Timing Analysis of Software Executing
on Undocumented Multicore Processors

Bjorn Andersson

Carnegie Mellon University
Software Engineering Institute

Presenter
Presentation Notes
This is for the Keynote at SBESC in November_2019 in Natal, Brazil. The title is: Timing_Analysis_of_Undocumented_Multicore_Processors.
The expected duration is 80 minutes (including introduction and questions from the audience).

SBESC 2019

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-
IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM19-0890

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© .) ind © 2019 Carnegie Mellon University unlimited distribution. 2
Software Engineering Institute

@ SBESC 2019
Systems Interact with Their Physical Environment

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . . © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Systems Include Software

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . . © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Systems Include Software
That Interacts with the Physical Environment

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . . . © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Systems Include Software
That Has Real-Time Requirements

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . . . © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Satisfying Real-Time Requirements
IS a Challenge for These Systems in General

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . . . © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

Presenter
Presentation Notes

Satisfying Real-Time Requirements

Is a Challenge for ...

“The trick there, when you’re processing flight critical information, it has to be a

deterministic environment, meaning we know exactly where a piece of data is going to be

exactly when we need to — no room for error,” Langhout says. “On a multi-core processor

there’s a lot of sharing going on across the cores, so right now we’re not able to do that.”
- Jeff Langhout, Acting Director, U.S. Army Aviation and Missile Research
Development and Engineering Center (AMRDEC)

Source: “Army still working on multi-core processor for UH-60V,” May 2017, Available at
https://www.flightglobal.com/news/articles/army-still-working-on-multi-core-processor-for-uh-6-436895/.

Timing of Software Executing on Undocumented Multicor [DISTRIBUTION STATEMENT A] Approved for public release and
© 20 unlimited distribution.

Presenter
Presentation Notes

Satisfying Real-Time Requirements

Is a Challenge for ...

“A majority of avionics today are running on single-core processors, or multicore processors
with all but one core disabled.”

“The root of the problem is shared resources, which most of the time creates some kind of
interference.”

Source: “It’s time: Avionics need to move to multicore processors,” January 2018, Available at http://www.intelligent-
aerospace.com/articles/2018/01/it-s-time-avionics-needs-to-move-to-multicore-processors.html.

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Presenter
Presentation Notes

Satisfying Real-Time Requirements

Is a Challenge for ...

“In safety-critical domains such as avionics, the multicore “predictability problem” is
currently dealt with by turning off all but one core if highly-critical system components
exist.”

Source: C. J. Kenna et al., “Making Shared Caches More Predictable on Multicore Platforms,” RTSS'2012.

Carnegie Mellon University i s of So nted 0 Y [DISTRIBUTION STATEMENT A] Approved for public release and
fo SR c unlimited distribution.

Software Engineering Institute

Presenter
Presentation Notes

Satisfying Real-Time Requirements

Is a Challenge for ...

“Currently, avionics manufacturers resolve the multicore “predictability problem” by turning
off all but one core if highly critical system components exist.”

Source: B. C. Ward et al., “Making Shared Caches More Predictable on Multicore Platforms,” ECRTS’2013.

Carnegie Mellon University i s of So nted 0 Y [DISTRIBUTION STATEMENT A] Approved for public release and

. . . unlimited distribution.
Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Commonality of these Systems

Computer Program

Sensor

@

O

Actuato

Physical Environment

<

r

Carnegie Mellon UIlin‘I'SitV Timing Analysis of Software Executing on Undocumented Multicore Processors

© 2019 Carnegie Mellon University

Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Presenter
Presentation Notes

SBESC 2019

Commonality of these Systems

Sensor

Computer Program (((T))) Physical Environment

04

Actuator
Carnegie Mellon UIlin‘I‘SitV Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
° © 2019 Carnegie Mellon University unlimited distribution. 13

Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Commonality of these Systems

Sensor

Computer Program (((T))) Physical Environment

04

Actuator
Time
Read Actuate Read Actuate
Sensor Command Sensor Command
Carnegie Mellon University Timir r;gcxsr:s\g‘yesgegnsuonf‘mrs Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for ubic reease and 14

Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Commonality of these Systems

Sensor

Computer Program (((T))) Physical Environment

04

Actuator
Period
Time
Read Actuate Read Actuate
Sensor Command Sensor Command
ﬁ
Deadline
Carnegie Mellon University Timir r;gcxsr:s\g‘yesgegnsuonf‘mrs Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for ubic reease and 15

Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Commonality of these Systems

Sensor

Program r@@

@) , .
= Physical Environment
Actuator

e, .
Cyl= ;f
Sensor o

|||||||||

Q)
Ol

Actuator

{0}

Computer

Carnegie Mellon UIlin‘I'SitV Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

Commonality of these Systems

Sensor
Program (@)

O |«

Computer

Physical Environment

Actuator

5 & My |
i

Sensor
Program ®

O

lllllllll
||||||||||
lllllllll
||||||||||

AiEE;?r
Read Actuate Read Actuate Time
Sensor Command Sensor Command
Read Actuate Read Actuate
Sensor Command Sensor Command
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

. . . © 2019 Carnegie Mellon University unlimited distribution. 17
Software Engineering Institute

Presenter
Presentation Notes

SBESC 2019

What Makes it Challenging to Satisfy Real-Time Requirements?

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
o . . c © 2019 Carnegie Mellon University unlimited distribution. 18
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors
o . . < © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

19

SBESC 2019

What Causes Delay of Software?

Time

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
o . . . © 2019 Carnegie Mellon University unlimited distribution. 20
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

e —— ————————

Time when one thread Deadline Time
in the software system arrives

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
o . . . © 2019 Carnegie Mellon University unlimited distribution. 2 l
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Thread executes
one path

- 2= 20 09

Time when one thread Deadline Time
in the software system arrives

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 22
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Thread executes another path

I 4

Time when one thread Deadline Time
in the software system arrives

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 23
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Preemption:
Another thread uses
the processor.

N -

Time when one thread Deadline Time
in the software system arrives

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 24
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Interrupt
service
routine

executes

N 4 e

Time when one thread Deadline Time
in the software system arrives

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 25
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Thread requests a
critical section held by
another thread

S 4§ e

Time when one thread Deadline Time
in the software system arrives

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 26
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Thread experiences extra cache
misses because of preemptions

N 4§ N

Time when one thread Deadline Time
in the software system arrives

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 27
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Thread experiences extra cache
misses because of preemptions

N 4§ N

Time when one thread Deadline Time
in the software system arrives
k J
Y
The response time in this scenario
Carnegie Mellon University T;nrﬁnsgc:r?i,‘y:‘mseﬁgm%mg?{ye Executing on Undocumented Multicore Processors L?'.?mﬂfﬂfﬁ.llﬁ’b”u STATEMENT A] Approved for public release and o8

Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

How large can the response time be?

Thread experiences extra cache
misses because of preemptions

I TN N

Time when one thread Deadline Time
in the software system arrives
\ J
Y
The response time in this scenario
C‘drnegie ylell()n L'niversil,'v Tv;gwwnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?xTEMENT A] Approved for public release and 29

Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Does it hold for all scenarios that the response time is at most the deadline?

Deadline

A
[|

Thread experiences extra cache
misses because of preemptions

N 4§ N

Time when one thread Deadline Time
in the software system arrives
\ J
Y
The response time in this scenario
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁl‘tg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 30

Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Does it hold for all scenarios that the response time is at most the deadline?

Deadline
\
[\
Thread executes

one path
Time when one thread Deadline Time
in the software system arrives
The response time in this scenario

(jarnegie Mellon l}ni\‘t‘rsil,}' Tw;wgwwnggcglg:{\]‘ypsrwjp‘«‘)iwsut‘)wl‘tv:’Sa‘lt'ye Executing on Undocumented Multicore Processors [.2?;;25;2?&?;:TEMENT A] Approved for public release and 31

Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Does it hold for all scenarios that the response time is at most the deadline?

Deadline

A
[|

Thread experiences extra cache
misses because of preemptions

N 4§ N

Time when one thread Deadline Time
in the software system arrives
\ J
Y
The response time in this scenario
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁl‘tg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 32

Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Does it hold for all threads,
that for all arrivals of the thread,
that for all scenarios,
that the finishing time is at most the deadline?

Thread experiences extra cache
misses because of preemptions

N 4§ N

Time when one thread Deadline Time
in the software system arrives
\ J
Y
The response time in this scenario
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁl‘tg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 33

Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Does it hold for all threads,
that for all arrivals of the thread,
that for all scenarios,
that the finishing time is at most the deadline?

If “yes,” we say the set of threads is schedulable.
Otherwise, the set of threads is unschedulable.

Thread experiences extra cache
misses because of preemptions

N 4§ N

Time when one thread Deadline Time
in the software system arrives

\ J
[

The response time in this scenario

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N . . c © 2019 Carnegie Mellon University unlimited distribution. 34
Software Engineering Institute

SBESC 2019

What Causes Delay of Software?

Does it hold for all threads,
that for all arrivals of the thread,
that for all scenarios,
that the finishing time is at most the deadline?

If “yes,” we say the set of threads is schedulable.
Otherwise, the set of threads is unschedulable.

The process of determining whether a set of threads is Thread experiences extra cache
schedulable is called schedulability analysis. misses because of preemptions

I B N N

Time when one thread Deadline Time
in the software system arrives

\)
Y
The response time in this scenario

[DISTRIBUTION STATEMENT A] Approved for public release and

Timing Analysis of Software Executing on Undocumented Multicore Processors
unlimited distribution. 35

© 2019 Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

SBESC 2019

Conclusions so far
Many systems interact with the physical world

This interaction requires correct timing

Correct timing depends on the whether the delay of the software is at most a certain bound
There are many causes of the delay of software (even on a computer with a single core)

Many systems today disable all processor cores except one in order to be confident
about timing

[DISTRIBUTION STATEMENT A] Approved for public release and

Timing Analysis of Software Executing on Undocumented Multicore Processors
/ unlimited distribution. 36

g S
© 2019 Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

SBESC 2019

Real-Time Requirements of
Software Executing on a Multicore Processor

Hardware Trends
« All computers are multicores. Core 1 Core 2 Core 3 Core N

Carnegie Mellon University

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
Software Engineering Institute

© 2019 Carnegie Mellon University unlimited distribution.

37

SBESC 2019

Real-Time Requirements of

Software Executing on a Multicore Processor
Hardware Trends

« All computers are multicores. Core 1 Core 2 Core 3 Core N
» Most chip makers do not offer
single core.
Carncgie Mellon L'niv(\rsil,.v Timing Analysis of Sollwan? Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

38

SBESC 2019

Real-Time Requirements of

Software Executing on a Multicore Processor

Hardware Trends

 All computers are multicores.
* Most chip makers do not offer

single core.

* Most multicores have shared
memory.

Core 1
L1/L2

Core 2
L1/L2

Core 3

L1/L2

Core N

L1/L2

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

T

DRAM DRAM DRAM DRAM DRAM
see
Bank O Bank 1 Bank 2| | Bank 3 Bank B

(jarncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
Soﬁwa’re Emgimeermg Imshmute © 2019 Carnegie Mellon University unlimited distribution. 39

SBESC 2019

Processes { ' ' .

Corel Core 2 Core 3
Problem: For each process,

L1/L2
compute an upper bound on L1/L2 L1/L2

its response time. I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
BankO| ' Bank1l 'Bank2| |Bank3 °°° BankB

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
o . X . © 2019 Carnegie Mellon University unlimited distribution. 40
Software Engineering Institute

SBESC 2019

How Co-Runners Impact Speed of Execution

Core 1l >
L1/L2 .
Core 2 >
L1/L2 R
Core 3

L1/L2

ArrivesT Finishes Time

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N . . < © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

SBESC 2019

How Co-Runners Impact Speed of Execution

Core 1l >
L1/L2 [;
e o [:

L1/L2

ArrivesT Finishes Time

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . c © 2019 Carnegie Mellon University unlimited distribution. 42
Software Engineering Institute

SBESC 2019

Processes { '

Problem: For each process,
compute an upper bound on
its response time.

Core 1l

L1/L2

Core 2
L1/L2

o -

Core 3

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L)
Bank0 Bank1l| Bank2 Bank3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 43

Software Engineering Institute

SBESC 2019

Issues

» Shared hardware resources
impact timing.

Processes

Core 1l

L1/L2

&

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L)
Bank0 Bank1l| Bank2 Bank3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 44

Software Engineering Institute

SBESC 2019

How Bad?

Slowdown
120
103
100
80
60
40
20 14 15
6
2.98 5.1 . .
- L]
Pellil0 Nowo12 Shal6 Kim14 Nowo14 Yunl15
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N - © 2019 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

Presenter
Presentation Notes
Multiple studies have shown the effect of the previously explained delays in the execution time of a task. In the figure we show six studies that show a how many times longer a task can take to execute if it has interference by other tasks in other cores. In our own study (labeled Kim14 – the student last name) we discovered a 14X increase, meaning that if a task takes only 10 milliseconds to run when it is running by itself in one core of a processor and the other cores are idle, when some heavy load tasks are running in other cores (it was tested in a four core processor), it took 140 milliseconds. In The Yun15 study the authors discovered a 103X increase. Using the same 10 ms task it would have taken 1030 ms.

SBESC 2019

lssues Processes { '

» Shared hardware resources
impact timing.

» 103 times slowdown has been
observed.*

Core 1l

L1/L2

Core 2
L1/L2

o -

Core 3

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
[N
Bank O Bank 1 Bank 2 Bank 3 Bank B
*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.
Carnegie Mellon L'niversity I‘;Enggc:rlg:!pyesr‘wse\(\gm%i[\tvevr:zye Executing on Undocumented Multicore Processors L?‘IlﬂzsgillggijEMENT A] Approved for public release and 46

Software Engineering Institute

SBESC 2019

lssues Processes { ' ' .

* Shared hardware resources
impact timing. Core 1 Core 2 Core 3

» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

This slowdown is caused by Miss-Status Holding Register (MSHR).

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

pmmm———

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 47
Software Engineering Institute

SBESC 2019

lssues Processes { ' ' .

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3
» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR.

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

pmmm———

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 48
Software Engineering Institute

SBESC 2019

lssues Processes { ' ' .

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3
» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR. There was no

schedulability analysis that incorporated MSHR.

1
1
1
1
1
1
\

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 49
Software Engineering Institute

SBESC 2019

lssues Processes { ' ' .

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3
» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR. There was no

schedulability analysis that incorporated MSHR. Even today, there is no schedulability analysis
that incorporates the timing effects of MSHR.

1
1
1
1
1
1
\

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 50
Software Engineering Institute

SBESC 2019

Issues Processes .

* Shared hardware resources
impact timing. Core 1 Core 2 Core 3

» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

MSHR was an unknown unknown.

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

Ay

pmmm———

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 51
Software Engineering Institute

SBESC 2019

lssues Processes { ' ' .

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3
» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed.*

The resource that cause the worst slowdown is a resource that the real-time systems research
computing community can neither analyze nor manage.

hY
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

pmmm———

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 52
Software Engineering Institute

SBESC 2019

lssues Processes { '

» Shared hardware resources
impact timing.

» 103 times slowdown has been
observed [Yun15].

Core 1l

L1/L2

Core 2
L1/L2

o -

Core 3

L1/L2

» Current methods cannot deal

!

!

!

with undocumented resources.

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 53

Software Engineering Institute

SBESC 2019

lssues Processes { ' ‘ ‘

* Shared hardware resources

impact timing. Core 1 Core 2 Core 3

» 103 times slowdown has been L1/L2 L1/L2 L1/L2
observed [Yun15].

« Current methods cannot deal | I I
with undocumented resources. Last-Level Cache (L3)

« Even for the case that |
resources are documented. Memory Bus (and Mem Controller)
current methods can only | I 1 1 1 I
analyze/manage a small . DRAM | DRAM DRAM DRAM DRAM
set of them. . BankO| Bankl 'Bank2 | Bank3 °°° BankB

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution. 54

© 2019 Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

SBESC 2019

Issues Processes
* Shared hardware resources
impact timing.

» 103 times slowdown has been
observed [Yun15].

e Current methods cannot deal
with undocumented resources.

 Even when resources are
documented, current methods
can only analyze/manage a

&

[

Core 1l

L1/L2

Core 2
L1/L2

o -

Core 3
L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

1 1

I

small set of them. DRAM DRAM DRAM DRAM DRAM
* The problem is getting worse: BankO Bank1l Bank2 Bank3 °°° BankB
* Slowdown increasing
* More undocumented h/w
C‘drnegit‘ Mellon l;ni\‘t‘rsily Twv;:)wwnggcglg:{\"y:rwjp‘«‘);‘ﬁfwl‘tgSa‘lt'»e’ Executing on Undocumented Multicore Processors LE:‘IHS[;I‘?EIE;‘Q%\:“?J:TEMENT A] Approved for public release and 55

Software Engineering Institute

SBESC 2019

Processes {
Problem: For each process,

compute its response time

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L)
Bank0 Bank1l| Bank2 Bank3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 56

Software Engineering Institute

SBESC 2019

Processes {
Problem: For each process,

compute an upper bound on its
response time

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L)
Bank0 Bank1l| Bank2 Bank3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 57

Software Engineering Institute

SBESC 2019

Processes {
Problem: For each process,

compute an upper bound on its

response time considering
contention for resources in the
memory system

Core 1l

L1/L2

Core 2
L1/L2

o -

Core 3

L1/L2

and

!

!

!

that resources in the memory

Last-Level Cache (L3)

system are undocumented.

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 58

Software Engineering Institute

SBESC 2019

Processes{ ' ' .
Documented resources

Core 3

DRAM memory timing
tends to be specified according
to JDEC standard. L1/L2

Core 1l

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1

I

DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Tim osgcA [\]y Hfs oftwar wE uting on Undocumented Multicore Processors [Dlls;?lng:ogvsTATEMENTA]App ved for public relea: 59

Software Engineering Institute

SBESC 2019

Processes{ ' ‘ ‘
Documented resources

Core 3

DRAM memory timing

Core 1l

tends to be specified according

to JDEC standard.

Undocumented resources

Memory controller is often
undocumented.
Interconnection network from
cores to Last-Level cache is

L1/L2

Core 2
L1/L2

L1/L2

!

!

=

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1

I

often undocumented. DRAM = DRAM DRAM | DRAM DRAM
* Miss-Status Holding Register Bank0 Bank1l Bank2 < Bank3 '°° BankB
Is often undocumented.
(jarnegie Mellon l}ni\‘t‘rsil,}' Tw;wgwwnggcglg:{\]‘y:rw;‘«‘)iwsut‘)wl‘tv:’:lwe Executing on Undocumented Multicore Processors [.2?;;25;2?&?;:TEMENT A] Approved for public release and 60

Software Engineering Institute

SBESC 2019

Different reasons for treating
resources as undocumented

Core 1l

L1/L2

Core 2
L1/L2

Processes { ' ' .

Core 3

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L)
Bank0 Bank1l| Bank2 Bank3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 61

Software Engineering Institute

SBESC 2019

Different reasons for treating
resources as undocumented

Resources are
undocumented

Core 1l

L1/L2

Core 2
L1/L2

Processes { ' ' .

Core 3

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L)
Bank0 Bank1l| Bank2 Bank3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 62

Software Engineering Institute

SBESC 2019

Different reasons for treating

resources as undocumented
« Resources are Processes .
undocumented

» Resources are documented but
documentation is incorrect

Core 1 Core 2 Core 3

L1/L2 L1/L2 L1/L2

! ! !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

Bank O Bank 1 Bank 2 Bank 3 Bank B

[DISTRIBUTION STATEMENT A] Approved for public release and

Timing Analysis of Software Executing on Undocumented Multicore Processors
unlimited distribution. 63

Carnegie Mellon University
= ¥ © 2019 Carnegie Mellon University

Software Engineering Institute

SBESC 2019

Different reasons for treating

resources as undocumented
« Resources are Processes ‘
undocumented

 Resources gre QOpumented but Core 1 e Core 3
documentation is incorrect
 Heule:PLDI16: L1/L2 L1/L2 L1/L2
50 out of 1795 x86 I I
instructions have incorrect I
documentation Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 64

Software Engineering Institute

SBESC 2019

Different reasons for treating

resources as undocumented
« Resources are Processes ‘
undocumented

* Resources are documented but Core 1 o2 Core 3
documentation is incorrect
. Heule:PLDI16: L1/L2 L1/L2 LLULZ
50 out of 1795 x86
instructions have incorrect ;‘
documentation Last-Level Cache (L3)
« Dasgupta:PLDI19: |
Found incorrect i Memory Bus (and Mem ContrO”er)
documentation of instructions I 1 1 1 I
for x86. . DRAM DRAM | DRAM | DRAM DRAM
. BankO| Bank1l Bank2 Bank3 °°° BankB

[DISTRIBUTION STATEMENT A] Approved for public release and

Timing Analysis of Software Executing on Undocumented Multicore Processors
unlimited distribution. 65

Carnegie Mellon University
= 7 © 2019 Carnegie Mellon University

Software Engineering Institute

SBESC 2019

Different reasons for treating

resources as undocumented
« Resources are Processes ‘
undocumented

 Resources are QOpumented but Core 1 e Core 3
documentation is incorrect
 Heule:PLDI16: L1/L.2 L1/L2 L1/L2
50 out of 1795 x86 I I
instructions have incorrect ;‘ I
documentation Last-Level Cache (L3)

 Dasgupta:PLDI19:
Found incorrect

Memory Bus (and Mem Controller)

documentation of instructions I 1 1 1 I
for x86. . DRAM | DRAM DRAM DRAM DRAM
« Fogl9: . |Bank0 Bankl Bank2| Bank3 "' BankB

There are discrepancies
between measured latencies
and latencies in data sheets.

__

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon Univer unlimited distribution. 66

sity
Software Engineering Institute '

Different reasons for treating
resources as undocumented
Processes

SBESC 2019

Resources are

Core 2
L1/L2

&» & e

Core 3
L1/L2

undocumented

Resources are documented but Core 1
documentation is incorrect

Resources are documented but L1/L2
one believes the documentation to

be incorrect I

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 67

Software Engineering Institute

SBESC 2019

Different reasons for treating

resources as undocumented
« Resources are Processes ‘
undocumented

» Resources are documented but

i .. Core 1 Core 2 Core 3
documentation is incorrect
« Resources are documented but L1/L2 L1/L2 L1/L2
one believes the documentation to I I
be incorrect | I ‘i
 Resources are documented and Last-Level Cache (L3)
one believe documentation to be |
correct but it is laborious to create | Memory Bus (and Mem Controller)
a timing model for schedulability I 1 1 1 1
analysis . DRAM DRAM DRAM DRAM DRAM
. Bank0 | Bank1 Bank2 Bank3 '*" BankB
Carnegie Mellon University i Avlyss of Softyre Exuting o Undocuented lcore rocessors [DSTRBUTIONSTATENENT A Aprovedor il s -

Software Engineering Institute

SBESC 2019

Different reasons for treating

resources as undocumented
« Resources are Processes ‘
undocumented

» Resources are documented but

i .. Core 1 Core 2 Core 3

documentation is incorrect

« Resources are documented but L1/L2 L1/L2 L1/L2
one believes the documentation to I I
be incorrect ;‘ I

 Resources are documented and Last-Level Cache (L3)
one believe documentation to be |
correct but it is laborious to create | Memory Bus (and Mem Controller)
a timing model for schedulability I 1 1 1 1
analysis (and it needs to be " DRAM | DRAM | DRAM DRAM DRAM
changed when one buys a new . Bank0 | Bank1 Bank2 Bank3 '*" BankB
chip anyway) i
Carnegie Mellon University Timing Analysis of Software Excouting on Undocumented Mulicore Processors IDISTRIBUTION STATEMENT A Aproed o pubic elase and 60

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . . - © 2019 Carnegie Mellon University unlimited distribution.
Software Engineering Institute

70

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

v

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 7 1
Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using

documentation

time

Project
starts:
We
want

to
develop
product
X

v

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

72

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project Buy
starts: multi-
We core
want proc-
to essor
develop Y
product
X
Carnegie Mellon University 73

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project Buy Read
starts: multi- data
We core sheets
want proc- of
to essor multicore
develop Y processor
product Y
X
Carnegie Mellon University Timing Analysis of Software Excouting on Undocumented Mulicore Processors IDISTRIBUTION STATEMENT A Aproed o pubic elase and 4

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project Buy Read Create
starts: multi- data model of
We core sheets hardware and
want proc- of develop
to essor multicore schedulability
develop Y processor analysis
product Y equations
X

Carnegie Mellon University Timing Analysis of Software Excouting on Undocumented Mulicore Processors IDISTRIBUTION STATEMENT A Aproed o pubic elase and 5

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project Buy Read Create Deliver
starts: multi- data model of product
We core sheets hardware and X
want proc- of develop
to essor multicore schedulability
develop Y processor analysis
product Y equations
X

Carnegie Mellon University Timing Analysis of Software Excouting on Undocumented Mulicore Processors IDISTRIBUTION STATEMENT A Aproed o pubic elase and 26

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using

documentation

Voice of

the customer:
We need
product X

to use

the new
multicore time
processor Y’

v

Project Buy

starts: multi-
We core
want proc-
to essor
develop Y
product

X

Read Create Deliver
data model of product
sheets hardware and X

of develop

multicore schedulability
processor analysis

Y equations

Carnegie Mellon University

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution. 77

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using

documentation

Voice of

the customer:

We need

product X

to use

the new

multicore time

processor Y’ >
Project Buy Read Create Deliver Buy Read Create Deliver
starts: multi- data model of product multi- data model of product
We core sheets hardware and X core sheets hardware and x
want proc- of develop proc- of develop
to essor multicore schedulability essor multicore schedulability
develop Y processor analysis Y processor analysis
product Y equations Y’ equations
X

Carnegic Mellon University -

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using

documentation

This has to be repeated for

Voice of

the customer:

each hardware upgrade. We need
Takes a long time. product X
Requires PhD level skills. to use
l e new
A multicore time
‘ \ processor Y’ () R
Project Buy Read Create Deliver Buy Read Create Deliver
starts: multi- data model of product multi- data model of product
We core sheets hardware and X core sheets hardware and x
want proc- of develop proc- of develop
to essor multicore schedulability essor multicore schedulability
develop Y processor analysis Y processor analysis
product Y equations Y’ equations
X
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multcore Processors [DISTRIBUTIONSTATEMENT A1 Aproed for pblc elsseand 29

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

New multicore
processor Y
becomes .
. time
available

v

[DISTRIBUTION STATEMENT A] Approved for public release and

Timing Analysis of Software Executing on Undocumented Multicore Processors
unlimited distribution. 80

Carnegie Mellon University
= ¥ © 2019 Carnegie Mellon University

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

New multicore

processor Y

becomes .
available time

v

Academic
researcher
Create

model of
hardware and
develop
schedulability
analysis
equations for Y

[DISTRIBUTION STATEMENT A] Approved for public release and

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors
= Y unlimited distribution. 81

. X . © 2019 Carnegie Mellon University
Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

New multicore New multicore
processor Y processor Y’
becomes becomes time
available available
Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y
Carnegie Mellon University Timing Analysis of Software Excouting on Undocumented Mulicore Processors IDISTRIBUTION STATEMENT A Aproed o pubic elase and 82

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

New multicore New multicore
processor Y processor Y’
becomes becomes time
available available
Academic Academic
researcher researcher
create create
model of model of
hardware and hardware and
develop develop
schedulability schedulability
analysis analysis
equations for Y equations for Y’
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors IDISTRIBUTION STATEMENT | Approved fr pubiic release and a3

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using

documentation

New multicore New multicore New multicore
processor Y processor Y’ processor Y”
becomes becomes becomes time
available available available
Academic Academic
researcher researcher
create create
model of model of
hardware and hardware and
develop develop
schedulability schedulability
analysis analysis
equations for Y equations for Y’
Carnegie Mellon University Timing Analysis of Software Excauting on Undocumented Multicore Processors IDISTRIBUTION STATEMENT A Aproed o pubic elase and ”

Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

New multicore
processor Y”

New multicore
processor Y’

New multicore
processor Y

becomes becomes becomes time
available available available

Academic Academic Academic

researcher researcher researcher

create create create

model of model of model of

hardware and hardware and hardware and

develop develop develop

schedulability schedulability schedulability

analysis analysis analysis

equations for Y

equations for Y’

equations for Y”

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Softwal
© 2019 Carnegie Mellon University

re Executing on Undocumented Multicore Processors

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

85

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation
i

Carnegie Mellon Universitv Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution. 86
Software Engineering Institute

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

Treating multicore processors as undocumented hardware has the potential to create a
model that can be used for processors in the future even for processors that we
currently do not know about.

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution. 87
Software Engineering Institute

SBESC 2019

Processes {
Problem: For each process,

compute its response time

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L)
Bank0 Bank1l| Bank2 Bank3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 88

Software Engineering Institute

SBESC 2019

Processes {
Problem: For each process,

compute an upper bound on its
response time

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L)
Bank0 Bank1l| Bank2 Bank3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 89

Software Engineering Institute

SBESC 2019

Processes {
Problem: For each process,

compute an upper bound on its

response time considering
contention for resources in the
memory system

Core 1l

L1/L2

Core 2
L1/L2

o -

Core 3

L1/L2

and

!

!

!

that resources in the memory

Last-Level Cache (L3)

system are undocumented.

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 90

Software Engineering Institute

SBESC 2019

Processes{ '
Problem: For each process,

compute an upper bound on its

response time considering
contention for resources in the
memory system

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

and .f

!

!

!

that resources in the memory

Last-Level Cache (L3)

system are undocumented.

Memory Bus (and Mem Controller)

Q: How can we analyze timing of a

I

I

I

I

system when we do not know how DRAM DRAM DRAM DRAM DRAM
the system works? Bank0 Bankl 'Bank2 Bank3 °°° | BankB
(jarnegie Mellon l}ni\‘t‘rsil,}' Tw;wgwwnggcglg:{\]‘y:rw;‘«‘)iwsut‘)wl‘tv:’:lwe Executing on Undocumented Multicore Processors [.2?;;25;2?&?;:TEMENT A] Approved for public release and 9 l

Software Engineering Institute

SBESC 2019

Processes{ '
Problem: For each process,

compute an upper bound on its

response time considering
contention for resources in the
memory system

and
that resources in the memory
system are undocumented.

Q: How can we analyze timing of a

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

system when we do not know how DRAM DRAM DRAM DRAM DRAM
the system works? Bank0 Bankl 'Bank2 Bank3 °°° | BankB
A: Create abstraction that describes
effect of undocumented h/w.
(jarnegie Mellon University Tgg‘wnggcglgS;‘,\yégr‘QwSp\‘\)rj\wfj?w[‘bg:I[f Executing on Undocumented Multicore Processors er)‘llisrxg?;gﬁm‘?xTEMENT A] Approved for public release and 92

Software Engineering Institute

SBESC 2019

Processes{ '
Big Research Questions

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

DRAM
Bank O

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

I

DRAM
Bank B

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

93

SBESC 2019

Processes{ ' ‘ ‘
Big Research Questions

Core 3
L1/L2

Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Core 1l

L1/L2

Core 2
L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

[N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon Universit unlimited distribution. 94

Software Engineering Institute

SBESC 2019

Processes{ ' ‘ ‘
Big Research Questions

Q1: What is a good abstraction that

: Core 1l Core 2 Core 3
describes the effect of undocumented ore
hardware? L1/L2 L1/L2 L1/L2
Q2: How to create a schedulability | I I I
analysis that uses this abstraction? Last-Level Cache (L3)
Before discussing them, let us discuss: | Memory Bus (and Mem Controller)
1. Other approaches § I 1 1 1 I
2. General ideas for abstractions in DRAM = DRAM DRAM DRAM DRAM
other disciplines . 'Bank0O| Bankl Bank2 Bank3 °°° BankB
(jarnegie Mellon Ljniversil,'v T‘QE)‘WHQUCQI;:r‘])\/:r‘vl\‘\)rjmsu?w[\tg:I[\? Executing on Undocumented Multicore Processors er)‘llisr;:g?gigggﬂ?xTEMENT A] Approved for public release and 95

Software Engineering Institute

SBESC 2019

Other approaches

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

96

SBESC 2019

Other approaches

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

97

SBESC 2019

Other approaches

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

98

SBESC 2019

Other approaches

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

99

SBESC 2019

Other approaches

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution. 100
Software Engineering Institute

SBESC 2019

Other approaches

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution. 10 1
Software Engineering Institute

SBESC 2019

Other approaches

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution. 102
Software Engineering Institute

SBESC 2019

Other approaches

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution. 103
Software Engineering Institute

SBESC 2019

Other approaches

Cal'negie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

SBESC 2019

Other approaches

Cal'negie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

SBESC 2019

Other approaches

Cal'negie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University unlimited distribution.

Software Engineering Institute

SBESC 2019

Other approaches

Ignore timing
requirements

Ignore timing
aspects of
memory system

Disable all
processor cores
except one

Use simple
processor and
run heavy
computations on
GPU

Build your own
processor (ASIC)

Pro: Easy
Con: Potentially unsafe

Carnegie Mellon University
Software Engineering Institute

Tirr

1ing An

alysis of Software Executing on Undocumented Multicore Processors

2019 Carnegie Mellon University

unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved for public release and

107

SBESC 2019

Other approaches

Ignore timing
requirements

Ignore timing
aspects of
memory syste

Disable all
processor cores
except one

Use simple
processor and
run heavy
computations on
GPU

Build your own
processor (ASIC)

Pro: Easy
Con: Potentially unsafe

Carnegie Mellon University
Software Engineering Institute

Tirr

1ing An

alysis of Software Executing on Undocumented Multicore Processors

2019 Carnegie Mellon University

unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved for public release and

108

SBESC 2019

Other approaches

Ignore timing
requirements

Ignore timing
aspects of
memory system

Disable all
processor cores
except one

Pro: Easy
Con: Lose lots of processing capacity

Use simple
processor and
run heavy
computations on
GPU

Build your own
processor (ASIC)

Carnegie Mellon University
Software Engineering Institute

Tirr

1ing An

alysis of Software Executing on Undocumented Multicore Processors

2019 Carnegie Mellon University

unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved for public release and

109

SBESC 2019

Other approaches

Ignore timing
requirements

Ignore timing
aspects of
memory system

Disable all
processor cores
except one

Use simple
processor and
run heavy
computations on
GPU

Build your own
processor (ASIC)

Con: Analyzing timing of a single “task” executing on a GPU is still hard.

Carnegie Mellon University
Software Engineering Institute

Tirr

1ing An

alysis of Software Executing on Undocumented Multicore Processors

2019 Carnegie Mellon University

unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved for public release and

110

SBESC 2019

Other approaches

Use simple

o Ilgnore timing Disable all processor and :
Ilgnore timing Build your own
, aspects of processor cores run heavy
requirements . processor (ASIC)
memory system except one computations on
GPU

Con: High fixed cost.

C&lrll(‘,‘"i(‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
o . . c . 2019 Carnegie Mellon University unlimited distribution. l 1 l
Software Engineering Institute

SBESC 2019

Other approaches

Con: Low clock frequency

Reorganize
documented Software-based | |program so that
: hardware (e.g., Model some mechanism to at most one
Build your own :
RISC-V) and resources and improve program
processor (FPGA)) : e)
model all create analysis | |predictability/iso accesses
resources and lation memory at a
create analysis time
C&lrll(!gi(‘ Mellon lfni\'orsil,_v T‘g:!‘\ylxucj“ijjkﬁTJ\TQ,?T,:“:;T“‘? Executing on Undocumented Multicore Processors h:ﬂﬁ::;‘gﬁm?;’:TEMENT A] Approved for public release and 112

Software Engineering Institute

SBESC 2019

Other approaches

Con: Limits #suppliers. Laborious.

Use well- Reorganize
documented Software-based | |program so that
D] e G hardware (e.g., Model some me.chanism to at most one
processor (FPGA) RISC-V) and resources anq |.mpr(?\./e : program
model all create analysis | |predictability/iso accesses
resources and lation memory at a
create analysis time
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for publi refease and

Software Engineering Institute

2019 Carnegie Mellon University

unlimited distribution.

113

SBESC 2019

Other approaches

Con: Laborious. There may be many resources for which documentation does not exist.

Use well- Reorganize
documented Software-based | |program so that
D] e G hardware (e.g., Model some me.chanism to at most one
processor (FPGA) RISC-V) and resources anq |.mpr(?\./e : program
model all create analysis | |predictability/iso accesses
resources and lation memory at a
create analysis time
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for publi refease and

Software Engineering Institute

2019 Carnegie Mellon University

unlimited distribution.

114

SBESC 2019

Other approaches

Examples: Cache coloring, Cache locking, Bank coloring, MemGuard, TLB coloring.

Con: Requires changes to operating system. Only work for some resources; there are many
resources for which there is no isolation mechanism.

Use well- Reorganize
documented Software-based | |program so that
D] e G hardware (e.g., Model some me.chanism to at most one
processor (FPGA) RISC-V) and resources anq |.mpr(?\./e : program
model all create analysis | |predictability/iso accesses
resources and lation memory at a
create analysis time
Carnegie Mellon University Timing Analysi of Software Exceing on Undocumented Mltcore Processors IDISTRIBUTION STATEMENT A Ao for pbl s and 115

Software Engineering Institute

Examples: PREM, Linkoping@RTSSO07.

SBESC 2019

Other approaches

Con: Laborious. Requires a local memory that is large enough to store working set. Difficult
to prove that no memory accesses occurs in certain phases.

Software Engineering Institute

Use well- Reorganize
documented Software-based | |program so that
D] e G hardware (e.g., Model some me.chanism to at most one
processor (FPGA) RISC-V) and resources anq |.mpr(?\./e : program
model all create analysis | |predictability/iso accesses
resources and lation memory at a
create analysis time
Carnegie Mellon University Timing Analysi of Software Exceing on Undocumented Mltcore Processors IDISTRIBUTION STATEMENT A Ao for pbl s and 116

SBESC 2019

Processes{ ' ‘ ‘
Big Research Questions

Q1: What is a good abstraction that

: Corel Core 2 Core 3
describes the effect of undocumented ore
hardware? L1/L2 L1/L2 L1/L2
Q2: How to create a schedulability | I I I
analysis that uses this abstraction? Last-Level Cache (L3)
Before discussing them, let us discuss: Memory Bus (and Mem Controller)
1. Other approaches (DONE) | I 1 1 1 I
2. General ideas for abstractions in DRAM = DRAM DRAM DRAM DRAM
other disciplines . 'Bank0O| Bankl Bank2 Bank3 °°° BankB
(jarnegie Mellon Ljniversil,'v T‘QE)‘WHQUCQI;:r‘])\/:r‘vl\‘\)rjmsu?w[\tg:I[\? Executing on Undocumented Multicore Processors er)‘llisr;:g?gigggﬂ?xTEMENT A] Approved for public release and 117

Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. l 18
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
o . . c 2019 Carnegie Mellon University unlimited distribution. 119
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

Not drawn to scale

re Processors [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution. 120

Carnegie Mellon University
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

his body has many atoms

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
o . . c 2019 Carnegie Mellon University unlimited distribution. 121
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

his body has many atoms This body has many atoms

Cill'"(‘;_"i(‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
g ¥ 2019 Carnegie Mellon Univers

. .) unlimited distribution. l 2 2
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

This body also has many atoms

his body has many atoms This body has many atoms

Cill'"(‘;_"i(‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

))) 19 Camegie Mellon University N unlimited distribution. 123
Software Engineering Institute

General ideas for abstractions in other disciplines

This body also has many atoms We describe each body as a single point mass

his body has many atoms This body has many atoms

(‘ill'"(“"i(‘ \I(‘”()I] l niversity [DISTRIBUTION STATEMENT A] Approved for public release and
3 (=)) T unlimited distribution.
Software Engineering Institute

General ideas for abstractions in other disciplines

This body also has many atoms We describe each body as a single point mass

his body has many atoms This body has many atoms

Describe each body with only as many parameters
that we need for the analysis that we want to do.

(‘ill'"(“"i(‘ \I(‘”()I] l niversity [DISTRIBUTION STATEMENT A] Approved for public release and
3 (=)) T unlimited distribution.
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

resistor

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N . . c © 2019 Carnegie Mellon University unlimited distribution. 126
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

+ T How many electrons per time unit are flowing here?

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for
, y © 2019 Carnegie Mellon University imited distributi

Software Engineering Institute 27

SBESC 2019

General ideas for abstractions in other disciplines

+ l How much current is flowing here?

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N . . c © 2019 Carnegie Mellon University unlimited distribution. l 2 8
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

+ l How much current is flowing here?

Ask questions about the aggregate that you care about.

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 129
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

For each of these 1024 water molecules,
how fast does this water molecule move?

Carnegie Mellon University ~ Timin g Analysis of Software Executin g on Undocumente d Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 130
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

What is the water temperature?

Ask questions about the aggregate that you care about.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 131
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines

What is the water temperature?

If possible: Describe a system with quantities that you can
measure.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 132
Software Engineering Institute

SBESC 2019

General ideas for abstractions in other disciplines
1. Describe a system with parts

2. Describe each part with an abstraction

3. Obtain specific values of the abstraction (e.g., using measurements) for each part

4. Ask gquestions: calculate the answer to the questions

C;lrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
>) © 2019 Carnegie Mellon University

unlimited distribution. 133

Software Engineering Institute

SBESC 2019

General ideas for abstractions
1. Describe a system with parts

2. Describe each part with an abstraction

3. Obtain specific values of the abstraction (e.g., using measurements) for each part

4. Ask gquestions: calculate the answer to the questions

C;lrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
’ ? © 2019 Carnegie Mellon University

. X X ellon unlimited distribution. 1 34
Software Engineering Institute

1.

SBESC 2019

General ideas for abstractions

Describe a system with parts
A software system comprises a set of tasks.

Describe each part with an abstraction
Each task is described with a T (period), D (deadline), and C (execution time).

Obtain specific values of the abstraction (e.g., using measurements) for each part
Obtain T from source code. Obtain D from software requirement specification.
Obtain C by measuring the execution of the program; then add margin.

(or run WCET tool)

Ask questions: calculate the answer to the questions
Will all deadlines be met if tasks are scheduled by Rate-Monotonic on a single
processor?

C;]rn(‘,ﬂ'i(‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release ant
5)) v 2019 Carnegie Mellon University unlimited distribution. 135
Software Engineering Institute

1.

SBESC 2019

General ideas for abstractions

Describe a system with parts
A software system comprises a set of tasks.

Describe each part with an abstraction
Each task is described with a T (period), D (deadline), and C (execution time).
Describe the effect of the memory system on execution speed of a task.
Obtain specific values of the abstraction (e.g., using measurements) for each part
Obtain T from source code. Obtain D from software requirement specification.
Obtain C by/measuring the execution of the program; then add margin.
(or run WCET tool)
Obtain parameters (e.g., using measurements)

Ask questions: calculate the answer to the questions
Will all deadlines be met if tasks are scheduled by Rate-Monotonic on a single
processor?

Carnegie Mellon University
Software Engineering Institute

Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
lon University unlimited distribution.

136

SBESC 2019

Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented

Core 2
L1/L2

& & e

Core 3
L1/L2

hardware?

.- Core 1l
Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2
Before discussing them, let us discuss: | I

1. Other approaches (DONE)

2. General ideas for abstractions in

other disciplines (DONE)

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- y © 2019 Carnegie Mellon Universit unlimited distribution. 137

Software Engineering Institute

SBESC 2019

Big Research Questions

Q1. What is a good abstraction that

desXibes the effect of undocumented ' ' ‘
hard :

Core 2 Core 3

analysis thaNuses this abstraction? L1/L2 L1/L2 L1/L2

Core 1l

Let us discuss Q1. I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Tgg‘wnggcﬁrlg:!pypsr‘jpﬁgmstﬁ[\tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 138

Software Engineering Institute

SBESC 2019

Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

What are the requirements of a good
abstraction?

Core 1l

L1/L2

Core 2
L1/L2

& & e

Core 3
L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Tgg‘wnggcﬁr?:‘\ypsr‘jp\(\)(jms&[\tg:ze Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 139

Software Engineering Institute

SBESC 2019

Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented

Core 2
L1/L2

& & e

Core 3
L1/L2

!

!

hardware?

L Corel
Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2
What are the requirements of a good | I

abstraction?

1. It should be as small as possible

(few numbers; few bits)

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- y © 2019 Carnegie Mellon Universit unlimited distribution. 140

Software Engineering Institute

SBESC 2019

Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented

& & e

hardware?
- Core 1 Core 2 Core 3
Q2: How to create a schedulability TG
analysis that uses this abstraction? L1/L2 L1/L2
What are the requirements of a good ! I I I
abstraction? i Last-Level Cache (L3)
1. It should be as small as possible
(few numbers; few bits) , Memory Bus (and Mem Controller)
2. It should allow us to do prediction/ I I I 1
analysis that we care about " DRAM DRAM DRAM DRAM DRAM
Bank0 Bankl| Bank2 | Bank3 °°° BankB
Carnegie Mellon lﬁni\‘ersil,y Tggj‘wnggc/;?f!,\y:r‘;wiw‘\)nﬁ?wm:If Executing on Undocumented Multicore Processors LE:JELZSEES&?ETEMENT Al Approved for public release and 141

Software Engineering Institute

SBESC 2019

Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented ‘
hardware?

- Core 1l Core 2 Core 3
Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2 L1/L2 LLULZ
What are the requirements of a good I I I
abstraction? | Last-Level Cache (L3)
1. It should be as small as possible |
(few numbers; few bits) Memory Bus (and Mem Controller)
2. It should allow us to do prediction/ I 1 1 1 1
analysis that we care about " DRAM DRAM DRAM DRAM DRAM
3. Given a system, it should be . 'Bank0O| Bankl Bank2 Bank3 °° BankB
possible to find the abstraction |
(through measurements or T
lower-level analysis)
Carnegie Mellon University Timing Analysis of Software Excouting on Undocumented Mulicore Processors IDISTRIBUTION STATEMENT A Aproed o pubic elase and e

Software Engineering Institute

SBESC 2019

Considerations in creating an

abstraction for multicore ' '
Let speed(i,t) denote the speed of ‘

execution of task 1at time t. Let cor(i,t) = g Core 2 Core 3
denote the set of tasks, other than task i, ;
that executes at time t. L1/L2 L1/L2 L1/L2

! ! !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
BankO| ' Bank1l 'Bank2| |Bank3 °°° BankB

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- y © 2019 Carnegie Mellon University 143

. . . unlimited distribution.
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of

execution of task i at time t. Let cor(i,t)

& & e

Core 3

Core 1l

denote the set of tasks, other than task i,

that executes at time t.

One abstraction could be:

1
< di,t) <1
1+ [cor(i,t)| — “P®€ @0) <

L1/L2

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon Universit unlimited distribution. 144

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of

execution of task i at time t. Let cor(i,t)

& & e

Core 3

Core 1l

denote the set of tasks, other than task i,

that executes at time t.

One abstraction could be:

1
< d(i,t) <1
1+ [cor(i,t)| — “P®€ @0) <

Drawback of abstraction:

L1/L2

Core 2
L1/L2

L1/L2

!

!

=

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

- Does not reflect that different co- I I I 1
runners can have different effecton | praM | DRAM | DRAM = DRAM DRAM
task i. . 'BankO! Bank1l 'Bank2' Bank3 °°° BankB

Carnegie Mellon L,:ni\'ersil,y Tggj‘wnggcglg:!py:r‘;p\‘\)rjmi?w[\m:I;er Executing on Undocumented Multicore Processors Ltg‘llisr;:?;‘gggﬂ?xmmm A] Approved for public release and 145

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of

execution of task i at time t. Let cor(i,t)

& & e

Core 3

Core 1l

denote the set of tasks, other than task i,

that executes at time t.

One abstraction could be:

1—k X |cor(i,t)| < speed(i,t) <1

Drawback of abstraction:

L1/L2

Core 2
L1/L2

L1/L2

!

!

=

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

- Does not reflect that different co- I I I 1
runners can have different effecton | praM | DRAM | DRAM = DRAM DRAM
task i. . 'BankO! Bank1l 'Bank2' Bank3 °°° BankB

Carnegie Mellon University T‘ggj‘wnggcﬁylgf‘Y:r‘?p\‘\)(jmsu(\)w[\tg:l(e Executing on Undocumented Multicore Processors er)‘lﬁsrm?giggg‘ ‘?J:TEMENT A] Approved for public release and 146

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of

execution of task i at time t. Let cor(i,t)

& & e

Core 3

Core 1l

denote the set of tasks, other than task i,

that executes at time t.

One abstraction could be:
W.
: < speed(i,t) < 1

1+ jljecor(i,t) Wi.j
Drawback of abstraction:
- In reality, the speed can be supe

L1/L2

Core 2
L1/L2

L1/L2

!

!

=

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

St

I

I

I

-additive or sub-additive (not reflected | pram DRAM DRAM DRAM DRAM
in the above). . Bank0O| Bankl < Bank2 Bank3 °°° | BankB
C‘drnegit‘ Mellon l;ni\‘t‘rsily Twv;:)wwnggcglg:{\"y:rwjp‘«‘);‘ﬁfwl‘tgSa‘lt'e’ Executing on Undocumented Multicore Processors LE:‘IHS[;I‘?EIE;‘Q%\:“?J:TEMENT A] Approved for public release and 147

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of

execution of task i at time t. Let cor(i,t)

& & e

Core 3

Core 1l

denote the set of tasks, other than task i,

that executes at time t.

One abstraction could be:
W.
: < speed(i,t) <1

1+]1 jljecor(i,t) Wi.j
Drawback of abstraction:
- In reality, the speed can be supe

L1/L2

Core 2
L1/L2

L1/L2

!

!

=

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

St

I

I

I

-additive or sub-additive (not reflected | pram DRAM DRAM DRAM DRAM
in the above). . Bank0O| Bankl < Bank2 Bank3 °°° | BankB
C‘drnegit‘ Mellon l;ni\‘t‘rsily Twv;:)wwnggcglg:{\"y:rwjp‘«‘);‘ﬁfwl‘tgSa‘lt'e’ Executing on Undocumented Multicore Processors LE:‘IHS[;I‘?EIE;‘Q%\:“?J:TEMENT A] Approved for public release and 148

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of

execution of task i at time t. Let cor(i,t)

& & e

Core 3

Core 1l

denote the set of tasks, other than task i,

that executes at time t.

One abstraction could be:

W.
l < speed(i,t) <1

1+ ezj|jecor(i,t) Wi j
Drawback of abstraction:
- In reality, the speed can be supe

L1/L2

Core 2
L1/L2

L1/L2

!

!

=

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

St

I

I

I

-additive or sub-additive (not reflected | pram DRAM DRAM DRAM DRAM
in the above). . Bank0O| Bankl < Bank2 Bank3 °°° | BankB
C‘drnegit‘ Mellon l;ni\‘t‘rsily Twv;:)wwnggcglg:{\"y:rwjp‘«‘);‘ﬁfwl‘tgSa‘lt'e’ Executing on Undocumented Multicore Processors LE:‘IHS[;I‘?EIE;‘Q%\:“?J:TEMENT A] Approved for public release and 149

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?

Core 1l

L1/L2

Core 2
L1/L2

Core 3

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 150

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?

Core 1 Core 2 Core 3

Consider DRAM bank B and its row
buffer. L1/L2 L1/L2 L1/L2

1 ! !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- o © 2019 Carnegie Mellon University unlimited distribution. 151

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive? ‘

Example:

" Core 1 Core 2 Core 3
Red task (victim):
1. load address x to register y L1/L2 L1/L2 L1/L2
2. load address X'’ to register z III ______________

Last-Level Cache (L3)

x and x’ are in the same row In

DRAM bankB" | Memory Bus (and Mem Controller)
But x and x’ are in different columns | 1 1 I I I

(different addresses)
DRAM DRAM DRAM DRAM DRAM
[N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C;lrncgie Mellon L'nivorsil,'v Timing ’Ana\‘ysws of Sonwf\re Executing on Undocumented Multicore Processors [DII_S'I'_?IE(L;_T:Q[:VISTATEMENT A] Approved for public release and
Software Engineering Institute S sy ' 152

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive? ‘

Example: Core 1 Core 2 Core 3
Red task: Lo
1. load address x to register y L1/L2 L1/L2
2. load address X’ to register z I I I
Last-Level Cache (L3)
Memory Bus (and Mem Controller)
" DRAM DRAM DRAM | DRAM DRAM
. 'Bank0O| Bankl Bank2 Bank3 °°° BankB
Carnegie Mellon University Tu;:) in “c’;'S?!,*fﬁ;iﬁiﬁ?f&i“,2';3 Executing on Undocumented Multicore Processors Rlﬁs{mm{m [?J:TEMENT Al Approved for public release and 153

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive? . ‘

Example:

Core 1l Core 2 Core 3
Red task:
1. load address x to register y L1/L2 L1/L2 L1/L2
2. load address X’ to register z I I
Green task: ;‘
1. load address a (where ais in Last-Level Cache (L3)
same bank as x but in
different row) I Meriory Bus (a%d Mem Ccinroller) I
DRAM DRAM DRAM DRAM DRAM
Bank0 Bankl| Bank2 | Bank3 °°° BankB
Carnegie Mellon University Timing Analysi of Software Execuing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public reease and

. . . 0. | sity unlimited distribution. 1 54
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive? . . ‘

Example:

Core 1 Core 2 Core 3
Red task:
1. load address x to register y L1/L2 L1/L2 L1/L2
2. load address X’ to register z I I
Green task: ;‘
1. load address a (where ais in Last-Level Cache (L3)
same bank as x but in
different row) Memory Bus (and Mem Controller)
Blue task: 3 I I I 1
1. load address b (wherebisin | pDrRAM | DRAM DRAM DRAM DRAM
same bank as x but in . BankO | Bank1l Bank2 Bank3 °°° BankB
different row) |
Carnegie Mellon University Timing Analysi of Software Execuing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for pubiic release and

. . . 0. | sity unlimited distribution. 1 55
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in
different row)

Blue task:

1. load address b (where b is in
same bank as x but in
different row)

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 156
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in ,
different row) Memory Bus (and Mem Controller), \
Blue task: I 1
1. load address b (where b is in " DRAM | DRAM | DRAM DRAM DRAM
same bank as x but in . BankO| Bankl Bank2 Bank3 °°° BankB
different row) ,
Observation: Green can evict Red’s |

data in the row buffer.

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 157
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:
1. load address a (where ais in
same bank as x but in

different row) Memory Bus (and MemController)
Blue task:
1. load address b (where b is in " DRAM DRAM | DRAM DRAI\/I\
same bank as x but in . BankO Bankl Bank2 @ Bank3
different row) ,
Observation: Blue can evict Red’s e |

data in the row buffer.

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 158
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in
different row)

Blue task:

I

1. load address b (where b is in " DRAM | DRAM | DRAM DRAM

same bank as x but in . BankO| Bank1l| Bank2 Bank3
different row) ,
Observation: If Blue has evicted Red’s |

data in the row buffer, then Green cannot evict it more.

C;lrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . < © 2019 Carnegie Mellon University unlimited distribution. 159
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in
different row)

Blue task:

I

1. load address b (where b is in " DRAM | DRAM | DRAM DRAM

same bank as x but in . BankO| Bank1l| Bank2 Bank3
different row) | ,
Observation: If Green has evicted Red’s |

data in the row buffer, then Blue cannot evict it more.

C;lrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . < © 2019 Carnegie Mellon University unlimited distribution. 160
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:
Red task:
1. load address x to register y
2. load address X’ to register z
Green task:

1. load address a (where ais in
same bank as x but in
different row)

Blue task:

1 1

1. load address b (where b is in " DRAM | DRAM | DRAM DRAM
same bank as x but in . BankO| Bank1l| Bank2 Bank3
different row) ,
Red experiences a slowdown due to |

Blue or Green but the slowdown is not greater by both.

C;lrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . < © 2019 Carnegie Mellon University unlimited distribution. 16 1
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Consider Last-Level Cache (L3).

Assume associativity = 2.

Consider one specific cache set.

Core 3
L1/L2

Core 1l

L1/L2

Core 2
L1/L2

!

!

1

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

1 1

I

[N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 162

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Core 1 Core 2 Cofeg'3
Example:
Red task (victim): L1/L2 L1/L2 L2
1. load address x to register y I I I
2. load address x to register z " !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
y © 2019 Carnegie Mellon University unlimited distribution. 163

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Corel Core 2 Core'3
Example:
Red task (victim): L1/L2 L1/L2 /L2
1. load address x to register y I I
2. load address x to register z
Green task: § Last-Level Cache (L3)

1. load address a (where ais in i
same cache set x) I Meriory Bus (a%d Mem Ccinroller) I

DRAM DRAM DRAM DRAM DRAM

Bank0| Bankl Bank2| Bank3 °°° BankB

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 164

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y

2. load address x to register z i
Green task: § Last-Level Cache (L3)

1. load address a (where ais in i
same cache set x) I Meriory Bus (a%d Mem Ccinroller) 1

DRAM DRAM DRAM DRAM DRAM

Bank0 Bankl 'Bank2 Bank3 °°° | BankB
Observation: Green’s data and Red’s
data fit in the cache. No capacity =~ T
miss.
C&lrn(‘,gi(‘ Mellon lfniwrsil,y ‘nggwwv;gcglgi\ﬂy:rwi;‘ﬂ TJ?W[\EVPVV:I(S Executing on Undocumented Multicore Processors L?‘II?WEEEEZ:SQIEJ:TEMENT A] Approved for public release and 165

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Core 2
Example:
Red task (victim): 1/L.2
1. load address x to register y I I ______________
2. load address x to register z " ‘i

Last-Level Cache (L3)\

Memory Bus (and Mem Controller)
Blue task: 1 1 1 I I

1. load address b (where b is in DRAM DRAM DRAM DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB
Observation: Blue’s data and Red’s
data fit in the cache. No capacity
missS.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© .) v © 2019 Carnegie Mellon University unlimited distribution. 166
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y I I ______________
2. load address x to register z i' ‘i
Green task: Last-Level Cache (L3)
1. load address a (where a is in |
same cache set X) Memory Bus (and Mem Controller)
Blue task: I I 1 1 1
1. load address b (where b is in . DRAM | DRAM DRAM DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB

Observation: Blue’s data, Green’s
data, and Red’s data do not fit in the
cache. Capacity miss.

C;lrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . < © 2019 Carnegie Mellon University unlimited distribution. 167
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y I I ______________
2. load address x to register z i' ‘5
Green task: Last-Level Cache (L3) ™

1. load address a (where ais in

Memory Bus (and Mem Controller)

same cache set x)
Blue task: I I 1 1 1
1. load address b (where b is in . DRAM | DRAM DRAM DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB

Observation: Green alone does not
cause slowdown of Red.

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 168
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y I I ______________
2. load address x to register z i' ‘5
Green task: Last-Level Cache (L3) ™

1. load address a (where ais in

Memory Bus (and Mem Controller)

same cache set x)
Blue task: I I 1 1 1
1. load address b (where b is in . DRAM | DRAM DRAM DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB

Observation: Blue alone does not
cause slowdown of Red.

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 169
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

Example:
Red task (victim):
1. load address x to register y I I ______________
2. load address x to register z i' ‘5
Green task: Last-Level Cache (L3) ™

1. load address a (where ais in

Memory Bus (and Mem Controller)

same cache set x)
Blue task: I I 1 1 1
1. load address b (where b is in . DRAM | DRAM DRAM DRAM DRAM
same cache set x) . 'Bank0O| Bankl Bank2 Bank3 °°° BankB

Observation: But Green and Blue
cause slowdown of Red.

Cglrncgie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
X . . © 2019 Carnegie Mellon University unlimited distribution. 170
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Speed of execution of a task as a . . ‘

function of co-runners can be either
(i) Additive
(i) Sub-additive L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3

(i) Super-additive I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 17 l

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Speed of execution of a task as a . . ‘

function of co-runners can be either
(i) Additive
(i) Sub-additive L1/L2 L1/L2 L1/L2

(i) Super-additive I I I

Last-Level Cache (L3)

Core 1 Core 2 Core 3

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

Bank O Bank 1 Bank 2 Bank 3 Bank B
If speed is not additive, how can we desci'l'Eié"é'ﬁé'e"ﬁ'é"§'é"f[jﬁ'c':'t'iéﬁ'6i‘"c':'6"r'ij'r'{ﬁ'é'r'§5 """""""""""""""""""
Carnegie Mellon University Tin min _}A \’y nf: oftw SW e Executing on Undocumented Multicore Processors IDISTRIBUTION STATEMENT] Approved orpublic eease and 172

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Speed of execution of a task as a . . ‘

function of co-runners can be either
(i) Additive
(i) Sub-additive L1/L2 L1/L2 L1/L2

(i) Super-additive I I I

Last-Level Cache (L3)

Core 1 Core 2 Core 3

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

BankO| Bankl| Bank2| Bank3| °°° BankB
For each task: Enumerate the set of possible co-runner set.
C‘drnegit‘ Mellon lfniversil,y Tw;wgwwv;gcglgi\”y:rwj;‘ﬂ Suii‘bv:’:z»e Executing on Undocumented Multicore Processors LE:‘I"SI;I‘?EIE;‘Q%\:‘?J:TEMENT A] Approved for public release and 173

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
lowerboundspeed;°"
< speed(i,t) <1

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
For each task: Enumerate the set of possible co-runner set.
C‘drnegie ylell()n L'niversil,'v Tv;gwwnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?xTEMENT A] Approved for public release and 174

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1

L1/L2

L1/L2

Core 3

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 175

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1
{cyan} 0.5

Core 1l

L1/L2

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie x/lt‘,"()n L’niversil,y T'7?)‘1”9903?:g‘])\/esr‘\feﬁgmsl\ﬁ[\b\évrzlty\? Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?;:TEMENT A] Approved for public release and 176

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1
{green} 0.45

Core 1l

L1/L2

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Tgg‘wnggcﬁrlg:!pypsr‘jpﬁgmstﬁ[\tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 177

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1
{brown} 0.45

Core 1l

L1/L2

Core 2
L1/L2

Core 3

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Tgg‘wnggcﬁrlg:!pypsr‘jpﬁgmstﬁ[\tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 178

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1
{blue} 0.25

Core 1l

L1/L2

Core 2
L1/L2

Core 3

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 179

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1

{cyan, brown} 0.18

Core 3

Core 1l

L1/L2

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 180

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1

{cyan, blue} 0.12

Core 1l

L1/L2

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Tgg‘wnggcﬁrlg:!pypsr‘jpﬁgmstﬁ[\tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 181

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
 Co-runner set | Speed |
{} 1

Core 3

Core 1l

L1/L2

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

reen,brown} 0.13
e DRAM = DRAM DRAM | DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie x/lt‘"()n lﬁniversil,y T\v;g\wnggcglg:!]‘yes’wvwseﬁg‘wiii‘tgzl;ye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?;:TEMENT A] Approved for public release and 182

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cred=4
{} 1

Core 3

Core 1l

L1/L2

Core 2
L1/L2

L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
{green, blue} 0.19 Bank0| Bank1 | |('Bank2 Bank3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglgi\vy:;?‘f‘)gwsﬂtgzlwe Executing on Undocumented Multicore Processors ﬂ?{;z?;gggﬂ?xTEMENT A] Approved for public release and 183

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cg=4

red

{} 1
{cyan} 0.5
{green} 0.45
{brown} 0.45
{blue} 0.25

{cyan, brown} 0.18
{cyan, blue} 0.12

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

reen,brown i
{green,brown} 0.13 DRAM DRAM DRAM DRAM DRAM
L C N
{green, blue} 0.19 Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie x/lt‘"()n lﬁniversil,y T\v;g\wnggcglg:!]‘yes’wvwseﬁg‘wiii‘tgzl;ye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?;:TEMENT A] Approved for public release and 184

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Describing resource consumption of Red task

Cg=4

red

{} 1
{cyan} 0.5
{green} 0.45
{brown} 0.45
{blue} 0.25

{cyan, brown} 0.18
{cyan, blue} 0.12

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

se e
{green, blue} 0.19 Bank O Bank 1 Bank 2 Bank 3 Bank B
Describe resource consumption of other tasks analogously.
(jarnegie Mellon l}ni\‘t‘rsily Tgg‘wnggcﬁrlg:!py:r‘jpﬁgmstﬁ[\tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 185

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Core 2

L1/L2

& & e

Core 3
L1/L2

Main idea:
For each task i, c
) orel
for each co-runner set of task i do
lowerboundspeed;°" L1/L2
< speed(i,t) <1 I

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
Bank 0 | Bank1 Bank2| Bank3| °°° BankB
: Isn’t that exponential?
For each task: Enumerate the set of possible co-runner set. .
P Couldn't this be bad?
umented Multicore Processors LDnllﬁn'l'i:‘\'eldB;Jigﬁ)g\:ﬂ?J:TEMENT A] Approved for public release and l 86

Timing Analysis of Software Executing on Undoc
i

Carnegie Mellon University
R . . . © 2019 Carnegie Mellon University
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
lowerboundspeed;°"
< speed(i,t) <1

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
ntaSkS _ 1 nprocessors—1
Given a task i: #co-runner sets of task i < < + 1)
nprocessors — 1
C‘drnegie ylell()n L'niversil,'v Tv;gwwnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?xTEMENTA]Approved for public release and 187

Software Engineering Institute

SBESC 2019

Considerations in creating an

abstraction for multicore '
Main idea: ‘

For each task i,

for each co-runner set of task i do
lowerboundspeed;°" L1/L2 L1/L2 L1/L2

< speed(i,t) <1 I I I

Last-Level Cache (L3)

Core 1 Core 2 Core 3

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

Bank O Bank 1 Bank 2 Bank 3 Bank B
Given a task i: #co-runner sets of task i < polynomial If number of processors is fixed.
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁl‘tg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 188

Software Engineering Institute

SBESC 2019

Considerations in creating an

abstraction for multicore '
Main idea: ‘

For each task i,

for each co-runner set of task i do
lowerboundspeed;°" L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3

< speed(i,t) <1 I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

Bank O Bank 1 Bank 2 Bank 3 Bank B
Given a task i: #co-runner sets of task i < ntasks If number of processors = 2.
Carnegie Mellon L:niversil,'v T\v;g\wnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgi::ggﬂ?xTEMENT A] Approved for public release and 189

Software Engineering Institute

SBESC 2019

Considerations in creating an

abstraction for multicore '
Main idea: ‘

For each task i,

for each co-runner set of task i do
lowerboundspeed;°" L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3

< speed(i,t) <1 I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
BankO| ' Bank1l 'Bank2| |Bank3 °°° BankB

Given a task i: #co-runner sets of task i < < If number of processors = 3.

ntasks — 1 2
— +1

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 190
Software Engineering Institute

SBESC 2019

Considerations in creating an

abstraction for multicore '
Main idea: ‘

For each task i,

for each co-runner set of task i do
lowerboundspeed;°" L1/L2 L1/L2 L1/L2

Core 1 Core 2 Core 3

< speed(i,t) <1 I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
BankO| ' Bank1l 'Bank2| |Bank3 °°° BankB

Given a task i: #co-runner sets of task i < < If number of processors = 4.

ntasks — 1 3
B — +1

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 19 l
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Given a task i: A job of task i can

experience different co-runner set at

different times.

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 192

Software Engineering Institute

SBESC 2019

How Co-Runners Impact Speed of Execution

Core 1l >
L1/L2 .
Core 2 >
L1/L2 R
Core 3

L1/L2

ArrivesT Finishes Time

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N . . c © 2019 Carnegie Mellon University unlimited distribution. l 9 3
Software Engineering Institute

SBESC 2019

How Co-Runners Impact Speed of Execution

Core 1l >
L1/L2 [;
e o [:

L1/L2

ArrivesT Finishes Time

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N . . . © 2019 Carnegie Mellon University unlimited distribution. 194
Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

Given a task i: A job of task i can

experience different co-runner set at

different times.

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 195

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore '

In some computer systems, there are ‘
some resources (e.g., memory bus)

where the arbitration depends on the e
processor id of the requestor. L1/L2 L1/L2

Core 1 Core 2 Core 3

! ! !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 196

Software Engineering Institute

SBESC 2019

unschedulable schedulable
(. \ (. \
Core 1 Core 2 Core 3 Core 1 Core 2 Core 3
L1/L2 L1/L2 L1/L2 L1/L2 L1/L2 L1/L2
4 t t . 1 __________________________ 1 _________________________ I __________
v v v
| Last-Level Cache (L3) | | Last-Level Cache (L3) |
. Memory Bus (and Mem Controller) | . Memory Bus (and Mem Controller) |
1] 1 il 1 1 1 i}
DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM
Bank 0 Bank 1 Bank 2 Bank 3 ***Bank B Bank 0 Bank 1 Bank 2 Bank 3 ***Bank B
Cﬂrllegit‘ x/lt‘"()n Ln i\'(-‘rsily T\Y;g\wggcglg:!])‘/eS’LASe;Z‘)JHSLE[‘t\:/r:I['\? Executing on Undocumented Multicore Processors LDr‘lliSr;:(‘B;Ji::Sl:\:ﬂ?J:TEMENT A] Approved for public release and 197

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore '

In some computer systems, there are ‘
some resources (e.g., memory bus)

where the arbitration depends on the e
processor id of the requestor. L1/L2 L1/L2

Core 1 Core 2 Core 3

! ! !

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
N y © 2019 Carnegie Mellon University unlimited distribution. 198

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change

over time.

Core 1l

L1/L2

o -

Core 3

Core 2
L1/L2

L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
Carnegie Mellon L'niversity Iw;\?)Hnggcglgi\]‘yes’wwse”ogwiowl‘tve\/;rwe Executing on Undocumented Multicore Processors Lﬂ?{;ﬁ?;‘;{ﬁmﬂ:TEMEm A] Approved for public release and 199

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

while (1) {
s = wait_until_next _sample()

Core 1l

L1/L2

o -

Core 3
L1/L2

Core 2
L1/L2

update_ datastructures(s)

!

!

a = compute_actuation_command()

Last-Level Cache (L3)

actuate_command(a)

¥ Memory Bus (and Mem Controller)
DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:!]‘ypskfpﬁg‘wstjif‘tgzl;ye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 200

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

while (1) {
s = wait_until_next _sample()
—»update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

Core 1l

L1/L2

o -

Core 3
L1/L2

Core 2
L1/L2

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

The program
behavior here DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁf‘tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 201

Software Engineering Institute

SBESC 2019

Considerations in creating an

abstraction for multicore

The program behavior may change

over time.

while (1) {

s = wait_until_next _sample()

actuate_command(a)

}

—»update_datastructures(s)
a = compute_actuation_commandOQe !

& & e

Core 3
L1/L2

Core 1l

L1/L2

Core 2
L1/L2

!

!

!

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

I

The program
behavior here DRAM DRAM DRAM DRAM DRAM
Bank O Bank 1 Bank 2 Bank 3 Bank B
Is different from
the program
behavior here.
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:{\]‘y:’wjpﬁgwsﬂtvpvr:lwe Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 202

Software Engineering Institute

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

while (1) {
s = wait_until_next _sample()

Core 1l

L1/L2

Core 2
L1/L2

& & e

Core 3
L1/L2

update_ datastructures(s) ;

!

!

a = compute_actuation_command()

!

Last-Level Cache (L3)

actuate_command(a)

}

Memory Bus (and Mem Controller)

I

1 1

I

Describe a task as a sequence of segments
where each segment may have different DRAM ' DRAM gRAl‘('\g SRAl‘('\g ER?('\Q
description of lower bound on speed Bank 0| Bank1 an an an
as a function of co-runners. !

C‘drnegit‘ Mellon l;ni\‘t‘rsily Twv;:)wwnggcglg:{\"y:rwjp‘«‘);‘ﬁfwl‘tgSa‘lt'»e’ Executing on Undocumented Multicore Processors LE:‘IHS[;I‘?EIE;‘Q%\:“?J:TEMENT A] Approved for public release and 203

Software Engineering Institute

SBESC 2019

Taskset example

7| =5 procs(I1) =

Tl = 1.500 Dl
Cl =0.250 pd;

Tg = 2.000 D2
C} =0.250 pd,

T3 =2.000 Ds
C} =0.250 pd;

Tq_ = 2.000 D4
CI =0.250 pd,

Ts =2.250 Ds
C: =0.500 pds
CZ =0.125 pds

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

{PI&PZ]

Vs =
CO5
CO?

_{é
{

_{?1}
{

= (o]

prio; =3 proc; =1
prio; = 2 procs =1

prios =3 procz =2

)
({v}}.1.0). ({3}, 0.5)}

{v) priog = 2 procg = 2
= {({v!},0.5), ({01}, 1.0)}

{Ué,vg] prios = 1 procs = 2

= {({v!},1.0), ({01}, 1.0)}
= {({v}},0.5), ({vi}. 1.0)}

J
= {({v3},1.0), ({4}, 0.5), ({vs}, 1.0), ({vZ}. 1.0))

}
({03},0.5), ({v}}, 1.0), ({vi}, 1.0). ({02}, 1.0))

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT Al Approved for public relea:
unlimited distribut

and

204

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Py} S TaSk
T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =2.250 Ds =2250 Vs={ovl v} prios=1 procs=2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution. 205

SBESC 2019

Taskset example

2 processors

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =2.250 Ds =2250 Vs={ovl v} prios=1 procs=2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution. 206

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Py}
T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1
1 g = 1 _ 1 1 1 2 Task 1
Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1
C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2
C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}
T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2
CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}
Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2
C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}
CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

207

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Task 2

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University unlimited distribution.

208

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T3 =2.000 D3 =2.000 V3= {ovl} prios = 3 procs = 2

C; =0.250 pd; =0.500 CO}={({v]},1.0).({v;},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution.

209

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 D, =2.000 V;={vl} priog = 2 procy = 2

C[o 0 250 1 o 1 ! 1 1 TaSk 4
o=, pd; =0.500 CO} = {({v}},0.5). ({01}, 1.0)}

Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution.

210

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))
T, =2.000 D, =2000 V;={ov} prio, = 2 procy =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))
T; =2.000 Dy =2000 V;={ovl} prios = 3 procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =12.250 Ds =2.250 V5= {vé,v%] prios = 1 procs = 2

C: =0.500 pdi =1.000 CO!={({v!},1.0),({v}},1.0)} Task 5
CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
© 2019 Carnegie Mellon University unlimited distribution.

211

SBESC 2019

Taskset example

z|,= 5 procs(TT) = {P;. Py}
Minimum inter-arrival times of tasks

T, =1.500] D; = 1.500

Cl =0.250 pd; =0.500

C

T, =2.000| D, = 2.000
1 _ 1 _
1 =0.250 pd) =0.500

T, =2.000] D3 = 2.000

1 _ I _
C; =0.250 pd; = 0.500

T, =2.000| D, = 2.000

1 _ 1 _
C, =0.250 pd, =0.500

Ty =2.250| Ds =
C: =0.500 pdi =
CZ =0.125 pdi =

2.250
1.000
0.500

Vi = {v}] prio; =3 proc; =1

CO;7 = {({v3},1.0), ({v3},0.5), ({vi}, 1.0). ({v5},1.0)}

Vo = {Ué] prio, = 2 procy; =1
{

0
Q.
I

Vi = {03!] prios =3 procz =2
{({v}},1.0), ({v}}, 0.5)}

D!
o
=
Il

Vi = {Ui] priog = 2 procy =2
COj = {({v]},0.5), ({05}, 1.0)}

Vs = {vé,z;g] prios = 1 procs = 2
CO: = {({v]},1.0). ({03}, 1.0)}
COZ = {({v]},0.5). ({0}, 1.0)}

({031, 0.5), ({13}, 1.0), ({vi}, 1.0), ({vi}, 1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

212

SBESC 2019

Taskset example

7| =5

procs(I1) =

{P1, P2}

Deadlines of tasks

T, =1.500 [D,

= 1.500

Cl =0.250 pd;

= 0.500

Tg = 2.000 D2

= 2.000

1
C; =0.250 pd,

= 0.500

T, =2.000 |Ds

= 2.000

C} =0.250 pd;

= 0.500

Tq_ = 2.000 D4

= 2.000

1
C; =0.250 pdy

= 0.500

Ts =2.250 |Ds =

2.250

C: =0.500 pdi =
CZ =0.125 pdi =

1.000
0.500

Vi ={v] prio; =3 proc; =1

COl = {({v;}, 1.0), ({v}},0.5), ({vi}, 1.0), ({v%}. 1.0)}

Vo = {Ué] prio, = 2 procy; =1

CO; = {({v3}.0.5), ({vy}, 1.0), {4}, 1.0), ({05}, 1.0))
V3 = {vé] priog = 3 procs = 2

CO; = {({v]},1.0). ({vy}.0.5)}

Vi = {Ui] priog = 2 procy =2

COj = {({v]},0.5), ({05}, 1.0)}

Vs = { ; 2] pri05:1 procs = 2

Co? = (((v}), 1.0). ({01}, 1.0))

COzZ = {({v!},0.5). ({v3},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT Al Approved for public relea:
unlimited distribut

and

213

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Py}

Sets of segments for each task
T, =1500 D; =1.500[V;={of} prio; =3 proc; = 1

Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))

T, =2.000 Dy =2.000[V;={vl} prio, = 2 procy =1
{

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))

T; =2.000 D3y =2.000[Va={ol} prios = 3 procs = 2
C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2.000| Vy={ov}} priog = 2 procy = 2
CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

.Ug prios = 1 procs = 2

1
f(lv}}, 1.0), ({01}, 1.0)}
{({0l},0.5). ({01}, 1.0)}

——

Ts =2250 Ds =2.250| V5=
C: =0.500 pds =1.000 CO!
CZ =0.125 pdi =0.500 CO?

é)

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . c © 2019 Carnegie Mellon University unlimited distribution. 2 14
Software Engineering Institute

SBESC 2019

Taskset example
] =5

Tl = 1.500 D1

Cl =0.250 pd;

pd;

Tg = 2.000 D2

C; =0.250 pd,
T; =2.000 Ds
C} =0.250 pd;
Tq_ = 2.000 D4
CI =0.250 pd,

Ts =2.250 Ds

Cs =0.500 pds
2
C: =0.125 pd;

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

procs(IT) = {Py, Py}

prio; =3 proc; =1

1
}
1
CO;7 = {({v3},1.0), ({v3},0.5), ({vi}, 1.0). ({v5},1.0)}

Task 1 has 1 segment.

Vo = {Ué] prio, = 2 procy; =1

CO; = {({v3}.0.5), ({vy}, 1.0), {4}, 1.0), ({05}, 1.0))
V3 = {vé] priog = 3 procs = 2

CO; = {({v]},1.0). ({vy}.0.5)}

Vi = {Ui] priog = 2 procy =2

COj = {({v]},0.5), ({05}, 1.0)}

Vs = {vé,v%] prios = 1 procs = 2

CO: = {({v]},1.0). ({03}, 1.0)}

COZ = {({v]},0.5). ({0}, 1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

215

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Py}

T, =1500 D; =1500 V;={o]} prio; =3 proc; = 1
Cl =0.250 pd; =0.500 CO!={({v}}.1.0),({v}},0.5), {0}, 1.0). ({v¢}.1.0))

T, =2000 D, =2.000 Vp={v
C} =0.250 pdy =0.500 CO}=

} prio, = 2 procy; =1
({031, 0.5), ({13}, 1.0), ({vi}, 1.0), ({vi}, 1.0)}

T; =2.000 D3y =2.000 Vi3={v
C: =0.250 pd; =0.500 CO}=

} priog = 3 procs = 2
({1}, 1.0). ({3}, 0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 procy = 2
CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ty =2.250 Ds =2.250 |Vs=
C: =0.500 pds =1.000 CO!
CZ =0.125 pdi =0.500 CO?

[——.

v, 5] prios = 1 procs =2 Task 5 has 2 segments.
{({0!},1.0), ({01}, 1.0)}
{({0l},0.5). ({01}, 1.0)}

Ca[‘negie Mellon Universitv Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . c © 2019 Carnegie Mellon University unlimited distribution. 2 16
Software Engineering Institute

SBESC 2019

Taskset example
] =5

Tl = 1.500 D1
Cl =0.250 pd;

Tg = 2.000 D2
C} =0.250 pd,

T3 =2.000 Ds
C} =0.250 pd;

Tq_ = 2.000 D4
CI =0.250 pd,

Ts =2.250 Ds
C: =0.500 pds
CZ =0.125 pds

procs(IT) = {Py, Py

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

iDriorities for each task
Vi = {v}] prio; = 3] proc; =1

CO;7 = {({v3},1.0), ({v3},0.5), ({vi}, 1.0). ({v5},1.0)}

Vo = {Ué] prio, = 2| procy; =1

CO; = {({v3}.0.5), ({vy}, 1.0), {4}, 1.0), ({05}, 1.0))
V3 = {vé] prios = 3| procs = 2

CO; = {({v]},1.0). ({vy}.0.5)}

Vi = {Ui] priog = 2| procy = 2

COj = {({v]},0.5), ({05}, 1.0)}

Vs = {vé,v%] prios = 1| procs = 2

CO: = {({v]},1.0). ({03}, 1.0)}

COZ = {({v]},0.5). ({0}, 1.0)}

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

217

SBESC 2019

Taskset example

IT] =5 procs(IT) = {Py, Py}] .
Processor to each task is assigned

T, =1500 D; =1.500 V;= {v}] prio; = 3 |proc; =1

€l =0250 pdj =0.500 CO}={({v;}.1.0).({v}}.0.5), {vl}. 1.0). ({v?}. 1.0)}

T, =2.000 D, =2000 V;={ov} prio, = 2 [proc; =1

C} =0.250 pdy =0.500 CO}={({ol},0.5).({vi},1.0),{vl}, 1.0), ({02}, 1.0))

T; =2.000 Dy =2000 V;={ovl} prios = 3 | procs = 2

C: =0.250 pd; =0.500 CO}={({v!},1.0),({vl},0.5)}

T, =2.000 Dy =2000 V,={ov;} priog = 2 | procy = 2

CI =0.250 pdy; =0.500 CO}={({ol},0.5).({v}},1.0)}

Ts =2250 Ds =2250 Vs={vs,v? pri05 =1 |procs =2

C: =0500 pdi =1.000 CO!= {({v1 0), {03}, 1.0)}

CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribut

218

SBESC 2019

Taskset example

7] =5

procs(Il) =

{P1, P}

Execution requwement for each segment of each task

T, =1.500 D,
Cl =0.250| pd;

Tg = 2.000 D2
C! =0.250| pdj

T: _=2.000 Ds
C} =0.250| pd;

T, =2.000 D,
CI =0.250| pd}

Ty =2.250 Ds =
C: =0.500| pdi =
C? =0.125| pd: =

= 1.500 V; = {v}}
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

2.250
1.000
0.500

prio; =3 proc; =1

COl = {({vg}, 1.0), ({v}},0.5), ({vi}, 1.0), ({v%}. 1.0)}

vy = {v;) prio, = 2 procy = 1
{

Vs = {03} prio3 =3 procs =2
{({v}},1.0), ({v}}, 0.5)}

Vi = {Ui] priog = 2 procy =2
COj = {({v]},0.5), ({05}, 1.0)}
Vs = {vé 2)2 pri05 =1 procs =2
CO! = {({v!},1.0), ({01}, 1.0)}
COz = {({v;},0.5). ({vy},1.0)}

({031, 0.5), ({13}, 1.0), ({vi}, 1.0), ({vi}, 1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT Al Approved for public relea:
unlimited distribut

and

219

SBESC 2019

Taskset example

7| =5 procs(IT) = {Py, Po}

Tl = 1.500 D1
Cl =0.250 pd;

Tg = 2.000 D2
C} =0.250 pd,

T3 =2.000 Ds
C} =0.250 pd;

T4 = 2.000 D4
CI =0.250 pd,

Ts =2.250 Ds
C: =0.500 pds
CZ =0.125 pds

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

Speed as function of co-runners

Vi = {v]) prio; =3 proc; = 1

CO;7 = {({v3},1.0), ({v3},0.5), ({vi}, 1.0). ({v5},1.0)}

Vo = {U;] prio, = 2 procy; =1
Cco! = {({v!l}.0.5). {v!}. 1.0), {01}, 1.0), ({v?}.1.0))
Va={v priog =3 procy = 2

1
21
CO; = {({v]},1.0). ({vy}.0.5)}

= {Ui] priog = 2 procg = 2

COj = {({v]},0.5), ({05}, 1.0)}

Ve ={ovl vl prios=1 procs=2

CO: = {({v]},1.0). ({03}, 1.0)}
CO? = {({v1},0.5). ({01}.1.0))

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

© 2019 Carnegie Mellon University unlimited distribution.

220

SBESC 2019

Taskset example

7| =5

Ty =1.500
C; =0.250
I, =2.000
C; = 0.250
T3 =2.000
Cy =0.250
T, =2.000
C; =0.250
T; =2.250
Cs =0.500
Cz =0.125

procs(II) = {P;. P;}

= 1.500
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.000
= 0.500

= 2.250
= 1.000
= 0.500

Vi = {o])

CO; = {({v3}.1.0),

V2 = {v;)

prio; =3 proc; =1

({v;},0.5)

If segment 1 of task 1 executes

in parallel with segment 1 of task 4,
then Segment 1 of task 1 executes
with speed 0.5.

({va}, 1.0), ({2}, 1.0)}

priop = 2 procy =1

CO! = {({01},0.5). ({ol}. 1.0). ({v1}.1.0). ({v2}. 1.0))

Vs = {v3)

Vi = {vy)

prios =3 procz =2
CO; = {({v1},1.0). ({vy}.0.5)}

priog = 2 procy = 2
COj = {({v]},0.5). ({0}, 1.0)}

Vs = {vd, 08} prios =1 procs =2

CO; = {({v]},1.0). ({vy}. 1.0)}
COZ = {({v]},0.5). ({v,}. 1.0)}

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
i

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution. 2 2 1

SBESC 2019

Taskset example If segment 1 of task 1 executes in parallel with a segmentset for
which information in CO is not available, then segment 1 of task 1
7l =5 procs(Il) = {P1. P2} executes with speed 0.5.
I, =1500 D; =1.500 V= {UII] prio; =3 proc; =1
C] =0.250 {pd; =0.500] CO} = {({vi}.1.0).({v;},0.5), {vi}. 1.0). ({vi}. 1.0))

T, =2.000 D, =2000 V,={vl} prio, = 2 procy = 1

Cl =0.250 pd) =0.500 COJ={({vl},0.5).({vi},1.0),({vl},1.0),({v2}.1.0))

T; =2.000 D; =2.000 V;={v}} prios = 3 procs = 2
C! =0.250 pd; =0.500 CO!={({v!},1.0),({v}},0.5)}

T, =2.000 Dy =2000 V;={v;) priog = 2 procy = 2

CI =0.250 pdy =0.500 CO}={({v!},0.5).({v}},1.0)}

Ts =2.250 Ds =2.250 V5= {vé,ugl prios = 1 procs = 2
C: =0.500 pdi =1.000 CO!={({v!},1.0), ({0}, 1.0)}
CZ =0.125 pd: =0.500 COZ={({v!},0.5).({v}},1.0)}

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 222
Software Engineering Institute

SBESC 2019

Big Research Questions

Q1: What is a good abstraction that
describes the effect of undocumented

hardware? (DONE)

Core 2
L1/L2

& & e

Core 3
L1/L2

!

!

.- Core 1l
Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2
Before discussing them, let us discuss: | I

1. Other approaches (DONE)

2. General ideas for abstractions in

other disciplines (DONE)

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

I

I

I

L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- y © 2019 Carnegie Mellon Universit unlimited distribution. 223

Software Engineering Institute

SBESC 2019

Big Research Questions

Q1: What is a good abstraction that

describes the effect of undocumented ' ' ‘
hardware?

Core 2 Core 3
Q2:ydow to create a schedulability Lo
analys™at uses this abstraction? L1/L2 L1/L2

Core 1l

Let us discuss Q2. I I I

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

1 1 1 I I

DRAM DRAM DRAM DRAM DRAM
L C N
Bank O Bank 1 Bank 2 Bank 3 Bank B
(jarnegie Mellon l}ni\‘t‘rsily Tgg‘wnggcﬁrlg:!pypsr‘jpﬁgmstﬁ[\tg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgillggﬂ?xTEMENT A] Approved for public release and 224

Software Engineering Institute

SBESC 2019

Big Research Questions

Q1: What is a good abstraction that ‘

describes the effect of undocumented

hardware? ‘

Core 1l Core 2 Core 3

Q2: How to create a schedulability
analysis that uses this abstraction? L1/L2 L1/L2 L1/L2
In order to simplify our discussion III """"""""
initially, let us consider a taskset with | Last-Level Cache (L3) i
only Red and Brown task. Also, letus |
consider that the minimum inter-arrival Memory Bus (and Mem Controller)
time of each of these tasks is infinity I I I 1
(i.e., generates just a single job). " DRAM DRAM | DRAM DRAM DRAM

. BankO Bank1l Bank2 Bank3 " BankB

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Mulicore Processors [DISTRIBUTION STATEMENT | agproved o pui laseand 995

Software Engineering Institute

Let durg,4, denote

the cumulative duration

that the set of tasks

" that execute is the set
{red}.

v

Core 1

L1/L2

Core 2 >
L1/L2 R
Core 3
>
Red - T ’ - :
Arrives Finishes Time
task
dureq
(jarnegie Mellon l}ni\‘t‘rsil,}' Tgg‘wnggcglg::‘py:r‘jp\‘\)rjmsxﬁwftgsawl;ye Executing on Undocumented Multicore Processors ﬂ?{;z:g;:?gﬂ?xTEMENT A] Approved for public release and 226

Software Engineering Institute

Let durg,4, denote
Core 1 the cumulative duration

L1/L2 _- that the set of tasks

that execute iIs the set

v

v

{red}.
Core 2 >
L1/L2 ~ Let dur{red,brqwn} deno_te
"~ the cumulative duration
that the set of tasks
that execute iIs the set
Core 3 _ {red,brown}.
L1/L2
Red ArriveST Finishes Time
task k Y S
dur{red,brown}
durgeq)
(jarnegie Mellon University Twv;gwwnggclaxrugi\vy:;?‘r‘;gmsﬂbg?; Executing on Undocumented Multicore Processors L?‘llisr;:gsgigggﬂ?;’:TEMENT A] Approved for public release and 297

Software Engineering Institute

SBESC 2019

Maximize
Corel dur{red,brown} +

e T ~durgey

" subject to
O'45*dur{red,brown} +
1.00*durgeq < Cieq

v

Core 2 >
*
L1/L2 ~ 0.6%durgeq prowny *
1.0*du r{brown} = Cbrown
Core 3
L1/L2
R ves | - .
ed Arrives Finishes Time
task x Y N
du r{red,brown}
durgeq)
Carnegie x/lt‘,"()n L’niversil,y I\v;gunggc:rlg§;¥es’¥?eﬁ>g‘wstjiftg:|;3 Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?;:TEMENT A] Approved for public release and 228

Software Engineering Institute

SBESC 2019 MaX|m|Ze

Corel > dur{red,brown} +
dur
L1/L2 _- R *{red}
subject to
M' dur{red,brown} +
1.00*durgeq < Cieq
Core 2 >
L1/L2 ~ 0.6%durgeq prowny *
1. J*dur{brown} < Cbrown
Lower bound on
Core 3 the spe_ed of
L1/L2 > execution of Red
when it executes
Red - T - _ in parallel with
Arrives Finishes Time
task x Y N Brown.
dur{red,brown}
durgeq
(jarnegie Mellon University Twv;gwwnggcgugi\vy:rw;‘«‘)rjmsuim:u; Executing on Undocumented Multicore Processors er)‘llisr;:g?gigggﬂ?xTEMENT A] Approved for public release and 299

Software Engineering Institute

SBESC 2019

Maximize
Corel dur{red,brown} +

e T ~durgey

" subject to
O'45*dur{red,brown} +
1.00*durgeq < Cieq

v

Core 2 >
L1/L2 .8 dUrgeq prowny *
> *
1.0 dur{brown} < Cbrown
Lower bound on
Core 3 the spe_ed of
L1/L2 > execution of
Brown
Red ppi T Einish - when it executes
rrves Ime . .
task S T NISHes in parallel with
d ur{red,brown} R e d .
durgeq
(jarnegie Mellon University Twv;gwwnggclaxrugi\vy:;?‘r‘;gmsﬂbg?; Executing on Undocumented Multicore Processors L?‘llisr;:gsgigggﬂ?;’:TEMENT A] Approved for public release and 230

Software Engineering Institute

SBESC 2019 MaX|m|Ze

v

Corel d ur{red,brown} +

L1/L2 _- R dur{fed}

" subject to
O'45*dur{red,brown} +
1.00*duryeq < Cieq

Core 2 >
*
/ 0.6 dur{red,brown} +
L1/L2 , .)
1.0*du r{brown} = Cbrown
Core 3 0< dur{red,brown}
ore
, 0=dur,.,
Lz 0= dur{brown}
Red ArriveST Finishes Time
task x Y N
du r{red,brown}
durgeq)
C‘drnegie ylell()n L'niversil,'v Tv;gwwnggcglgg[\]f;ﬁ&iﬁtg:zye Executing on Undocumented Multicore Processors L?‘Ilﬂzsgi::ggﬂ?xTEMENT A] Approved for public release and 231

Software Engineering Institute

SBESC 2019 MaXImlze
Corel d ur{red,brown} +

L1/L2 _- . dUr ey

" subject to
O'45*dur{red,brown} +
1.00*duryeq < Cieq
O'6~k(:h'"‘{red,brown} +

v

v

Core 2
*
1.0 dur{brown} s Cbrown
L1/L2 . oo
0= dur{red,brown}
ore _ Solving this
L1/L2 optimization problem
g yields an upper bound
Re ArrivesT Finishes Time on the response time
task k X) f Red
dur{red,brown} O ea.
dureq
(jarnegie Mellon University Twv;gwwnggcgugi\vy:rw;‘«‘)rjmsuim:u; Executing on Undocumented Multicore Processors er)‘llisr;:g?gigggﬂ?xTEMENT A] Approved for public release and 232

Software Engineering Institute

SBESC 2019 MaXImlze
Corel d ur{red,brown} +

L1/L2 _- . dUr ey

" subject to
O'45*dur{red,brown} +
1.00*duryeq < Cieq
O'6*dl'"‘{red,brown} +

v

v

Core 2
*
/ 1.0 dur{brown} s Cbrown
L1/L2 . oo
0< dur{red,brown}
0 = duryeq
C 3 0 = dur{brown} o
ore ~ Let us formulate this in
L1/L2 general.
Red ArriveST Finishes Time
task x Y N
dur{red,brown}
durgeq)
(jarnegie Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:[\]‘y:’wjpﬁgwstﬁl‘tg:zye Executing on Undocumented Multicore Processors L?‘llﬂzsgillggﬂ?xTEMENT Al Approved for public release and 233

Software Engineering Institute

SBESC 2019

Core 1

L1/L2

v

v

Core 2
L1/L2

v

Core 3

v

L1/L2

Task i ArrivesT

victim ‘ — —
() Let us consider a time

interval of duration t

v

Time

C‘dl‘l]t‘,}.’,’it‘ \’Iellon ljniversil,v Timing Analysis of Software Executing on Undocumented Multicore Processors
N . . . © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

234

Let r denote the

Core 1 » taskset.
L n h
e R et [| denote the
computer platform.
Core 2 >
L1/L2 R
Core 3

L1/L2

Task i ArrivesT Time
()

(victim) . :
Let us consider a time
interval of duration t
Carnegie Mellon lfniversil,y T‘ggj‘wvl)gcgI;S:‘uy:r‘;e\‘\)rjﬁfwmvy:I;yer Executing on Undocumented Multicore Processors ﬂ?{;z?;‘g?gijEMENT A] Approved for public release and 235

Software Engineering Institute

Let r denote the

Core 1 » taskset.
L ~ Let[] denote the
- computer platform.
Given task i, find a
Core 2 » value of t such
L1/L2 ‘ that an upper bound
" on the duration of
time during which
the processor
core3 _ (Processor 3) is busy
L1/L2 executing task i or
higher priority tasks
Task i ArrivesI | Time is equal to
(vietim) Let us coﬁsider a time L.
interval of duration t
Carnegie Mellon University Timing Analyss of Sofware Exceuing on Undocumented Mullcore Processors [DISTRBLTIONSTATEMENT A pross o bl e 236

Software Engineering Institute

Let r denote the

Core 1 » taskset.
L ~ Let[] denote the
- computer platform.
Given task i, find a
Core 2 » value of t such
L1/L2 ‘ that an upper bound
" on the duration of
time during which
the processor
core3 _ (Processor 3) is busy
L1/L2 executing task i or
higher priority tasks
Task i ArrivesI | Time is equal to
(vietim) Let us consider a time L.
interval of duration t
Carnegie Mellon University Timing Analyss of Sofware Exceuing on Undocumented Mullcore Processors [DISTRBLTIONSTATEMENT A pross o bl e 237

Software Engineering Institute

SBESC 2019

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug

i’ €hep(r,IL,%) 1 EV»' seS(r, 0,4 k")

subject to

Vi’ € hep(r,I1,1). Vo € Vi, Z pwh S\{(f gy X dig <
seS(r,IL,i' k')
Vi’ € top(7. 11, i)_.‘v’z,nf,' € Vi, Zp“’;c:,g\{(z",k')} x dug < xUB(7.IL.7, K .t)

seS(r,I0,i" k')A
(3" k") s.t. (i" €hep(T,IT 1))/‘\((/" kY es))

Vs € S(r,I0) s.t. (30" E”) s.t. (i € hep(r. IL 1)) A ((i", k") € s)), dus € Rsg

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

N . . . © 2019 Carnegie Mellon University unlimited distributi
Software Engineering Institute

238

SBESC 2019

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize D) > du For a given taskset, for

thep(‘rHL)l €V,SEQ(TH1’ k")

subject to

a given t, this is a linear

program.
Vi’ € hep(7.11, i), Yoy, € Vi, Z pWj) S\{(z’ gy X dug <
seS(r,IL,i' k')
Vi’ € top(7. 11, i)_.‘v’-uf]l e Vi, prgﬂ\{(i' gy X dug < xUB(7, II, i K1)
seS(r,I0,i" k')A |
(3" k") s.t. (i" €hep(T,IT 1))/‘\((/" kY es))
Vs € S(r,I0) s.t. (30" E”) s.t. (i € hep(r. IL 1)) A ((i", k") € s)), dus € Rsg
Schedulability analysis (timing verification) is done as follows:
THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11
C‘drnegit‘ Mellon l}ni\‘t‘rsily Twv;gwwnggcglg:{\]‘y:’wjpﬁgwsﬂtvpvr:lwe Executing on Undocumented Multicore Processors [DIIS;?IS;JT:O;\I STATEMENT A] Approved for public release and 239

Software Engineering Institute

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize D) > du For a given taskset, for
i’ €hep(T HL)1 €V,SEQ(TH@’ k")

a given t, this is a linear

program beca hese
nstants.

subject to

Vi’ € hep(r, 1L, i), Vol € Vi, Z PWﬁ__s\{(i’,kf)} x dug <
s€S(r,ILi’ k') |
Vi’ € top(7. 11, i).‘v’-u,fil e Vy, Z})\R.-'i-‘}:g\{@,___k,)} x dug <KUB(B77h 1)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,I1, 1))/\((/" kY es))

Vs € S(7,II) s.t. (3", k") s.t. (" € hep(7,IL1)) A (", k") € s)),dus € R>q

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distributi 240
Software Engineering Institute

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

HIAXIIILZE > X >, du A linear program can
i/ Ehep(*rl'[z)l €V,SEQ(TH@’ k") .
be solved in

subject to . .

polynomial time.

Vi’ € hep(r,I1,1). Vo € Vi, Z pwh S\{(f gy X dig <
seS(r,IL,i' k')

Vi’ € top(7. 11, i)_.‘v’-uf]l € Vi, Zp“’iﬁ:s\{(i’,k’)} x dug < xUB(7.IL.7, K .t)

seS(r,I0,i" k')A
(3" k") s.t. (i" €hep(T,IT 1))/‘\((/" kY es))

Vs € S(r,I0) s.t. (30" E”) s.t. (i € hep(r. IL 1)) A ((i", k") € s)), dus € Rsg

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distributi 241
Software Engineering Institute

SBESC 2019

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug Givenrt, I, it
7 7 ") ’
i’ €hep(7,IL%) vk’ eV, SES(T.ILY E’) . .
B evaluating reqlp(t,I1,i,t)

can be done in
polynomial time.

subject to

Vi’ € hep(r,I1,1). Vo € Vi, > pwi S\{(z’ gy X dug <
seS(r,IL,i' k')
Vi’ € top(7. 11, i)_.‘v’-z,.',fff € Vi, Zp\x{.‘ig\{@,!k,)} x dug < xUB(7.IL.7, K .t)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,IT 1))/‘\((/" kY es))

Vs € S(7,II) s.t. (3", k") s.t. (" € hep(7,IL1)) A (", k") € s)),dus € R>q

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distributi 242
Software Engineering Institute

SBESC 2019

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug

i’ €hep(r,IL,%) 1 EV»' seS(r, 0,4 k")
subject to
Vi’ € hep(r. 11, -z‘)._v-z:i}{ e Vir, Z pu p S\{(f Ky} X dug <
seS(r,IL,i' k')

VZI.; S tOp(T_. H i)_.V'L‘,gEI = I"'yg',f_. Z 1)\7\-"'5:3\{(1-;,;;;)} X dus < XU'B(T_. HT 2.}_- }L";-. f)

seS(r,I0,i" k')A
(3" k") s.t. (i" €hep(T,IT 1))/‘\((/" kY es))

Vs € S(r,I0) s.t. (30" E”) s.t. (i € hep(r. IL 1)) A ((i", k") € s)), dus € Rsg

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. | (Vr; € 7, (3t € [0, D;],reqlp(7, 11,4, 1) < 1)) = 7 is schedulable on 11

Evaluating this can be done in pseudo-polynomial time.

C‘dl‘l]t‘,}.’,’it‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

N f . . © 2019 Carnegie Mellon University unlimited distributi
Software Engineering Institute

243

SBESC 2019

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug

i'Chep(7,IL7) vk eV, s€S(T.IL" k')
subject to
‘v/z" c hep(fr? H__ -g‘)__\V/"{,‘i;{ — I;r Z p“ i’ S\{(%" k') } X dus -~
scS(r,ILi k")

Vi’ € top(7. 11, i)_.‘v’-z,.',fff € Vi, Zp\x{.‘ig\{@,!k,)} x dug < xUB(7.IL.7, K .t)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,IT 1))/‘\((/" kY es))

Vs € S(7,II) s.t. (3", k") s.t. (" € hep(7,IL1)) A (", k") € s)),dus € R>q

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

This is a generalization of the classic response-time analysis for Rate-Monotonic.

C‘dl‘l]egit‘ Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

N f . . © 2019 Carnegie Mellon University unlimited distributi
Software Engineering Institute

244

SBESC 2019

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

’
maximize g E g dug

i’ €hep(T HL)1 Ev,q6Q(TH@’ k")

subject to

Vi’ € hep(r. 11, z‘).v-z:i}{ c Vi, Z P“icf S\{@knyy X dug <
seS(r,IL,i' k')

Vi’ € top(r, 11, 1), Vol e Vi, Zp\viﬁzg\{@,___k,)} x dug < xUB(7, 114", K, #)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,I1, 1))/\((/" kY es))

Vs € S(7,10) s.t. (3", k") s.t. (" € hep(7, TL 1)) A ({7, k")

€ s)),dug € R>g

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

For details (about this theorem and other results about the model), see
B. Andersson et al., “'Schedulability Analysis of Tasks with Co-Runner-Dependent Execution

Times," ACM TECS, 2018.

iming Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribut 245

Carnegie Mellon University
= .) 7 © 2019 Carnegie Mellon University
Software Engineering Institute

SBESC 2019

Define reqlp(t,I1,i,t) as the optimal value of the objective function of the following:

maximize g E g dug

i'Chep(7,IL7) vk eV, s€S(T.IL" k')
subject to
Vi’ € hep(r. 11, 1), Vol € Vi, Z Wy, s\{(z’ wryp X dis <
scS(r,ILi k")

Vi’ € top(r, 11, 1), Vol e Vi, Z})\R.-'i-‘}:g\{@,___k,)} x dug < xUB(7, 114", K, #)

seS(r,I0,i" k')A
(3(i" k") s.t. (i €hep(T,I1, 1))/\((/" kY es))

Vs € S(7,II) s.t. (3", k") s.t. (" € hep(7,IL1)) A (", k") € s)),dus € R>q

Schedulability analysis (timing verification) is done as follows:

THEOREM 4.2. (Vr; € 7, (3t € [0, D;].reqlp(7,11,4,t) < 1)) = 7 is schedulable on 11

We have a schedulability analysis for tasks with co-runner dependent execution times.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and

N . . . © 2019 Carnegie Mellon University unlimited distributi
Software Engineering Institute

246

SBESC 2019

Comparing this result to classic Rate-Monotonic Analysis

Work Model Time Complexity | Formulation Time Complexity
(Execution of Exact of Schedulability of Schedulability
Time Depends | Schedulability Test Test
on Corunners) | Analysis
Previous | No < Pseudo- (Vz; € r, (3t € [0,D;], | Pseudo-polynomial
work polynomial >, [%]C i<t))
jehep(z,ILi)
& schedulable
This Yes Co-NP-hard (Vz; € 7,(3t € [0,D;], | Pseudo-polynomial
article in the strong reqlp(r,I1,i,t) <t)) | if the number of
sense = schedulable processors in I1
is fixed

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors

© 2019 Carnegie Mellon University

unlimited distribution.

[DISTRIBUTION STATEMENT A] Approved for public release and

247

SBESC 2019

This result generalizes classic Rate-Monotonic Analysis to
undocumented multicore

Work Model Time Complexity | Formulation Time Complexity
(Execution of Exact of Schedulability of Schedulability
Time Depends | Schedulability Test Test
on Corunners) | Analysis
Previous | No < Pseudo- (Vz; € r, (3t € [0,D;], | Pseudo-polynomial
work polynomial >, [%]C i<t))
jehep(r, i)
& schedulable
This Yes Co-NP-hard (Vz; € 7,(3t € [0,D;], | Pseudo-polynomial
article in the strong reqlp(r,I1,i,t) <t)) | if the number of
sense = schedulable processors in I1
is fixed

Carnegie Mellon University

Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

unlimited distribution.

[DISTRIBUTION STATI

EMENT A] Approved for public release and

248

SBESC 2019

This looks very
theoretical. Does this
really work in reality?

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

249

SBESC 2019

| understand that for
each task, the set of co-
runner sets is

polynomial in the
number of tasks
assuming that the
number of processors is
fixed.

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution. 250
Software Engineering Institute

SBESC 2019

But I still wonder how

one can obtain the
lower bound of speed
of execution of one task
given co-runners.

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . . © 2019 Carnegie Mellon University unlimited distribution. 251
Software Engineering Institute

SBESC 2019

A measurement-based

approach:

5.2 Obtaining Taskset Parameters for a Given Software System

Every scheduling theory that provides 100% guarantees on timing relies on a model. Traditional
scheduling theory relies on knowledge of an upper bound on the execution time of a program,
and therefore, the research community has developed methods for finding an upper bound on the
execution requirement of a program when the program runs in isolation on a single-core processor
(Wilhelm et al. 2008). One can distinguish between (1) static methods that take the program as
input and compute an upper bound without running the program, (2) hybrid methods that measure
execution times of parts of a program and then use static methods to compute an upper bound for
the entire program, and (3) dynamic methods where a software practitioner uses domain knowledge
to identify a set of worst-case inputs/initial states of the program and then measures the execution
time of the program for these inputs/initial states; sometimes the program is run multiple times
with variations of inputs/initial state and sometimes a safety margin is added based on engineering
judgment. The dynamic method is in common use in industry today.

The model used in this article, however, also requires that a task/segment is described with a
lower bound on its speed as a function of corunners. Unfortunately, the current state of the art does
not offer any method for obtaining such a lower bound while considering all the complexities of
modern memory systems. Therefore, in order to use our scheduling theory (in practice and also
in our case study/validation in Section 5.3), we need to develop a method for obtaining such a
lower bound. We will do so by using method (3) mentioned above but extending it so that it also
provides a lower bound on its speed as a function of corunners. The new method is shown below
as pseudo-code:

(1) Let SS be an integer indicating the sample size used in our experimental method. Assign

avalue to S8 (for example 85 := 100).

(2) For each task 7; r, for each vf eV, do

(a) Run a job of task r; on the computer platform s.t. no other tasks execute on this plat-
form.

(b) Repeat the measurement SS times and let CMI:‘ denote the set of these measurements
(execution times from measurements of a task executed in isolation).

(3) For each task ; € r, for each vf €V, do Cf = Mo X-
(4) For each task 7; € r, for each Ui" € V.do

(a) Find an upper bound on the number of memory accesses performed by a segment of
a job of task r;. (This can be obtained using performance monitoring counters.) Run
these measurements SS times. Let Hf‘ denote the largest measurement.

(b) Find an upper bound on the time for a single memory access assuming that we do not
know the corunners. Let MA denote this (e.g., MA could be 500 nanoseconds).

(©) pd} = mAX, comi ﬁ‘fxﬂ

(5) For each task 7; € r, for each Uf‘ eV, do CO’E‘ =0.
(6) For each task ; r. for each Ui" € V. for each s € S(r.ILi.k). do

(a) co:=s\ [{i,k}}.

(b) For those segments in co, keep running all of them continuously (i.e., if segment Uf,' is
in co, then when v:‘,’ has finished execution, let this segment 'U‘k.v start execution again
immediately).

(c) While the segments in (b) execute continuously, execute a single job of segment v¥ of
task r; and measure the execution time of vf‘ Repeat this measurement S5 times and
let CMC{(D denote the set of measurements (execution times from measurements of
a task executed with co-runners).

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 3, Article 71. Publication date: May 2018.

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution. 252

SBESC 2019

OK, | buy that you can
obtain these lower
bounds on the speed of

execution through
measurements. But |
wonder how
trustworthy these
numbers are. Have you
done any validation?

Carnggie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. . c © 2019 Carnegie Mellon University unlimited distribution. 253
Software Engineering Institute

SBESC 2019

OK, | buy that you can
obtain these lower
bounds on the speed of
execution through

measurements. But |
wonder how
trustworthy these
numbers are. Have you
done any validation?

Carnegie Mellon University
Software Engineering Institute

You could do a case
study. Choose a set of
tasks and use your
measurement-based
approach to obtain speed
as a function of co-
runners. Now, you have a
taskset. Then run your
schedulability analysis on
this taskset.

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Then run the system and
measure response times
of each task. If you
observe one case where
the observed response
time > calculated upper
bound on response time,
then you have falsified
your theory; otherwise,
you have corroborated
your theory.

OK, | buy that you can
obtain these lower
bounds on the speed of
execution through

measurements. But |
wonder how
trustworthy these
numbers are. Have you
done any validation?

ecuting on Undocumented Multicore Pr 5 [DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Carnegie Mellon University
Software Engineering Institute

SBESC 2019

53 Validation of Model and Schedulability Analysis

We want to compare the computed upper bound on the response time of a task against the mea-
sured response times of jobs of this task in order to find out if there is any case in practice where the
measured respon sk exceeds the et bound on the response time of this task. If
so, the schedulability analysis would be unsafe. To get insight into this question, we pursue a case
study with a specific taskset and a real embedded platform (ARM Cortex-A% quad-core processor).

ne of this ta

To avoid cache-related preemption del
of Li
We constructed a taskset as follows. |

v, we used the software cache partitioni
/RK (Kim et al. 2013)° and assigned a private cache partition to each t

2 implementation

cwe created

nthetic programs with different inten-

sities of memory accesses on the target platform. We

call each such program a building block. There
characterize the execution time and corunner
ction with 55 := 100, The corunner description is
ng block is characterized for each possible set of corun
s from these building blocks as follows: Task ; o ts of executing build-
ing block 1. Hence, we model task ry as having a single ent. Task 2 consists of executing
ing block 2 and then executing building block 3. Hence, we model task r; as having two seg-
ments. Task ry consists of executing building block 4. Hence, we model task ry as having a single
segment. Task 1y consists of executing building block 5. Hence, we model task r; as having a
single segment. Task rg consists of executing building block 6. Hence, we model task rg aving
e segment. Task 1, consists of executing building block 2 and then executing building block
6. Hence, we model task 1, as having two

We assign tasks to processors and ass

is no shared variable between building blocks.
interference using the method in the previous
complete; that is, the build

TS,

Then we create

e

s to tasks 2

ad assign T and D parameters and
“his

lots of space; these parameters are available at the end of the source-code file of the tool that
performs schedulability testing,
Our tool yields the following upper bounds on respon
0.132 for 3, 0.
We run the

0.113 for 1y, 0.554 for 1z,

for 4, 0.146 for 5, and 0.407 for 75 (units in seconds).

stem for 1000 seconds and measure the response times of jobs, For task 7, we
mum response time of a job of this task and let r; denote it. From the experiment,
L rp = 0,483, ry = 0,127, ry = 0,137, rs = 0,142, ry = 0,365 (units in seconds).
at the response time oven

record the

we oblai

With these figure
by less than 15%. From
response |

mates the observed response times

ent, we see that (1) no deadline was missed and (3) the observed
nes were close to the computed upper bound.

Carnegie Mellon University
Software Engineering Institute

Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution. 256

SBESC 2019

From B. Andersson et al., “'Schedulability Analysis of Tasks with Co-Runner-Dependent
Execution Times," ACM TECS, 2018:

With these figures, we obtain that the response time overestimates the observed response times
by less than 15%. From this experiment, we see that (1) no deadline was missed and (3) the observed
response times were close to the computed upper bound.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 257
Software Engineering Institute

SBESC 2019

Conclusion: It is possible to analyze timing of software executing on undocumented multicore.

Carnegie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
- . X . © 2019 Carnegie Mellon University unlimited distribution. 258
Software Engineering Institute

SBESC 2019

Thanks!

Carnt‘,gie Mellon University Timing Analysis of Software Executing on Undocumented Multicore Processors [DISTRIBUTION STATEMENT A] Approved for public release and
. X . © 2019 Carnegie Mellon University unlimited distribution. 259
Software Engineering Institute

	Timing Analysis of Software Executing on Undocumented Multicore Processors
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Real-Time Requirements of �Software Executing on a Multicore Processor
	Real-Time Requirements of �Software Executing on a Multicore Processor
	Real-Time Requirements of �Software Executing on a Multicore Processor
	Slide Number 40
	How Co-Runners Impact Speed of Execution
	How Co-Runners Impact Speed of Execution
	Slide Number 43
	Slide Number 44
	How Bad?
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Slide Number 117
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions
	General ideas for abstractions
	General ideas for abstractions
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	Slide Number 160
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Slide Number 175
	Slide Number 176
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Slide Number 180
	Slide Number 181
	Slide Number 182
	Slide Number 183
	Slide Number 184
	Slide Number 185
	Slide Number 186
	Slide Number 187
	Slide Number 188
	Slide Number 189
	Slide Number 190
	Slide Number 191
	Slide Number 192
	How Co-Runners Impact Speed of Execution
	How Co-Runners Impact Speed of Execution
	Slide Number 195
	Slide Number 196
	Slide Number 197
	Slide Number 198
	Slide Number 199
	Slide Number 200
	Slide Number 201
	Slide Number 202
	Slide Number 203
	Slide Number 204
	Slide Number 205
	Slide Number 206
	Slide Number 207
	Slide Number 208
	Slide Number 209
	Slide Number 210
	Slide Number 211
	Slide Number 212
	Slide Number 213
	Slide Number 214
	Slide Number 215
	Slide Number 216
	Slide Number 217
	Slide Number 218
	Slide Number 219
	Slide Number 220
	Slide Number 221
	Slide Number 222
	Slide Number 223
	Slide Number 224
	Slide Number 225
	Slide Number 226
	Slide Number 227
	Slide Number 228
	Slide Number 229
	Slide Number 230
	Slide Number 231
	Slide Number 232
	Slide Number 233
	Slide Number 234
	Slide Number 235
	Slide Number 236
	Slide Number 237
	Slide Number 238
	Slide Number 239
	Slide Number 240
	Slide Number 241
	Slide Number 242
	Slide Number 243
	Slide Number 244
	Slide Number 245
	Slide Number 246
	Comparing this result to classic Rate-Monotonic Analysis
	This result generalizes classic Rate-Monotonic Analysis to undocumented multicore
	Slide Number 249
	Slide Number 250
	Slide Number 251
	Slide Number 252
	Slide Number 253
	Slide Number 254
	Slide Number 255
	Slide Number 256
	Slide Number 257
	Slide Number 258
	Thanks!

