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“The trick there, when you’re processing flight critical information, it has to be a 
deterministic environment, meaning we know exactly where a piece of data is going to be 
exactly when we need to — no room for error,” Langhout says. “On a multi-core processor 
there’s a lot of sharing going on across the cores, so right now we’re not able to do that.”

- Jeff Langhout, Acting Director, U.S. Army Aviation and Missile Research 
Development and Engineering Center (AMRDEC)

Source: “Army still working on multi-core processor for UH-60V,” May 2017, Available at 
https://www.flightglobal.com/news/articles/army-still-working-on-multi-core-processor-for-uh-6-436895/.
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“A majority of avionics today are running on single-core processors, or multicore processors 
with all but one core disabled.”

“The root of the problem is shared resources, which most of the time creates some kind of 
interference.”

Source: “It’s time: Avionics need to move to multicore processors,” January 2018, Available at http://www.intelligent-
aerospace.com/articles/2018/01/it-s-time-avionics-needs-to-move-to-multicore-processors.html.
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“In safety-critical domains such as avionics, the multicore “predictability problem” is 
currently dealt with by turning off all but one core if highly-critical system components 
exist.”

Source: C. J. Kenna et al., “Making Shared Caches More Predictable on Multicore Platforms,” RTSS’2012.
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“Currently, avionics manufacturers resolve the multicore “predictability problem” by turning 
off all but one core if highly critical system components exist.”

Source: B. C. Ward et al., “Making Shared Caches More Predictable on Multicore Platforms,” ECRTS’2013.

Presenter
Presentation Notes




12Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Commonality of these Systems

Presenter
Presentation Notes




13Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Commonality of these Systems

Time
Read
Sensor

Actuate
Command

Presenter
Presentation Notes




14Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Time
Read
Sensor

Actuate
Command

Commonality of these Systems

Read
Sensor

Actuate
Command

Presenter
Presentation Notes




15Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Period

Deadline

Time

Commonality of these Systems

Read
Sensor

Actuate
Command

Read
Sensor

Actuate
Command

Presenter
Presentation Notes




16Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Commonality of these Systems

Presenter
Presentation Notes




17Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

TimeRead
Sensor

Actuate
Command

Read
Sensor

Actuate
Command

Read
Sensor

Actuate
Command

Read
Sensor

Actuate
Command

Commonality of these Systems

Presenter
Presentation Notes




18Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Makes it Challenging to Satisfy Real-Time Requirements?



19Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?



20Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time



21Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeTime when one thread
in the software system arrives

Deadline



22Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Thread executes 
one path

Time when one thread
in the software system arrives

Deadline



23Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Thread executes another path

Time when one thread
in the software system arrives

Deadline



24Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Preemption:
Another thread uses

the processor.

Time when one thread
in the software system arrives

Deadline



25Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Interrupt
service
routine

executes

Time when one thread
in the software system arrives

Deadline



26Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Thread requests a
critical section held by

another thread

Time when one thread
in the software system arrives

Deadline



27Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache 
misses because of preemptions



28Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache 
misses because of preemptions

The response time in this scenario



29Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache 
misses because of preemptions

The response time in this scenario

How large can the response time be?



30Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache 
misses because of preemptions

Does it hold for all scenarios that the response time is at most the deadline?

The response time in this scenario

Deadline



31Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Thread executes 
one path

Time when one thread
in the software system arrives

Deadline

Does it hold for all scenarios that the response time is at most the deadline?

The response time in this scenario

Deadline



32Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache 
misses because of preemptions

Does it hold for all scenarios that the response time is at most the deadline?

The response time in this scenario

Deadline



33Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache 
misses because of preemptions

Does it hold for all threads,
that for all arrivals of the thread,

that for all scenarios,
that the finishing time is at most the deadline?

The response time in this scenario



34Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache 
misses because of preemptions

The response time in this scenario

Does it hold for all threads,
that for all arrivals of the thread,

that for all scenarios,
that the finishing time is at most the deadline?

If “yes,” we say the set of threads is schedulable.
Otherwise, the set of threads is unschedulable.



35Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache 
misses because of preemptions

The response time in this scenario

Does it hold for all threads,
that for all arrivals of the thread,

that for all scenarios,
that the finishing time is at most the deadline?

If “yes,” we say the set of threads is schedulable.
Otherwise, the set of threads is unschedulable.

The process of determining whether a set of threads is
schedulable is called schedulability analysis.
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Conclusions so far
Many systems interact with the physical world

This interaction requires correct timing

Correct timing depends on the whether the delay of the software is at most a certain bound

There are many causes of the delay of software (even on a computer with a single core)

Many systems today disable all processor cores except one in order to be confident
about timing
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Presenter
Presentation Notes
Multiple studies have shown the effect of the previously explained delays in the execution time of a task. In the figure we show six studies that show a how many times longer a task can take to execute if it has interference by other tasks in other cores. In our own study (labeled Kim14 – the student last name) we discovered a 14X increase, meaning that if a task takes only 10 milliseconds to run when it is running by itself in one core of a processor and the other cores are idle, when some heavy load tasks are running in other cores (it was tested in a four core processor), it took 140 milliseconds. In The Yun15 study the authors discovered a 103X increase. Using the same 10 ms task it would have taken 1030 ms.
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*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect 
of Cache Partitioning on COTS Multicore Platforms,” 
OSPERT, 2015.
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This slowdown is caused by Miss-Status Holding Register (MSHR). 
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This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most 
researchers in real-time systems community were not aware of the MSHR.
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This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most 
researchers in real-time systems community were not aware of the MSHR. There was no 
schedulability analysis that incorporated MSHR.
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*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect 
of Cache Partitioning on COTS Multicore Platforms,” 
OSPERT, 2015.

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most 
researchers in real-time systems community were not aware of the MSHR. There was no 
schedulability analysis that incorporated MSHR. Even today, there is no schedulability analysis 
that incorporates the timing effects of MSHR.
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MSHR was an unknown unknown.
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The resource that cause the worst slowdown is a resource that the real-time systems research 
computing community can neither analyze nor manage.
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Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed [Yun15].
• Current methods cannot deal

with undocumented resources.
• Even when resources are 

documented, current methods 
can only analyze/manage a 
small set of them.

• The problem is getting worse:
* Slowdown increasing
* More undocumented h/w
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Problem: For each process,
compute an upper bound on its
response time
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Problem: For each process,
compute an upper bound on its
response time considering

contention for resources in the
memory system

and
that resources in the memory
system are undocumented.
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Documented resources
• DRAM memory timing

tends to be specified according 
to JDEC standard.
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Documented resources
• DRAM memory timing

tends to be specified according 
to JDEC standard.

Undocumented resources
• Memory controller is often 

undocumented.
• Interconnection network from 

cores to Last-Level cache is 
often undocumented.

• Miss-Status Holding Register
is often undocumented.
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Different reasons for treating 
resources as undocumented
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Different reasons for treating 
resources as undocumented
• Resources are

undocumented
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Different reasons for treating 
resources as undocumented
• Resources are

undocumented
• Resources are documented but 

documentation is incorrect
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Different reasons for treating 
resources as undocumented
• Resources are

undocumented
• Resources are documented but 

documentation is incorrect
• Heule:PLDI16:

50 out of 1795 x86 
instructions have incorrect 
documentation
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Different reasons for treating 
resources as undocumented
• Resources are

undocumented
• Resources are documented but 

documentation is incorrect
• Heule:PLDI16:

50 out of 1795 x86 
instructions have incorrect 
documentation

• Dasgupta:PLDI19:
Found incorrect 

documentation of instructions 
for x86.
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Different reasons for treating 
resources as undocumented
• Resources are

undocumented
• Resources are documented but 

documentation is incorrect
• Heule:PLDI16:

50 out of 1795 x86 
instructions have incorrect 
documentation

• Dasgupta:PLDI19:
Found incorrect 

documentation of instructions 
for x86.

• Fog19:
There are discrepancies 

between measured latencies 
and latencies in data sheets.
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Different reasons for treating 
resources as undocumented
• Resources are

undocumented
• Resources are documented but 

documentation is incorrect
• Resources are documented but 

one believes the documentation to 
be incorrect
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Different reasons for treating 
resources as undocumented
• Resources are

undocumented
• Resources are documented but 

documentation is incorrect
• Resources are documented but 

one believes the documentation to 
be incorrect

• Resources are documented and 
one believe documentation to be 
correct but it is laborious to create 
a timing model for schedulability
analysis
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Different reasons for treating 
resources as undocumented
• Resources are

undocumented
• Resources are documented but 

documentation is incorrect
• Resources are documented but 

one believes the documentation to 
be incorrect

• Resources are documented and 
one believe documentation to be 
correct but it is laborious to create 
a timing model for schedulability
analysis (and it needs to be 
changed when one buys a new 
chip anyway)
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documentation
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The consequences of analyzing timing of software executing on multicores using 
documentation
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This has to be repeated for 
each hardware upgrade.
Takes a long time.
Requires PhD level skills.
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The consequences of analyzing timing of software executing on multicores using 
documentation

Treating multicore processors as undocumented hardware has the potential to create a 
model that can be used for processors in the future even for processors that we 
currently do not know about.
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Problem: For each process,
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Problem: For each process,
compute an upper bound on its
response time considering

contention for resources in the
memory system

and
that resources in the memory
system are undocumented.
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Problem: For each process,
compute an upper bound on its
response time considering

contention for resources in the
memory system

and
that resources in the memory
system are undocumented.

Q: How can we analyze timing of a
system when we do not know how
the system works?
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Problem: For each process,
compute an upper bound on its
response time considering

contention for resources in the
memory system

and
that resources in the memory
system are undocumented.

Q: How can we analyze timing of a
system when we do not know how
the system works?

A: Create abstraction that describes
effect of undocumented h/w.
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Big Research Questions
Q1: What is a good abstraction that 
describes the effect of undocumented 
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?
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Big Research Questions
Q1: What is a good abstraction that 
describes the effect of undocumented 
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Before discussing them, let us discuss:
1. Other approaches
2. General ideas for abstractions in 

other disciplines
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Other approaches
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Build your own 
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Build your own 
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Examples: PREM, Linkoping@RTSS07.
Con: Laborious. Requires a local memory that is large enough to store working set. Difficult 
to prove that no memory accesses occurs in certain phases.
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This body has many atoms This body has many atoms

This body also has many atoms We describe each body as a single point mass

Describe each body with only as many parameters 
that we need for the analysis that we want to do.
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For each of these 1024 water molecules,
how fast does this water molecule move?
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Ask questions about the aggregate that you care about.
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What is the water temperature?

If possible: Describe a system with quantities that you can 
measure.
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General ideas for abstractions
1. Describe a system with parts

A software system comprises a set of tasks.

2. Describe each part with an abstraction
Each task is described with a T (period), D (deadline), and C (execution time).

3. Obtain specific values of the abstraction (e.g., using measurements) for each part
Obtain T from source code. Obtain D from software requirement specification.
Obtain C by measuring the execution of the program; then add margin.
(or run WCET tool) 

4. Ask questions: calculate the answer to the questions
Will all deadlines be met if tasks are scheduled by Rate-Monotonic on a single
processor?
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General ideas for abstractions
1. Describe a system with parts

A software system comprises a set of tasks.

2. Describe each part with an abstraction
Each task is described with a T (period), D (deadline), and C (execution time).
Describe the effect of the memory system on execution speed of a task.

3. Obtain specific values of the abstraction (e.g., using measurements) for each part
Obtain T from source code. Obtain D from software requirement specification.
Obtain C by measuring the execution of the program; then add margin.
(or run WCET tool)
Obtain parameters (e.g., using measurements)

4. Ask questions: calculate the answer to the questions
Will all deadlines be met if tasks are scheduled by Rate-Monotonic on a single
processor?
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Q2: How to create a schedulability
analysis that uses this abstraction?

What are the requirements of a good 
abstraction?
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Considerations in creating an 
abstraction for multicore

Let speed(i,t) denote the speed of 
execution of task i at time t. Let cor(i,t) 
denote the set of tasks, other than task i, 
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- Does not reflect that different co-

runners can have different effect on
task i.
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Memory Bus (and Mem Controller)
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Bank B…

1 − 𝑘𝑘 × 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖, 𝑡𝑡 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1
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Considerations in creating an 
abstraction for multicore

Let speed(i,t) denote the speed of 
execution of task i at time t. Let cor(i,t) 
denote the set of tasks, other than task i, 
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- In reality, the speed can be super

-additive or sub-additive (not reflected
in the above).
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𝑤𝑤𝑖𝑖
1 + ∑𝑗𝑗|𝑗𝑗∈𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖,𝑡𝑡 𝑤𝑤𝑖𝑖,𝑗𝑗

≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1
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Considerations in creating an 
abstraction for multicore

Let speed(i,t) denote the speed of 
execution of task i at time t. Let cor(i,t) 
denote the set of tasks, other than task i, 
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- In reality, the speed can be super

-additive or sub-additive (not reflected
in the above).
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Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

𝑤𝑤𝑖𝑖
1 + ∏𝑗𝑗|𝑗𝑗∈𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖,𝑡𝑡 𝑤𝑤𝑖𝑖,𝑗𝑗
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Considerations in creating an 
abstraction for multicore

Let speed(i,t) denote the speed of 
execution of task i at time t. Let cor(i,t) 
denote the set of tasks, other than task i, 
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- In reality, the speed can be super

-additive or sub-additive (not reflected
in the above).
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Last-Level Cache (L3)
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Bank B…

𝑤𝑤𝑖𝑖

1 + 𝑠𝑠∑𝑗𝑗|𝑗𝑗∈𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖,𝑡𝑡 𝑤𝑤𝑖𝑖,𝑗𝑗
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Consider DRAM bank B and its row 
buffer.
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task (victim):
1. load address x to register y
2. load address x’ to register z

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

x and x’ are in the same row in  
DRAM bank B’
But x and x’ are in different columns 
(different addresses)
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)
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Last-Level Cache (L3)

Memory Bus (and Mem Controller)
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Bank B…
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)
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Memory Bus (and Mem Controller)
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)
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Last-Level Cache (L3)

Memory Bus (and Mem Controller)
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Bank 3

DRAM
Bank B…
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Observation: Green can evict Red’s
data in the row buffer.

L1/L2

Core 1
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L1/L2
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Last-Level Cache (L3)

Memory Bus (and Mem Controller)
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Bank 0
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Bank 1
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DRAM
Bank 3

DRAM
Bank B…
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Observation: Blue can evict Red’s
data in the row buffer.
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L1/L2
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L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0
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Bank 1
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Bank 3

DRAM
Bank B…
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Observation: If Blue has evicted Red’s
data in the row buffer,

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

then Green cannot evict it more.
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Observation: If Green has evicted Red’s
data in the row buffer,

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1
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DRAM
Bank 3

DRAM
Bank B…

then Blue cannot evict it more.
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Considerations in creating an 
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Red experiences a slowdown due to
Blue or Green but the slowdown is not

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

greater by both.
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Considerations in creating an 
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1
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L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Consider Last-Level Cache (L3).
Assume associativity = 2.
Consider one specific cache set.
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Considerations in creating an 
abstraction for multicore

Why is speed super-additive?
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Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z



164Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Considerations in creating an 
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)
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Considerations in creating an 
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)

Observation: Green’s data and Red’s 
data fit in the cache. No capacity 
miss.
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Considerations in creating an 
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1
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L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Blue task:
1. load address b (where b is in

same cache set x)
Observation: Blue’s data and Red’s 
data fit in the cache. No capacity 
miss.
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Considerations in creating an 
abstraction for multicore

Why is speed super-additive?
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L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x) 
Blue task:

1. load address b (where b is in
same cache set x)

Observation: Blue’s data, Green’s 
data, and Red’s data do not fit in the 
cache. Capacity miss.
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Considerations in creating an 
abstraction for multicore

Why is speed super-additive?
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L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)
Blue task:

1. load address b (where b is in
same cache set x)

Observation: Green alone does not 
cause slowdown of Red.
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Considerations in creating an 
abstraction for multicore

Why is speed super-additive?

L1/L2
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L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1
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Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)
Blue task:

1. load address b (where b is in
same cache set x)

Observation: Blue alone does not 
cause slowdown of Red.
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Considerations in creating an 
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)
Blue task:

1. load address b (where b is in
same cache set x)

Observation: But Green and Blue 
cause slowdown of Red.
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Considerations in creating an 
abstraction for multicore

Speed of execution of a task as a
function of co-runners can be either
(i) Additive
(ii) Sub-additive
(iii) Super-additive
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Considerations in creating an 
abstraction for multicore

Speed of execution of a task as a
function of co-runners can be either
(i) Additive
(ii) Sub-additive
(iii) Super-additive
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Memory Bus (and Mem Controller)
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Bank B…

If speed is not additive, how can we describe speed as a function of co-runners?
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Considerations in creating an 
abstraction for multicore

Speed of execution of a task as a
function of co-runners can be either
(i) Additive
(ii) Sub-additive
(iii) Super-additive
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For each task: Enumerate the set of possible co-runner set.
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L1/L2
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Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

For each task: Enumerate the set of possible co-runner set.

Considerations in creating an 
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1
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L1/L2 L1/L2 L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
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DRAM
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DRAM
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DRAM
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DRAM
Bank B…

Considerations in creating an 
abstraction for multicore

Co-runner set Speed

{} 1

Cred=4
Describing resource consumption of Red task
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Memory Bus (and Mem Controller)
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Bank 1

DRAM
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DRAM
Bank B…

Considerations in creating an 
abstraction for multicore

Co-runner set Speed

{} 1

{cyan} 0.5

Cred=4
Describing resource consumption of Red task
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Last-Level Cache (L3)
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Co-runner set Speed
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Cred=4
Describing resource consumption of Red task
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Co-runner set Speed
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Cred=4
Describing resource consumption of Red task
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Co-runner set Speed
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Cred=4
Describing resource consumption of Red task
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Co-runner set Speed
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Describing resource consumption of Red task
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Describing resource consumption of Red task
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Considerations in creating an 
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Co-runner set Speed
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Cred=4
Describing resource consumption of Red task
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Co-runner set Speed
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Cred=4
Describing resource consumption of Red task
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Considerations in creating an 
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Co-runner set Speed

{} 1

{cyan} 0.5

{green} 0.45

{brown} 0.45
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Cred=4
Describing resource consumption of Red task
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Considerations in creating an 
abstraction for multicore

Co-runner set Speed

{} 1

{cyan} 0.5

{green} 0.45

{brown} 0.45

{blue} 0.25

{cyan, brown} 0.18

{cyan, blue} 0.12

{green,brown} 0.13

{green, blue} 0.19

Cred=4
Describing resource consumption of Red task

Describe resource consumption of other tasks analogously.
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For each task: Enumerate the set of possible co-runner set. Isn’t that exponential?
Couldn’t this be bad?

Considerations in creating an 
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
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Given a task i: #co-runner sets of task i ≤ 𝑙𝑙𝑡𝑡𝑛𝑛𝑠𝑠𝑘𝑘𝑠𝑠 − 1
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+ 1
𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛−1

Considerations in creating an 
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
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Given a task i: #co-runner sets of task i ≤ polynomial If number of processors is fixed.

Considerations in creating an 
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
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If number of processors = 2.Given a task i: #co-runner sets of task i ≤ ntasks

Considerations in creating an 
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
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If number of processors = 3.Given a task i: #co-runner sets of task i ≤ 𝑙𝑙𝑡𝑡𝑛𝑛𝑠𝑠𝑘𝑘𝑠𝑠 − 1
2

+ 1
2

Considerations in creating an 
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
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Considerations in creating an 
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
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𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

If number of processors = 4.Given a task i: #co-runner sets of task i ≤ 𝑙𝑙𝑡𝑡𝑛𝑛𝑠𝑠𝑘𝑘𝑠𝑠 − 1
3

+ 1
3
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Considerations in creating an 
abstraction for multicore

Given a task i: A job of task i can 
experience different co-runner set at 
different times.
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How Co-Runners Impact Speed of Execution
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Speed=1

Arrives TimeFinishes
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How Co-Runners Impact Speed of Execution
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Considerations in creating an 
abstraction for multicore

Given a task i: A job of task i can 
experience different co-runner set at 
different times.
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Considerations in creating an 
abstraction for multicore

In some computer systems, there are 
some resources (e.g., memory bus) 
where the arbitration depends on the 
processor id of the requestor. L1/L2
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unschedulable schedulable
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Considerations in creating an 
abstraction for multicore

In some computer systems, there are 
some resources (e.g., memory bus) 
where the arbitration depends on the 
processor id of the requestor. L1/L2
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Considerations in creating an 
abstraction for multicore

The program behavior may change
over time.
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Considerations in creating an 
abstraction for multicore

The program behavior may change
over time.
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while (1) {
s = wait_until_next_sample()
update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}
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Considerations in creating an 
abstraction for multicore

The program behavior may change
over time.
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Memory Bus (and Mem Controller)
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Bank 1

DRAM
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while (1) {
s = wait_until_next_sample()
update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

The program
behavior here
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Considerations in creating an 
abstraction for multicore

The program behavior may change
over time.
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while (1) {
s = wait_until_next_sample()
update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

The program
behavior here

the program
behavior here.

is different from
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Considerations in creating an 
abstraction for multicore

The program behavior may change
over time.

L1/L2

Core 1
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Memory Bus (and Mem Controller)
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Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
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while (1) {
s = wait_until_next_sample()
update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

Describe a task as a sequence of segments
where each segment may have different
description of lower bound on speed
as a function of co-runners.
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Task 1
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Task 2
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Task 3
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Task 4
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Task 5
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Minimum inter-arrival times of tasks
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Deadlines of tasks
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Sets of segments for each task



215Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Taskset example

Task 1 has 1 segment.
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Taskset example

Task 5 has 2 segments.
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Priorities for each task
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Processor to each task is assigned
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Taskset example

Execution requirement for each segment of each task
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Taskset example

Speed as function of co-runners
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Taskset example If segment 1 of task 1 executes
in parallel with segment 1 of task 4,
then Segment 1 of task 1 executes
with speed 0.5.
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Taskset example If segment 1 of task 1 executes in parallel with a segmentset for
which information in CO is not available, then segment 1 of task 1

executes with speed 0.5.
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Big Research Questions
Q1: What is a good abstraction that 
describes the effect of undocumented 
hardware? (DONE)

Q2: How to create a schedulability
analysis that uses this abstraction?

Before discussing them, let us discuss:
1. Other approaches (DONE)
2. General ideas for abstractions in 

other disciplines (DONE)
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Memory Bus (and Mem Controller)
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Bank B…
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Big Research Questions
Q1: What is a good abstraction that 
describes the effect of undocumented 
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Let us discuss Q2.
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Last-Level Cache (L3)

Memory Bus (and Mem Controller)
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Bank B…



225Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that 
describes the effect of undocumented 
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

In order to simplify our discussion 
initially, let us consider a taskset with 
only Red and Brown task. Also, let us
consider that the minimum inter-arrival
time of each of these tasks is infinity
(i.e., generates just a single job).
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Core 1
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Last-Level Cache (L3)

Memory Bus (and Mem Controller)
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DRAM
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Bank B…
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

Speed=1

Let dur{red} denote
the cumulative duration 
that the set of tasks 
that execute is the set 
{red}.

dur{red}

Red
task
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Let dur{red} denote
the cumulative duration 
that the set of tasks 
that execute is the set 
{red}.

Let dur{red,brown} denote
the cumulative duration 
that the set of tasks 
that execute is the set 
{red,brown}.
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred

0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred

0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown

Lower bound on
the speed of
execution of Red
when it executes
in parallel with
Brown.
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred

0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown

Lower bound on
the speed of
execution of 
Brown
when it executes
in parallel with
Red.
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred

0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown

0 ≤ dur{red,brown}
0 ≤ dur{red}
0 ≤ dur{brown}
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred
0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown
0 ≤ dur{red,brown}
0 ≤ dur{red}
0 ≤ dur{brown}

Solving this 
optimization problem 
yields an upper bound 
on the response time 
of Red.
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred
0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown
0 ≤ dur{red,brown}
0 ≤ dur{red}
0 ≤ dur{brown}

Let us formulate this in 
general.
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Arrives TimeTask i
(victim) Let us consider a time

interval of duration t
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeTask i
(victim) Let us consider a time

interval of duration t

Let τ denote the 
taskset.
Let ∏ denote the 
computer platform.

Busy executing task i or 
higher priority
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeTask i
(victim) Let us consider a time

interval of duration t

Let τ denote the 
taskset.
Let ∏ denote the 
computer platform.

Given task i, find a 
value of t such
that an upper bound
on the duration of
time during which
the processor
(Processor 3) is busy
executing task i or
higher priority tasks

is equal to
t.

Busy executing task i or 
higher priority
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L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

ArrivesTask i
(victim) Let us consider a time

interval of duration t

Let τ denote the 
taskset.
Let ∏ denote the 
computer platform.

Given task i, find a 
value of t such
that an upper bound
on the duration of
time during which
the processor
(Processor 3) is busy
executing task i or
higher priority tasks

is equal to
t.

Busy executing task i or 
higher priority

Time
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Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:
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Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

For a given taskset, for 
a given t, this is a linear 
program.
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Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

For a given taskset, for 
a given t, this is a linear 
program because these 
become constants.
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Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

A linear program can
be solved in
polynomial time.
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Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

Given τ, Π, i, t,
evaluating reqlp(τ,Π,i,t) 
can be done in 
polynomial time.



243Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and 
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

Evaluating this can be done in pseudo-polynomial time.
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Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

This is a generalization of the classic response-time analysis for Rate-Monotonic.
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Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

For details (about this theorem and other results about the model), see
B. Andersson et al., ``Schedulability Analysis of Tasks with Co-Runner-Dependent Execution
Times,'' ACM TECS, 2018.
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Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

We have a schedulability analysis for tasks with co-runner dependent execution times.
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Comparing this result to classic Rate-Monotonic Analysis
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This result generalizes classic Rate-Monotonic Analysis to 
undocumented multicore
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This looks very 
theoretical. Does this 
really work in reality?
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I understand that for 
each task, the set of co-

runner sets is 
polynomial in the 
number of tasks 

assuming that the 
number of processors is 

fixed.
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But I still wonder how 
one can obtain the 

lower bound of speed 
of execution of one task 

given co-runners.  
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OK, I buy that you can 
obtain these lower 

bounds on the speed of 
execution through 

measurements. But I 
wonder how 

trustworthy these 
numbers are. Have you 

done any validation?
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OK, I buy that you can 
obtain these lower 

bounds on the speed of 
execution through 

measurements. But I 
wonder how 

trustworthy these 
numbers are. Have you 

done any validation?

You could do a case 
study. Choose a set of 

tasks and use your 
measurement-based 

approach to obtain speed 
as a function of co-

runners. Now, you have a 
taskset. Then run your 

schedulability analysis on 
this taskset.
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OK, I buy that you can 
obtain these lower 

bounds on the speed of 
execution through 

measurements. But I 
wonder how 

trustworthy these 
numbers are. Have you 

done any validation?

Then run the system and 
measure response times 

of each task. If you 
observe one case where 
the observed response 
time > calculated upper 

bound on response time, 
then you have falsified 
your theory; otherwise, 
you have corroborated 

your theory.
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From B. Andersson et al., ``Schedulability Analysis of Tasks with Co-Runner-Dependent 
Execution Times,'' ACM TECS, 2018:
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Conclusion: It is possible to analyze timing of software executing on undocumented multicore. 
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Thanks!
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