (1) no deadline was missed and (3) the observed
nes were close to the computed upper bound.
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From B. Andersson et al., “'Schedulability Analysis of Tasks with Co-Runner-Dependent
Execution Times," ACM TECS, 2018:

With these figures, we obtain that the response time overestimates the observed response times
by less than 15%. From this experiment, we see that (1) no deadline was missed and (3) the observed
response times were close to the computed upper bound.
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Conclusion: It is possible to analyze timing of software executing on undocumented multicore.
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Thanks!
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