
1Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Timing Analysis of Software Executing
on Undocumented Multicore Processors

Bjorn Andersson

Presenter
Presentation Notes
This is for the Keynote at SBESC in November_2019 in Natal, Brazil. The title is: Timing_Analysis_of_Undocumented_Multicore_Processors.The expected duration is 80 minutes (including introduction and questions from the audience).

2Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-
IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM19-0890

3Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Systems Interact with Their Physical Environment

Picture of Tesla Picture of
Embraer
aircraft

Presenter
Presentation Notes

4Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Systems Include Software

Picture of Tesla Picture of
Embraer
aircraft

Presenter
Presentation Notes

5Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Systems Include Software
That Interacts with the Physical Environment

Picture of Tesla Picture of
Embraer
aircraft

Presenter
Presentation Notes

6Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Systems Include Software
That Has Real-Time Requirements

Picture of Tesla Picture of
Embraer
aircraft

Presenter
Presentation Notes

7Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Satisfying Real-Time Requirements
is a Challenge for These Systems in General

Picture of Tesla Picture of
Embraer
aircraft

Presenter
Presentation Notes

8Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Satisfying Real-Time Requirements
is a Challenge for …

Picture of Tesla Picture of
Embraer
aircraft

“The trick there, when you’re processing flight critical information, it has to be a
deterministic environment, meaning we know exactly where a piece of data is going to be
exactly when we need to — no room for error,” Langhout says. “On a multi-core processor
there’s a lot of sharing going on across the cores, so right now we’re not able to do that.”

- Jeff Langhout, Acting Director, U.S. Army Aviation and Missile Research
Development and Engineering Center (AMRDEC)

Source: “Army still working on multi-core processor for UH-60V,” May 2017, Available at
https://www.flightglobal.com/news/articles/army-still-working-on-multi-core-processor-for-uh-6-436895/.

Presenter
Presentation Notes

9Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Satisfying Real-Time Requirements
is a Challenge for …

Picture of Tesla Picture of
Embraer
aircraft

“A majority of avionics today are running on single-core processors, or multicore processors
with all but one core disabled.”

“The root of the problem is shared resources, which most of the time creates some kind of
interference.”

Source: “It’s time: Avionics need to move to multicore processors,” January 2018, Available at http://www.intelligent-
aerospace.com/articles/2018/01/it-s-time-avionics-needs-to-move-to-multicore-processors.html.

Presenter
Presentation Notes

10Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Satisfying Real-Time Requirements
is a Challenge for …

Picture of Tesla Picture of
Embraer
aircraft

“In safety-critical domains such as avionics, the multicore “predictability problem” is
currently dealt with by turning off all but one core if highly-critical system components
exist.”

Source: C. J. Kenna et al., “Making Shared Caches More Predictable on Multicore Platforms,” RTSS’2012.

Presenter
Presentation Notes

11Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Satisfying Real-Time Requirements
is a Challenge for …

Picture of Tesla Picture of
Embraer
aircraft

“Currently, avionics manufacturers resolve the multicore “predictability problem” by turning
off all but one core if highly critical system components exist.”

Source: B. C. Ward et al., “Making Shared Caches More Predictable on Multicore Platforms,” ECRTS’2013.

Presenter
Presentation Notes

12Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Commonality of these Systems

Presenter
Presentation Notes

13Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Commonality of these Systems

Time
Read
Sensor

Actuate
Command

Presenter
Presentation Notes

14Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Time
Read
Sensor

Actuate
Command

Commonality of these Systems

Read
Sensor

Actuate
Command

Presenter
Presentation Notes

15Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Period

Deadline

Time

Commonality of these Systems

Read
Sensor

Actuate
Command

Read
Sensor

Actuate
Command

Presenter
Presentation Notes

16Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Commonality of these Systems

Presenter
Presentation Notes

17Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

TimeRead
Sensor

Actuate
Command

Read
Sensor

Actuate
Command

Read
Sensor

Actuate
Command

Read
Sensor

Actuate
Command

Commonality of these Systems

Presenter
Presentation Notes

18Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Makes it Challenging to Satisfy Real-Time Requirements?

19Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

20Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

21Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeTime when one thread
in the software system arrives

Deadline

22Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Thread executes
one path

Time when one thread
in the software system arrives

Deadline

23Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Thread executes another path

Time when one thread
in the software system arrives

Deadline

24Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Preemption:
Another thread uses

the processor.

Time when one thread
in the software system arrives

Deadline

25Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Interrupt
service
routine

executes

Time when one thread
in the software system arrives

Deadline

26Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Thread requests a
critical section held by

another thread

Time when one thread
in the software system arrives

Deadline

27Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache
misses because of preemptions

28Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache
misses because of preemptions

The response time in this scenario

29Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache
misses because of preemptions

The response time in this scenario

How large can the response time be?

30Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache
misses because of preemptions

Does it hold for all scenarios that the response time is at most the deadline?

The response time in this scenario

Deadline

31Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

Time

Thread executes
one path

Time when one thread
in the software system arrives

Deadline

Does it hold for all scenarios that the response time is at most the deadline?

The response time in this scenario

Deadline

32Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache
misses because of preemptions

Does it hold for all scenarios that the response time is at most the deadline?

The response time in this scenario

Deadline

33Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache
misses because of preemptions

Does it hold for all threads,
that for all arrivals of the thread,

that for all scenarios,
that the finishing time is at most the deadline?

The response time in this scenario

34Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache
misses because of preemptions

The response time in this scenario

Does it hold for all threads,
that for all arrivals of the thread,

that for all scenarios,
that the finishing time is at most the deadline?

If “yes,” we say the set of threads is schedulable.
Otherwise, the set of threads is unschedulable.

35Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

What Causes Delay of Software?

TimeDeadlineTime when one thread
in the software system arrives

Thread experiences extra cache
misses because of preemptions

The response time in this scenario

Does it hold for all threads,
that for all arrivals of the thread,

that for all scenarios,
that the finishing time is at most the deadline?

If “yes,” we say the set of threads is schedulable.
Otherwise, the set of threads is unschedulable.

The process of determining whether a set of threads is
schedulable is called schedulability analysis.

36Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Conclusions so far
Many systems interact with the physical world

This interaction requires correct timing

Correct timing depends on the whether the delay of the software is at most a certain bound

There are many causes of the delay of software (even on a computer with a single core)

Many systems today disable all processor cores except one in order to be confident
about timing

37Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Hardware Trends
• All computers are multicores. Core 1 Core 2 Core 3 Core N…

Real-Time Requirements of
Software Executing on a Multicore Processor

38Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Hardware Trends
• All computers are multicores.
• Most chip makers do not offer

single core.

Core 1 Core 2 Core 3 Core N…

Real-Time Requirements of
Software Executing on a Multicore Processor

39Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Hardware Trends
• All computers are multicores.
• Most chip makers do not offer

single core.
• Most multicores have shared

memory.

Core 1 Core 2 Core 3 Core N…
L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

L1/L2

Core N

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Real-Time Requirements of
Software Executing on a Multicore Processor

40Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute an upper bound on
its response time.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

41Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

How Co-Runners Impact Speed of Execution

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3
Speed=1

Arrives TimeFinishes

42Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

How Co-Runners Impact Speed of Execution

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

43Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute an upper bound on
its response time.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

44Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

ProcessesIssues
• Shared hardware resources

impact timing.
L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

45Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

How Bad?

2.98 5.1 6

14 15

103

0

20

40

60

80

100

120

Pelli10 Nowo12 Sha16 Kim14 Nowo14 Yun15

Slowdown

Presenter
Presentation Notes
Multiple studies have shown the effect of the previously explained delays in the execution time of a task. In the figure we show six studies that show a how many times longer a task can take to execute if it has interference by other tasks in other cores. In our own study (labeled Kim14 – the student last name) we discovered a 14X increase, meaning that if a task takes only 10 milliseconds to run when it is running by itself in one core of a processor and the other cores are idle, when some heavy load tasks are running in other cores (it was tested in a four core processor), it took 140 milliseconds. In The Yun15 study the authors discovered a 103X increase. Using the same 10 ms task it would have taken 1030 ms.

46Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed.*

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

47Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed.*

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

This slowdown is caused by Miss-Status Holding Register (MSHR).

48Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed.*

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR.

49Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed.*

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR. There was no
schedulability analysis that incorporated MSHR.

50Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed.*

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

This slowdown is caused by Miss-Status Holding Register (MSHR). At that time, most
researchers in real-time systems community were not aware of the MSHR. There was no
schedulability analysis that incorporated MSHR. Even today, there is no schedulability analysis
that incorporates the timing effects of MSHR.

51Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed.*

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

MSHR was an unknown unknown.

52Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed.*

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

*H. Yun and P. K. Valsan, “Evaluating the Isolation Effect
of Cache Partitioning on COTS Multicore Platforms,”
OSPERT, 2015.

The resource that cause the worst slowdown is a resource that the real-time systems research
computing community can neither analyze nor manage.

53Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed [Yun15].
• Current methods cannot deal

with undocumented resources.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

54Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed [Yun15].
• Current methods cannot deal

with undocumented resources.
• Even for the case that

resources are documented,
current methods can only
analyze/manage a small
set of them.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

55Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Issues
• Shared hardware resources

impact timing.
• 103 times slowdown has been

observed [Yun15].
• Current methods cannot deal

with undocumented resources.
• Even when resources are

documented, current methods
can only analyze/manage a
small set of them.

• The problem is getting worse:
* Slowdown increasing
* More undocumented h/w

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

56Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute its response time

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

57Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute an upper bound on its
response time

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

58Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute an upper bound on its
response time considering

contention for resources in the
memory system

and
that resources in the memory
system are undocumented.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

59Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Documented resources
• DRAM memory timing

tends to be specified according
to JDEC standard.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

60Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Documented resources
• DRAM memory timing

tends to be specified according
to JDEC standard.

Undocumented resources
• Memory controller is often

undocumented.
• Interconnection network from

cores to Last-Level cache is
often undocumented.

• Miss-Status Holding Register
is often undocumented.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

61Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

62Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented
• Resources are

undocumented
Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

63Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented
• Resources are

undocumented
• Resources are documented but

documentation is incorrect

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

64Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented
• Resources are

undocumented
• Resources are documented but

documentation is incorrect
• Heule:PLDI16:

50 out of 1795 x86
instructions have incorrect
documentation

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

65Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented
• Resources are

undocumented
• Resources are documented but

documentation is incorrect
• Heule:PLDI16:

50 out of 1795 x86
instructions have incorrect
documentation

• Dasgupta:PLDI19:
Found incorrect

documentation of instructions
for x86.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

66Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented
• Resources are

undocumented
• Resources are documented but

documentation is incorrect
• Heule:PLDI16:

50 out of 1795 x86
instructions have incorrect
documentation

• Dasgupta:PLDI19:
Found incorrect

documentation of instructions
for x86.

• Fog19:
There are discrepancies

between measured latencies
and latencies in data sheets.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

67Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented
• Resources are

undocumented
• Resources are documented but

documentation is incorrect
• Resources are documented but

one believes the documentation to
be incorrect

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

68Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented
• Resources are

undocumented
• Resources are documented but

documentation is incorrect
• Resources are documented but

one believes the documentation to
be incorrect

• Resources are documented and
one believe documentation to be
correct but it is laborious to create
a timing model for schedulability
analysis

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

69Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Different reasons for treating
resources as undocumented
• Resources are

undocumented
• Resources are documented but

documentation is incorrect
• Resources are documented but

one believes the documentation to
be incorrect

• Resources are documented and
one believe documentation to be
correct but it is laborious to create
a timing model for schedulability
analysis (and it needs to be
changed when one buys a new
chip anyway)

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

70Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

71Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

72Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project
starts:
We
want
to
develop
product
X

73Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project
starts:
We
want
to
develop
product
X

Buy
multi-
core
proc-
essor
Y

74Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project
starts:
We
want
to
develop
product
X

Buy
multi-
core
proc-
essor
Y

Read
data
sheets
of
multicore
processor
Y

75Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project
starts:
We
want
to
develop
product
X

Buy
multi-
core
proc-
essor
Y

Read
data
sheets
of
multicore
processor
Y

Create
model of
hardware and
develop
schedulability
analysis
equations

76Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project
starts:
We
want
to
develop
product
X

Buy
multi-
core
proc-
essor
Y

Read
data
sheets
of
multicore
processor
Y

Create
model of
hardware and
develop
schedulability
analysis
equations

Deliver
product
X

77Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project
starts:
We
want
to
develop
product
X

Buy
multi-
core
proc-
essor
Y

Read
data
sheets
of
multicore
processor
Y

Create
model of
hardware and
develop
schedulability
analysis
equations

Deliver
product
X

Voice of
the customer:
We need
product X
to use
the new
multicore
processor Y’

78Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project
starts:
We
want
to
develop
product
X

Buy
multi-
core
proc-
essor
Y

Read
data
sheets
of
multicore
processor
Y

Create
model of
hardware and
develop
schedulability
analysis
equations

Deliver
product
X

Voice of
the customer:
We need
product X
to use
the new
multicore
processor Y’

Buy
multi-
core
proc-
essor
Y’

Read
data
sheets
of
multicore
processor
Y’

Create
model of
hardware and
develop
schedulability
analysis
equations

Deliver
product
X

79Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Project
starts:
We
want
to
develop
product
X

Buy
multi-
core
proc-
essor
Y

Read
data
sheets
of
multicore
processor
Y

Create
model of
hardware and
develop
schedulability
analysis
equations

Deliver
product
X

Voice of
the customer:
We need
product X
to use
the new
multicore
processor Y’

Buy
multi-
core
proc-
essor
Y’

Read
data
sheets
of
multicore
processor
Y’

Create
model of
hardware and
develop
schedulability
analysis
equations

Deliver
product
X

This has to be repeated for
each hardware upgrade.
Takes a long time.
Requires PhD level skills.

80Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

New multicore
processor Y
becomes
available

81Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y

New multicore
processor Y
becomes
available

82Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y

New multicore
processor Y
becomes
available

New multicore
processor Y’
becomes
available

83Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y

New multicore
processor Y
becomes
available

New multicore
processor Y’
becomes
available

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y’

84Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y

New multicore
processor Y
becomes
available

New multicore
processor Y’
becomes
available

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y’

New multicore
processor Y’’
becomes
available

85Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

time

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y

New multicore
processor Y
becomes
available

New multicore
processor Y’
becomes
available

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y’

New multicore
processor Y’’
becomes
available

Academic
researcher
create
model of
hardware and
develop
schedulability
analysis
equations for Y’’

86Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

87Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

The consequences of analyzing timing of software executing on multicores using
documentation

Treating multicore processors as undocumented hardware has the potential to create a
model that can be used for processors in the future even for processors that we
currently do not know about.

88Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute its response time

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

89Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute an upper bound on its
response time

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

90Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute an upper bound on its
response time considering

contention for resources in the
memory system

and
that resources in the memory
system are undocumented.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

91Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute an upper bound on its
response time considering

contention for resources in the
memory system

and
that resources in the memory
system are undocumented.

Q: How can we analyze timing of a
system when we do not know how
the system works?

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

92Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Problem: For each process,
compute an upper bound on its
response time considering

contention for resources in the
memory system

and
that resources in the memory
system are undocumented.

Q: How can we analyze timing of a
system when we do not know how
the system works?

A: Create abstraction that describes
effect of undocumented h/w.

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

93Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

94Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

95Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Before discussing them, let us discuss:
1. Other approaches
2. General ideas for abstractions in

other disciplines

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

96Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

97Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Ignore timing
requirements

98Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Ignore timing
requirements

Ignore timing
aspects of

memory system

99Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Disable all
processor cores

except one

Ignore timing
requirements

Ignore timing
aspects of

memory system

100Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Disable all
processor cores

except one

Ignore timing
requirements

Ignore timing
aspects of

memory system

101Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Disable all
processor cores

except one

Ignore timing
requirements

Ignore timing
aspects of

memory system

102Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Ignore timing
aspects of

memory system

103Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

104Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Model some
resources and
create analysis

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

105Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Model some
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

106Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model some
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

107Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model all
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

Pro: Easy
Con: Potentially unsafe

108Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model all
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

Pro: Easy
Con: Potentially unsafe

109Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model all
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

Pro: Easy
Con: Lose lots of processing capacity

110Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model all
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

Con: Analyzing timing of a single “task” executing on a GPU is still hard.

111Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model all
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

Con: High fixed cost.

112Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model some
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system
Con: Low clock frequency

113Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model some
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system
Con: Limits #suppliers. Laborious.

114Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model some
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system
Con: Laborious. There may be many resources for which documentation does not exist.

115Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model some
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

Examples: Cache coloring, Cache locking, Bank coloring, MemGuard, TLB coloring.
Con: Requires changes to operating system. Only work for some resources; there are many

resources for which there is no isolation mechanism.

116Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Other approaches

Use simple
processor and

run heavy
computations on

GPU

Build your own
processor (ASIC)

Build your own
processor (FPGA)

Disable all
processor cores

except one

Ignore timing
requirements

Reorganize
program so that

at most one
program
accesses

memory at a
time

Model some
resources and
create analysis

Software-based
mechanism to

improve
predictability/iso

lation

Use well-
documented

hardware (e.g.,
RISC-V) and

model all
resources and
create analysis

Ignore timing
aspects of

memory system

Examples: PREM, Linkoping@RTSS07.
Con: Laborious. Requires a local memory that is large enough to store working set. Difficult
to prove that no memory accesses occurs in certain phases.

117Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Before discussing them, let us discuss:
1. Other approaches (DONE)
2. General ideas for abstractions in

other disciplines

Processes

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

118Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

119Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

120Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

Not drawn to scale

121Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

This body has many atoms

122Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

This body has many atoms This body has many atoms

123Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

This body has many atoms This body has many atoms

This body also has many atoms

124Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

This body has many atoms This body has many atoms

This body also has many atoms We describe each body as a single point mass

125Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

This body has many atoms This body has many atoms

This body also has many atoms We describe each body as a single point mass

Describe each body with only as many parameters
that we need for the analysis that we want to do.

126Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

+

-

resistor

127Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

+

-

How many electrons per time unit are flowing here?

128Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

+

-

How much current is flowing here?

129Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

+

-

How much current is flowing here?

Ask questions about the aggregate that you care about.

130Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

For each of these 1024 water molecules,
how fast does this water molecule move?

131Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

What is the water temperature?

Ask questions about the aggregate that you care about.

132Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines

What is the water temperature?

If possible: Describe a system with quantities that you can
measure.

133Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions in other disciplines
1. Describe a system with parts

2. Describe each part with an abstraction

3. Obtain specific values of the abstraction (e.g., using measurements) for each part

4. Ask questions: calculate the answer to the questions

134Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions
1. Describe a system with parts

2. Describe each part with an abstraction

3. Obtain specific values of the abstraction (e.g., using measurements) for each part

4. Ask questions: calculate the answer to the questions

135Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions
1. Describe a system with parts

A software system comprises a set of tasks.

2. Describe each part with an abstraction
Each task is described with a T (period), D (deadline), and C (execution time).

3. Obtain specific values of the abstraction (e.g., using measurements) for each part
Obtain T from source code. Obtain D from software requirement specification.
Obtain C by measuring the execution of the program; then add margin.
(or run WCET tool)

4. Ask questions: calculate the answer to the questions
Will all deadlines be met if tasks are scheduled by Rate-Monotonic on a single
processor?

136Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

General ideas for abstractions
1. Describe a system with parts

A software system comprises a set of tasks.

2. Describe each part with an abstraction
Each task is described with a T (period), D (deadline), and C (execution time).
Describe the effect of the memory system on execution speed of a task.

3. Obtain specific values of the abstraction (e.g., using measurements) for each part
Obtain T from source code. Obtain D from software requirement specification.
Obtain C by measuring the execution of the program; then add margin.
(or run WCET tool)
Obtain parameters (e.g., using measurements)

4. Ask questions: calculate the answer to the questions
Will all deadlines be met if tasks are scheduled by Rate-Monotonic on a single
processor?

137Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Before discussing them, let us discuss:
1. Other approaches (DONE)
2. General ideas for abstractions in

other disciplines (DONE)

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

138Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Let us discuss Q1.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

139Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

What are the requirements of a good
abstraction?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

140Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

What are the requirements of a good
abstraction?

1. It should be as small as possible
(few numbers; few bits)

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

141Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

What are the requirements of a good
abstraction?

1. It should be as small as possible
(few numbers; few bits)

2. It should allow us to do prediction/
analysis that we care about

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

142Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

What are the requirements of a good
abstraction?

1. It should be as small as possible
(few numbers; few bits)

2. It should allow us to do prediction/
analysis that we care about

3. Given a system, it should be
possible to find the abstraction
(through measurements or
lower-level analysis)

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

143Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of
execution of task i at time t. Let cor(i,t)
denote the set of tasks, other than task i,
that executes at time t. L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

144Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of
execution of task i at time t. Let cor(i,t)
denote the set of tasks, other than task i,
that executes at time t.

One abstraction could be:

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

1
1 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖, 𝑡𝑡 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

145Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of
execution of task i at time t. Let cor(i,t)
denote the set of tasks, other than task i,
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- Does not reflect that different co-

runners can have different effect on
task i.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

1
1 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖, 𝑡𝑡 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

146Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of
execution of task i at time t. Let cor(i,t)
denote the set of tasks, other than task i,
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- Does not reflect that different co-

runners can have different effect on
task i.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

1 − 𝑘𝑘 × 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖, 𝑡𝑡 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

147Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of
execution of task i at time t. Let cor(i,t)
denote the set of tasks, other than task i,
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- In reality, the speed can be super

-additive or sub-additive (not reflected
in the above).

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

𝑤𝑤𝑖𝑖
1 + ∑𝑗𝑗|𝑗𝑗∈𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖,𝑡𝑡 𝑤𝑤𝑖𝑖,𝑗𝑗

≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

148Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of
execution of task i at time t. Let cor(i,t)
denote the set of tasks, other than task i,
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- In reality, the speed can be super

-additive or sub-additive (not reflected
in the above).

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

𝑤𝑤𝑖𝑖
1 + ∏𝑗𝑗|𝑗𝑗∈𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖,𝑡𝑡 𝑤𝑤𝑖𝑖,𝑗𝑗

≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

149Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Let speed(i,t) denote the speed of
execution of task i at time t. Let cor(i,t)
denote the set of tasks, other than task i,
that executes at time t.

One abstraction could be:

Drawback of abstraction:
- In reality, the speed can be super

-additive or sub-additive (not reflected
in the above).

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

𝑤𝑤𝑖𝑖

1 + 𝑠𝑠∑𝑗𝑗|𝑗𝑗∈𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖,𝑡𝑡 𝑤𝑤𝑖𝑖,𝑗𝑗
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

150Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

151Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Consider DRAM bank B and its row
buffer.

152Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task (victim):
1. load address x to register y
2. load address x’ to register z

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

x and x’ are in the same row in
DRAM bank B’
But x and x’ are in different columns
(different addresses)

153Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

154Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

155Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

156Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

157Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Observation: Green can evict Red’s
data in the row buffer.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

158Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Observation: Blue can evict Red’s
data in the row buffer.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

159Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Observation: If Blue has evicted Red’s
data in the row buffer,

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

then Green cannot evict it more.

160Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Observation: If Green has evicted Red’s
data in the row buffer,

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

then Blue cannot evict it more.

161Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed sub-additive?
Example:

Red task:
1. load address x to register y
2. load address x’ to register z

Green task:
1. load address a (where a is in

same bank as x but in
different row)

Blue task:
1. load address b (where b is in

same bank as x but in
different row)

Red experiences a slowdown due to
Blue or Green but the slowdown is not

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

greater by both.

162Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Consider Last-Level Cache (L3).
Assume associativity = 2.
Consider one specific cache set.

163Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

164Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)

165Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)

Observation: Green’s data and Red’s
data fit in the cache. No capacity
miss.

166Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Blue task:
1. load address b (where b is in

same cache set x)
Observation: Blue’s data and Red’s
data fit in the cache. No capacity
miss.

167Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)
Blue task:

1. load address b (where b is in
same cache set x)

Observation: Blue’s data, Green’s
data, and Red’s data do not fit in the
cache. Capacity miss.

168Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)
Blue task:

1. load address b (where b is in
same cache set x)

Observation: Green alone does not
cause slowdown of Red.

169Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)
Blue task:

1. load address b (where b is in
same cache set x)

Observation: Blue alone does not
cause slowdown of Red.

170Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Why is speed super-additive?

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Example:
Red task (victim):

1. load address x to register y
2. load address x to register z

Green task:
1. load address a (where a is in

same cache set x)
Blue task:

1. load address b (where b is in
same cache set x)

Observation: But Green and Blue
cause slowdown of Red.

171Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Speed of execution of a task as a
function of co-runners can be either
(i) Additive
(ii) Sub-additive
(iii) Super-additive

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

172Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Speed of execution of a task as a
function of co-runners can be either
(i) Additive
(ii) Sub-additive
(iii) Super-additive

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

If speed is not additive, how can we describe speed as a function of co-runners?

173Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Speed of execution of a task as a
function of co-runners can be either
(i) Additive
(ii) Sub-additive
(iii) Super-additive

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

For each task: Enumerate the set of possible co-runner set.

174Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

For each task: Enumerate the set of possible co-runner set.

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

175Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2 L1/L2 L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

Cred=4
Describing resource consumption of Red task

176Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{cyan} 0.5

Cred=4
Describing resource consumption of Red task

177Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{green} 0.45

Cred=4
Describing resource consumption of Red task

178Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{brown} 0.45

Cred=4
Describing resource consumption of Red task

179Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{blue} 0.25

Cred=4
Describing resource consumption of Red task

180Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{cyan, brown} 0.18

Cred=4
Describing resource consumption of Red task

181Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{cyan, blue} 0.12

Cred=4
Describing resource consumption of Red task

182Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{green,brown} 0.13

Cred=4
Describing resource consumption of Red task

183Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{green, blue} 0.19

Cred=4
Describing resource consumption of Red task

184Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{cyan} 0.5

{green} 0.45

{brown} 0.45

{blue} 0.25

{cyan, brown} 0.18

{cyan, blue} 0.12

{green,brown} 0.13

{green, blue} 0.19

Cred=4
Describing resource consumption of Red task

185Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Considerations in creating an
abstraction for multicore

Co-runner set Speed

{} 1

{cyan} 0.5

{green} 0.45

{brown} 0.45

{blue} 0.25

{cyan, brown} 0.18

{cyan, blue} 0.12

{green,brown} 0.13

{green, blue} 0.19

Cred=4
Describing resource consumption of Red task

Describe resource consumption of other tasks analogously.

186Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

For each task: Enumerate the set of possible co-runner set. Isn’t that exponential?
Couldn’t this be bad?

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

187Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Given a task i: #co-runner sets of task i ≤ 𝑙𝑙𝑡𝑡𝑛𝑛𝑠𝑠𝑘𝑘𝑠𝑠 − 1
𝑙𝑙𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠 − 1

+ 1
𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛−1

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

188Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

Given a task i: #co-runner sets of task i ≤ polynomial If number of processors is fixed.

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

189Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

If number of processors = 2.Given a task i: #co-runner sets of task i ≤ ntasks

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

190Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

If number of processors = 3.Given a task i: #co-runner sets of task i ≤ 𝑙𝑙𝑡𝑡𝑛𝑛𝑠𝑠𝑘𝑘𝑠𝑠 − 1
2

+ 1
2

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

191Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Main idea:
For each task i,

for each co-runner set of task i do
L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

𝑙𝑙𝑐𝑐𝑤𝑤𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖, 𝑡𝑡 ≤ 1

If number of processors = 4.Given a task i: #co-runner sets of task i ≤ 𝑙𝑙𝑡𝑡𝑛𝑛𝑠𝑠𝑘𝑘𝑠𝑠 − 1
3

+ 1
3

192Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Given a task i: A job of task i can
experience different co-runner set at
different times.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

193Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

How Co-Runners Impact Speed of Execution

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3
Speed=1

Arrives TimeFinishes

194Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

How Co-Runners Impact Speed of Execution

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

195Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

Given a task i: A job of task i can
experience different co-runner set at
different times.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

196Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

In some computer systems, there are
some resources (e.g., memory bus)
where the arbitration depends on the
processor id of the requestor. L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

197Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

L1/L2
Core 1

L1/L2
Core 2

L1/L2
Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

unschedulable schedulable

198Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

In some computer systems, there are
some resources (e.g., memory bus)
where the arbitration depends on the
processor id of the requestor. L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

199Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

200Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

while (1) {
s = wait_until_next_sample()
update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

201Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

while (1) {
s = wait_until_next_sample()
update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

The program
behavior here

202Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

while (1) {
s = wait_until_next_sample()
update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

The program
behavior here

the program
behavior here.

is different from

203Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Considerations in creating an
abstraction for multicore

The program behavior may change
over time.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

while (1) {
s = wait_until_next_sample()
update_datastructures(s)
a = compute_actuation_command()
actuate_command(a)

}

Describe a task as a sequence of segments
where each segment may have different
description of lower bound on speed
as a function of co-runners.

204Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

205Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example
5 Task

206Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example
2 processors

207Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Task 1

208Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Task 2

209Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Task 3

210Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Task 4

211Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Task 5

212Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Minimum inter-arrival times of tasks

213Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Deadlines of tasks

214Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Sets of segments for each task

215Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Task 1 has 1 segment.

216Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Task 5 has 2 segments.

217Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Priorities for each task

218Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Processor to each task is assigned

219Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Execution requirement for each segment of each task

220Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example

Speed as function of co-runners

221Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example If segment 1 of task 1 executes
in parallel with segment 1 of task 4,
then Segment 1 of task 1 executes
with speed 0.5.

222Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Taskset example If segment 1 of task 1 executes in parallel with a segmentset for
which information in CO is not available, then segment 1 of task 1

executes with speed 0.5.

223Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware? (DONE)

Q2: How to create a schedulability
analysis that uses this abstraction?

Before discussing them, let us discuss:
1. Other approaches (DONE)
2. General ideas for abstractions in

other disciplines (DONE)

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

224Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

Let us discuss Q2.

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

225Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Big Research Questions
Q1: What is a good abstraction that
describes the effect of undocumented
hardware?

Q2: How to create a schedulability
analysis that uses this abstraction?

In order to simplify our discussion
initially, let us consider a taskset with
only Red and Brown task. Also, let us
consider that the minimum inter-arrival
time of each of these tasks is infinity
(i.e., generates just a single job).

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B…

226Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

Speed=1

Let dur{red} denote
the cumulative duration
that the set of tasks
that execute is the set
{red}.

dur{red}

Red
task

227Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Let dur{red} denote
the cumulative duration
that the set of tasks
that execute is the set
{red}.

Let dur{red,brown} denote
the cumulative duration
that the set of tasks
that execute is the set
{red,brown}.

228Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred

0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown

229Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred

0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown

Lower bound on
the speed of
execution of Red
when it executes
in parallel with
Brown.

230Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred

0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown

Lower bound on
the speed of
execution of
Brown
when it executes
in parallel with
Red.

231Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred

0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown

0 ≤ dur{red,brown}
0 ≤ dur{red}
0 ≤ dur{brown}

232Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred
0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown
0 ≤ dur{red,brown}
0 ≤ dur{red}
0 ≤ dur{brown}

Solving this
optimization problem
yields an upper bound
on the response time
of Red.

233Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeFinishes

dur{red}

dur{red,brown}

Red
task

Maximize
dur{red,brown} +
dur{red}

subject to
0.45*dur{red,brown} +
1.00*dur{red} ≤ Cred
0.6*dur{red,brown} +
1.0*dur{brown} ≤ Cbrown
0 ≤ dur{red,brown}
0 ≤ dur{red}
0 ≤ dur{brown}

Let us formulate this in
general.

234Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeTask i
(victim) Let us consider a time

interval of duration t

235Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeTask i
(victim) Let us consider a time

interval of duration t

Let τ denote the
taskset.
Let ∏ denote the
computer platform.

Busy executing task i or
higher priority

236Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Arrives TimeTask i
(victim) Let us consider a time

interval of duration t

Let τ denote the
taskset.
Let ∏ denote the
computer platform.

Given task i, find a
value of t such
that an upper bound
on the duration of
time during which
the processor
(Processor 3) is busy
executing task i or
higher priority tasks

is equal to
t.

Busy executing task i or
higher priority

237Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

ArrivesTask i
(victim) Let us consider a time

interval of duration t

Let τ denote the
taskset.
Let ∏ denote the
computer platform.

Given task i, find a
value of t such
that an upper bound
on the duration of
time during which
the processor
(Processor 3) is busy
executing task i or
higher priority tasks

is equal to
t.

Busy executing task i or
higher priority

Time

238Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

239Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

For a given taskset, for
a given t, this is a linear
program.

240Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

For a given taskset, for
a given t, this is a linear
program because these
become constants.

241Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

A linear program can
be solved in
polynomial time.

242Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

Given τ, Π, i, t,
evaluating reqlp(τ,Π,i,t)
can be done in
polynomial time.

243Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

Evaluating this can be done in pseudo-polynomial time.

244Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

This is a generalization of the classic response-time analysis for Rate-Monotonic.

245Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

For details (about this theorem and other results about the model), see
B. Andersson et al., ``Schedulability Analysis of Tasks with Co-Runner-Dependent Execution
Times,'' ACM TECS, 2018.

246Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Define reqlp(τ,Π,i,t) as the optimal value of the objective function of the following:

Schedulability analysis (timing verification) is done as follows:

We have a schedulability analysis for tasks with co-runner dependent execution times.

247Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Comparing this result to classic Rate-Monotonic Analysis

248Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

This result generalizes classic Rate-Monotonic Analysis to
undocumented multicore

249Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

This looks very
theoretical. Does this
really work in reality?

250Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

I understand that for
each task, the set of co-

runner sets is
polynomial in the
number of tasks

assuming that the
number of processors is

fixed.

251Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

But I still wonder how
one can obtain the

lower bound of speed
of execution of one task

given co-runners.

252Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019 A measurement-based
approach:

253Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

OK, I buy that you can
obtain these lower

bounds on the speed of
execution through

measurements. But I
wonder how

trustworthy these
numbers are. Have you

done any validation?

254Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

OK, I buy that you can
obtain these lower

bounds on the speed of
execution through

measurements. But I
wonder how

trustworthy these
numbers are. Have you

done any validation?

You could do a case
study. Choose a set of

tasks and use your
measurement-based

approach to obtain speed
as a function of co-

runners. Now, you have a
taskset. Then run your

schedulability analysis on
this taskset.

255Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

OK, I buy that you can
obtain these lower

bounds on the speed of
execution through

measurements. But I
wonder how

trustworthy these
numbers are. Have you

done any validation?

Then run the system and
measure response times

of each task. If you
observe one case where
the observed response
time > calculated upper

bound on response time,
then you have falsified
your theory; otherwise,
you have corroborated

your theory.

256Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

257Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

From B. Andersson et al., ``Schedulability Analysis of Tasks with Co-Runner-Dependent
Execution Times,'' ACM TECS, 2018:

258Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Conclusion: It is possible to analyze timing of software executing on undocumented multicore.

259Timing Analysis of Software Executing on Undocumented Multicore Processors
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

SBESC 2019

Thanks!

	Timing Analysis of Software Executing on Undocumented Multicore Processors
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Real-Time Requirements of �Software Executing on a Multicore Processor
	Real-Time Requirements of �Software Executing on a Multicore Processor
	Real-Time Requirements of �Software Executing on a Multicore Processor
	Slide Number 40
	How Co-Runners Impact Speed of Execution
	How Co-Runners Impact Speed of Execution
	Slide Number 43
	Slide Number 44
	How Bad?
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Other approaches
	Slide Number 117
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions in other disciplines
	General ideas for abstractions
	General ideas for abstractions
	General ideas for abstractions
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	Slide Number 160
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Slide Number 175
	Slide Number 176
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Slide Number 180
	Slide Number 181
	Slide Number 182
	Slide Number 183
	Slide Number 184
	Slide Number 185
	Slide Number 186
	Slide Number 187
	Slide Number 188
	Slide Number 189
	Slide Number 190
	Slide Number 191
	Slide Number 192
	How Co-Runners Impact Speed of Execution
	How Co-Runners Impact Speed of Execution
	Slide Number 195
	Slide Number 196
	Slide Number 197
	Slide Number 198
	Slide Number 199
	Slide Number 200
	Slide Number 201
	Slide Number 202
	Slide Number 203
	Slide Number 204
	Slide Number 205
	Slide Number 206
	Slide Number 207
	Slide Number 208
	Slide Number 209
	Slide Number 210
	Slide Number 211
	Slide Number 212
	Slide Number 213
	Slide Number 214
	Slide Number 215
	Slide Number 216
	Slide Number 217
	Slide Number 218
	Slide Number 219
	Slide Number 220
	Slide Number 221
	Slide Number 222
	Slide Number 223
	Slide Number 224
	Slide Number 225
	Slide Number 226
	Slide Number 227
	Slide Number 228
	Slide Number 229
	Slide Number 230
	Slide Number 231
	Slide Number 232
	Slide Number 233
	Slide Number 234
	Slide Number 235
	Slide Number 236
	Slide Number 237
	Slide Number 238
	Slide Number 239
	Slide Number 240
	Slide Number 241
	Slide Number 242
	Slide Number 243
	Slide Number 244
	Slide Number 245
	Slide Number 246
	Comparing this result to classic Rate-Monotonic Analysis
	This result generalizes classic Rate-Monotonic Analysis to undocumented multicore
	Slide Number 249
	Slide Number 250
	Slide Number 251
	Slide Number 252
	Slide Number 253
	Slide Number 254
	Slide Number 255
	Slide Number 256
	Slide Number 257
	Slide Number 258
	Thanks!

