
Page 1

Fundamental Principles of
Software Safety Assurance

Tim Kelly

• 2800 metres

D = 750 m
S = 170 knots
T = 0 s
No Braking

D = 1700 m
S = 154 knots
T = 12 s
Braking

D = 2800 m
S = 70 knots
T = 30 s?
Braking

Example
! LH2904 Okecie, Warsaw, Sept. 14th 1993

(A320 Warsaw — approximate analysis)

Page 2

Hazards & Accidents
! Hazard:

" System (the airframe) - travelling down runway at circa 170
knots, without braking

! Environment:
" weather - strong winds, veered from cross to tail winds in final

approach; raining heavily
"  runway - standing water
" ATC - didn’t inform pilots of shift in wind direction
" plane at 170 knots, tail-wind not cross-wind, standing water so

aquaplaning, landed long, earth wall ...
" may not have been credible - NB judgemental

! Hazard + Environment # Accident
" aircraft hit earth wall near end of runway (and ensuing fire)
" 2 lives lost, 54 injured

Hazards & Failures
Hazards are caused by failures
! failures - unintended condition of system or structure (which

can lead to a hazard), eg uncommanded movement
(turning) of nosewheel by BSCU

! For the hardware elements – random failures
" e.g. “Will the bulb in the warning lamp blow?”

! For the software (& hardware) elements …
" Software will never fail randomly
"  It will only ‘do the wrong thing’ if that is how we designed it!
" These are systematic failures (w.r.t. intent)

Page 3

So What Happened?
A320 Warsaw - Platform
Airframe - “on ground” at T=0
! one main landing gear compressed, other not; aircraft

banked due to expected cross-wind

Weight on Wheels (WoW) Expected
Cross Wind

Systems Controlling Ground
Deceleration

A320 Warsaw — Systems (approx.)

LGCIU

Pilot
Interface FADEC

BSCU

SEC2

AG
WoW L
 R

RA

Spoilers 40%

Brakes 40%

Rev. Thrust 20%

WS L
 R

WS

Commands

Page 4

Systems Controlling Ground
Deceleration

Landing Gear Control & Interface Unit (LGCIU)
! landing gear extension, retraction, etc.
! synthesises AG (Air/Ground Transition) & WS
! AG = WoW>12 tonnes (both LG)
! WS = Wheel Spinning > 72 knots (either LG)
Spoiler Elevator Computer Secondary (SEC2)
! deploys spoilers, etc
Full Authority Digital Engine Controller (FADEC)
! controls engine, & deploys reverse thrusters

Some in-built ‘safeguards’

Brakes and Steering Control Unit (BSCU)
! nosewheel steering, all braking and ABS
Logic - distributed amongst systems
! apply reverse thrusters - AG true
! apply air and wheel brakes -

WS true or (RA true (radio alt <10 feet)
 and AG true)

Basic logic - full system more complex
! pilot sets braking level, which affects timing ...

Page 5

Everything functioned as designed
A320 Warsaw

- Systems Conditions and Failures
! AG (weight on both wheels) = False
! WS (wheels spinning > 72 knots) = False
! Alt (less than 10 feet) = True
! major systems — LGCIU, SEC2, BSCU

— all functioned to specification
! no braking - air brakes, reverse thrusters or wheel brakes

Correctness != Safety
Logic was implemented correctly (to spec.)
! Logic was undesirable in the situation
! LGCIU (and related systems) — failure — against intent
Operators
! pilot — possible failure — no manual override (but some

courses of action prohibited)
Overall cause - questionable design

- in the circumstances

Page 6

Try to identify (in
advance of
operation) where
we might have
got it wrong

Hazard
Identification and

Analysis

Convince
ourselves that
the final system
is free from
hazards

Safety Analysis
and Assurance

What can we do about it?

Help to develop
systems correctly
to start off with

“Best Practice”
development

methods
Design for Safety

IEC61508

ISO 26262

CENELEC
50128

DO-178C

IEC 880 ISO 80001

DS 00-56

AC 20-148

There is hope …
! The 4+1 Principles

" Why +1?

! Examples from past systems
! Methods and means of achieving the principles
! Potential Pitfalls

Page 7

PRINCIPLE 1

Software safety requirements shall
be defined to address the software
contribution to system hazards

Principle 1
! The identification and management of (specific) risks is

fundamental to system safety
! This is no different when considering software
! Many causes of system-level hazards

" Mechanical
" Human
" Environmental
" …
" Software

! Need to ensure that we have identified, understood and
captured the potential contribution of software to system
level hazards

Page 8

Methods / Means
! Combination of deductive and inductive safety and

hazard analysis techniques desirable
! Deductive (from the system ‘top-down’)

" e.g. constructing system level fault trees that appropriately
acknowledge the contribution of the Software Intensive System

" … to the black box of the software outputs
" Still may combine random and systematic causes

!  Inductive (from the software to the system ‘bottom-up’)
" e.g. Functional Hazard Analysis applied to the Functional

Requirements Specification of the software system

! Both have problems
" Combination is useful

Methods / Means 2
! Can be hard to determine ‘hazardous’ behaviour of S/W
! When manual techniques start to falter …

" Simulation
" Executable Prototypes
" Model checking at the ‘System Level’

! Ultimately this is the Requirements Validity issue
! Terminology:

" Software ‘Hazards’
$ Really a shorthand

" Hazardous Software Failure Modes
$ Some don’t like saying ‘failure’ for software

" Hazardous Software Contributions
$ Non-judgmental (re: failure)

Page 9

Pitfalls
! Not being specific about the contributions

" E.g. Failure Event: “Control System Fails”

! Assuming software safety is simply about
correctness
" Remember Verification and Validation distinction

Example
!  Medical Device Domain historically

without strict software safety assurance
regime

!  2010, US FDA ordered Baxter Healthcare
Corp to recall Colleague Volumetric Infusion
Pumps

!  Safety problems associated with these
infusions pumps (amongst other models of
infusion pumps)
"  FDA traced the sources of some of these safety

problems to software defects.
!  Since 2010, the FDA has placed increased

attention to embedded software, particularly
within its new guidance document that can be
used for preparing premarket notification
submissions for infusion pumps

Page 10

PRINCIPLE 2

The intent of the software safety
requirements shall be maintained
throughout requirements
decomposition

Principle 2
! Typical software development lifecycle:

Progression from more abstract requirements to
concrete implementation

! Necessarily requirements must be refined,
decomposed, allocated, interpreted

! There’s more …
" … design commitment
" … information
" … defined behaviour

! … in the lower level requirements
! With regard to safety this could go well, or not …

Page 11

Principle 2
! Following principle 1, we believe the higher level

requirement is OK
! Is the intent of the higher level requirement

maintained in the lower level requirements?
! Notion of “Intent” important

" What we want from / meant by the requirement
" Covers implied semantics
"  (Unfortunately) a lot can remain unstated / deliberately undefined,

even quantification

! Don’t just think of requirements #requirements
" Requirements #Verification Properties
" Requirement #Test cases

Methods / Means
! Requirements / design traceability
! Requirements review

" Creativity applied to the ‘have we got this right’?
question

! Formal refinement
! Better expression of requirements

" Clear semantics
" Controlled expression

! ‘Rich traceability’
" Consideration of rationale for decomposition

Page 12

Pitfalls
! Believing traceability data is sufficient
! Need to be confident about the trace / mapping
! Not (creatively) reconsidering intent in

requirements / design decomposition
" Worrying about completeness
"  Identifying and resolving requirements ambiguity and conflict

! Allowing ambiguous requirements
! Using techniques with ambiguous semantics

Example
! Airbus A320-200 Lufthansa Flight 2904
! High Level Requirement (Paraphrased):

"  “Do not deploy Ground Deceleration unless on the ground”

! High Level Requirement is a “Good idea”
! Unfortunately, the good idea has to be implemented

" The world has to be sensed, and cannot be known perfectly
" Weight on Wheels (WoW), Wheel Speed (WS) and Radio

Altimeter (RA)

! Air Ground Transition = True if WoW > 12 tonnes on both
Landing Gear

! Wheels Spinning if WG > 72 knots on either Landing
Gear

Page 13

PRINCIPLE 3

Software safety requirements shall
be satisfied

Principle 3
! The (most) obvious one?
! Does the system actually do what we said it

ought to do (as stated in the safety
requirements)?

! Variety of means of achievement possible
" Will discuss evidence selection later

! Consequence of earlier principles
" Want specific evidence for specific safety requirements

! This is the Verification issue

Page 14

Pitfalls
! Losing the scent of the trace from requirements

to verification evidence
! Not compelling simply to say that there’s a

bucket of evidence and the answer’s in there
somewhere

! The final link from requirement to satisfaction
shares the challenges of requirements and
design decomposition discussed in Principle 2
" E.g. a passed (relevant) test case does not mean the

requirement is convincingly satisfied

Example
!  Loss of NASA’s Mars Polar Lander (MPL),

Jan 1999
!  Inadequate testing a contributory factor

"  (alongside inadequate requirements
specification)

!  Software error leading to the premature
shutdown of the decent engines has been
considered a probable cause of the loss of
the lander

!  Software fault-injection testing regime was
considered inadequate to stress test the
flight software, especially testing for
transient surface touchdown sensor signals

!  Test environment was deemed insufficient
to detect flaws in the touchdown sensing
software

Page 15

PRINCIPLE 4

Hazardous behaviour of the software
has been identified and mitigated

Principle 4
! Sister principle to Principle 2
! Principle 2 concerned about maintaining the

intent of our safety requirements, in the presence
of increasing design commitment

! Principle 4 also concerned with the consequence
of increasing design commitment

! Rather than “Does it do what we required”?
(Princ. 2)

! Now “Does it do anything else that is unsafe”?
"  i.e. Hazardous side-effects

Page 16

Principle 4
! Hazardous software behaviours could result from:

" unanticipated behaviours and interactions arising from
software design decisions
$ e.g. preventing ground deceleration when required in the

earlier A320-200 example
$ Concerned with where design is unsafe (under some

conditions)
" systematic errors introduced during the software

development process
$ E.g. Coding errors, compilation errors, code-generation

errors, modelling errors
$ (Specific) causality doesn’t have to be proven to know

that there are some errors to be avoided

Methods / Means
! Regarding systematic errors in the development process:

" Trusted tools / Tool Qualification
" Checking output of untrusted tools
"  Implementation guidelines & checkers

$ Modeling guidelines
$ Coding rules

" Use models, languages etc. that don’t allow mistakes so easily!
! Regarding safety implications of design decisions

"  (Similar to methods and means of Principle 2)
" Requirements reviews
" Design reviews walkthroughs
" Architectural evaluation
" Software HAZOPs
" Common Theme: Reconsideration of the behaviour of the design

Page 17

Example
Boeing 777-200 Perth to Kuala Lumpur flight in 2005
! Experienced a number of serious alerts, spurious

indications and dangerous auto-pilot activity
! Pilot managed to return aircraft safely to Perth only by

disengagement of auto-pilot, manually overriding
warnings and automatic commands, and reliance on ATC

!  Initiating event for this incident occurred four years
previously when one of the aircraft accelerometers failed
such that it provided erroneously high output

! S/W in the aircraft’s Air Data Inertial Reference Unit
(ADIRU), in accordance with its specification,
disregarded the erroneous accelerometer and instead
relied upon data from a back-up accelerometer

Example
! When back-up accelerometer also failed ADIRU software

reverted to taking input from the accelerometer that had
initially failed

! ADIRU software had been designed such that when it
was shut down and restarted the accelerometer was no
longer recognised as faulty and was assumed available
for use should it be required

Page 18

PRINCIPLE 4+1

The confidence established in
addressing the software safety
principles shall be commensurate to
the contribution of the software to
system risk

Principle 4+1
! Why 4+1, not 5?

" Because this principle cross-cuts the
implementation of the other principles

! Perfect assurance of the achievement of the other
principles is desirable, but unachievable
" e.g. consider Principle 1, we cannot prove that the

safety requirements are complete
" Not even if “money no object”

!  Instead, we must consider
when is enough enough?

! Really a system principle
! Some challenges applying to software

Page 19

Methods / Means
! Safety Integrity Levels (SIL)
! Development Assurance Levels (DAL)
! Association between SILs / DALs and Software

Assurance Techniques / Processes / Practice
! Software Criticality Assessment

" E.g. Software Hazard Risk Indices

! Consideration of ‘Assurance Deficits’
! Establishing a Risk vs. Confidence Split in the

Software Safety Case

Pitfalls
! Treating all software assurance the same way

" Can be accused of ‘gold plating’

! Failing to acknowledge the confidence issue
" e.g. “We’ve reviewed, therefore it’s perfect”

! Hard to implement …
" without good understanding of the system context and

system level risks
" without a means of describing software criticality

(more later)
" without understanding of effectiveness of software

assurance techniques

Page 20

Example
! Boeing 777 Fly-By-Wire Flight Control System (FCS)
! Central element of the FCS is the Primary Flight

Computer (PFC)
! 777 FCS provides the single source of control of the

aircraft in the pitch, roll and yaw axes. Should there be a
failure of the PFC, then control of the aircraft could be
lost, with no further mitigations available

! The PFC function clearly makes a very large contribution
to risk for the aircraft, and as such was determined to
require the highest level of assurance (DAL A)
" Architecture and V&V Requirements Set Accordingly

Example 2
! DUST-EXPERT advisory system developed by Adelard
! Advises on the safe design and operation of plant that is

subject to dust explosions
! Fault tree analysis conducted using data of reported

explosions, the ratio of injuries to fatalities, etc.
! Concluded that DUST-EXPERT—as a potential

contributing factor should be developed to SIL 2,
assuming:
"  failure of explosion relief vents led to 1 death/100 000 workers/

year,
"  vent is at SIL 1

Page 21

Summary of the Principles
1.  Software safety requirements shall be defined to

address the software contribution to system hazards
2.  The intent of the software safety requirements shall be

maintained throughout requirements decomposition
3.  Software safety requirements shall be satisfied
4.  Hazardous behaviour of the software has been identified

and mitigated

4+1. The confidence established in addressing the software
safety principles shall be commensurate to the contribution
of the software to system risk

DO-178C
Principle 1

! Assumed starting point in DO-178B/C is that behavioural
safety requirements allocated to software have already been
derived by system level safety analysis performed in
accordance with ARP 4754A

" ARP4754A addresses the problem of validation of these
requirements

" ARP 4754A also defines the process for judging the
criticality of the contribution of software to system level
hazards and expresses this as an allocated software DAL

Page 22

DO-178C
Principle 2

! strong emphasis on maintaining traceability through the
stages of software development

! recognises problem of validation of decomposition, e.g.
through requirements for review

! simply recording traceability information is necessary
for but insufficient

" need justification (cf. Rich Traceability)

DO-178C
Principle 3
! well addressed - verification evidence that

addresses the demonstration of requirements both
under normal conditions and fault conditions
" DO-178C admits a wider range of verification

techniques

Page 23

DO-178C
Principle 4

! recognises that ‘Software design process activities could introduce
possible modes of failure into the software or, conversely, preclude
others’ and ‘In such cases, additional data should be defined as
derived requirements and provided to the system safety assessment
process’.

! Removal of errors leading to unacceptable failure conditions as an
objective of testing

! Acknowledges that ‘The effects of derived requirements on safety
related requirements are determined by the system safety
assessment process’.

! However, …

DO-178C
Principle 4+1
! captured through the mechanism of DALs that

tailor requirement for the demonstration of the
objectives of the standard according to criticality

Page 24

Assurance vs. Objectives

Level D
(28 objectives)

• Planning
• CM
• QA
• HL req Coverage
• HL req robustness
• Code target
• Cert liaison
• Tool qual

Level C
(57 objectives)
Level D
 +
• More planning
• Verif req, design,
 integ processes
• Test LL req
• Verif test plan, proc
 & results
• LL req coverage
• Statement coverage
• Data & control
 coverage

Level B
(65 objectives)
Level C
 +
• Artefact compatibility
• Verifiability
• Independence
• Decision coverage
• Transition

Level A
(66 objectives)
Level B
 +
• MC/DC coverage
• More independence
• Source to object

Observations
! P1-3 can be observed to be at the heart of many standards

! P4 is less well addressed

" However, both discuss the potential for systematic error
introduction within the software development lifecycle

! Many standards attempt to address P4+1 through SILs / DALs

" differences in allocation and what is varied

" lack of a significant evidence-base that demonstrates that either
approach to varying confidence can be easily correlated with
achieved risk reduction

Page 25

Generic vs. Specific
Application of Principles

! intent of principles is not that they are addressed generically (e.g. by
appeal to generic processes or adherence to standards)

! should be evidenced specifically

! requirements and processes of a standard may be capable of
demonstrating principles, but may still fall short in practice

" consider Requirements Review

! application of standards cannot be considered in a tokenistic sense,
as a talisman of confidence

! An area where confidence can be lost, also where assurance cases
can help

Generic vs. Specific
Application of Principles

! Significant issue re: P4+1

" Standards established a general set of requirements for varying
requirements, processes and techniques according to an abstract level
of required confidence

" Generality is potentially a problem

" Is it what’s required in a specific case - e.g. applicability of MCDC
metrics?

" Opportunity cost of doing something that doesn’t add to confidence

! Some mechanisms to address:

" PSAC, SAS in DO-178C, Justification of selection from amongst ‘loose’
SIL recommendations in IEC 61508

Page 26

Safety (Assurance) Cases
! The purpose of a safety case can be defined in

the following terms:

A safety case should communicate a clear,
comprehensive and defensible argument
(supported by evidence) that a system is

acceptably safe to operate in a particular context

! This extends to software (in a system context)

Safety	 Requirements	 &	 Objectives

Safety	 Evidence

Safety	 Argument

Page 27

Arguments
! Historically, narrative text has been

commonly used
%  But problems …

! Structured Argumentation Approaches
%  GSN - Goal Structuring Notation
%  GSN clearly disambiguates the structure

and elements of the argument, it cannot
ensure that the argument itself is ‘good’
or sufficient for its purpose

!  “Informal Logic”

GSN Example

Page 28

Three types of argument
!  (Causal) Behavioural arguments of risk management, i.e. how the

causes of hazards are eliminated or mitigated, or how the
consequences of hazards are mitigated
"  Principle 1, 2, 3, 4

!  Confidence arguments – arguments that provide confidence in the
adequacy of the details of the risk management argument, e.g.
justifying the adequacy of hazard identification techniques, or the
sufficiency of verification results presented
"  Principle 4+1

!  Arguments of conformance / compliance with safety standards,
regulations, and legislation – where compliance is not
straightforward it is necessary to justify how a project, system design
and operation have addressed legal and regulatory obligations

Risk – Confidence – Compliance

Page 29

Targeting
Assurance Case Effort

! Many standards provide the template for the technical risk argument
needed at the core of any software assurance case (forming central
pillar of response to P1,2 & 3)

! Standards also provide general requirements and recommendations
for the avoidance of potentially hazardous errors and anomalous
behaviour (P4)

! Standards also provide general guidance on how effort should be
tailored according to risk (P4+1)

! Confidence can be lost in the (lack of) justification of the specific
instantiation of these template structures and general guidance

" Assurance Cases can help here!

Targeting
Assurance Case Effort

! P1 - assurance cases are well suited to the (inevitably subjective) justification
of the adequacy of the identified software safety requirements

! P2 - well suited to the hard problem of the justification of maintenance of
intent in traceability structures

! P3 - well suited to the justification of the adequacy of evidence (e.g. the
appropriateness and trustworthiness of specific forms of evidence for
requirements satisfaction)

! P4 - usefully targeted at the justification of the management of unintentionally
hazardous side effects of otherwise intentional design commitments

! P4+1 - directly relates to the notion of a confidence / meta argument

Page 30

What’s the
‘core’ risk

argument with
a ISO 26262

project?

Verification
Evidence

But, where’s the
confidence
argument?

! Having a 26262
compliant ‘structure’
isn’t enough

! Safety is ‘won and lost’
in the specific details of
…

! safety goals, functional
safety requirements,
means of testing

Verification
Evidence

Why?

Why?

Why?

Why?

Why?

Why?

Why?

Page 31

Some Considerations
! Is formalisation a natural next step?
! Questions / Challenges:

%  How does formalisation of arguments address current
needs in safety case practice?

%  Are all types of safety case argument equally
amenable to formalisation?

%  Does the subject matter of a safety case argument
affect the value of formalisation?

Problems of Current Practice
! Nimrod: Focus, Outsourcing, Scale

%  Specifically: lacked evidence -> validity

! Confirmation Bias (one of Leveson’s criticisms)
! Formalisation?

%  Help with well-formedness, scale
%  Problems of validity and veracity remain
%  Reasoning about truth of assertions relies upon establishing a

connection between formal models of the subject domain as well
as formal models of the argument
%  Otherwise propositions are uninterpreted propositions

Page 32

Problems (ctd.)
! Damer’s five categories of argument fallacy:

(1) structural flaw in the argument;
(2) irrelevance of a premise;
(3) unacceptability of a premise;
(4) insufficiency of the combined premises of an argument to
establish its conclusion; and
(5) failure to give an effective rebuttal.

! Annotation with argumentation schemes (Walton) help
consistency checking against prior knowledge of
acceptable structure
" Suggests author knows of the scheme (but has ignored it!)

Are all types of safety case
argument equally amenable

to formalisation?
!  formalisation often involves axiomatising (informal)

aspects of the argument at the 'edge' of our argument
%  e.g. ‘all hazards identified’ argument
%  Of course, could structure this further

o  Kicking the can down the road?
o  Further set of axioms covering the informal aspects of the

formalised argument

Page 33

Are all types of safety case argument
equally amenable to formalisation?
! Valuable service has been performed by 'annexing' the

informal arguments to an easily identified location (a
form of reductionism)?

! Concern: illusion of formality created through hiding
problematic informal and subjective arguments behind
an abstraction

!  formalised ‘core’ with informality pushed to the periphery
of the formalisation is advantageous or dangerous for
evaluation and review?

!  formalisation will not reduce perhaps the most significant
aspect of the review burden – namely individual review
and acceptance of subjective (informal) assertion

Does the subject matter of a safety
case argument affect the value of

formalisation?
! deductive arguments can form part of a safety case

%  when subject matter domain is itself logical
%  asserted inferences can become provable inferences
%  When safety case arguments (or at least portions of them can

become provable) are they perhaps not better represented as
evidence (i.e. proof), rather than as informal logic?

!  value of a safety case is to represent the informal logical
‘glue’ that pulls together different forms of the evidence
(including deductive results – proof being one such
example)

Page 34

What are the tradeoffs between accessibility
and precision in safety arguments?

!  value of safety cases lies in facilitating accessibility of
safety arguments amongst key stakeholders
%  Informal argumentation notations designed with this position in

mind

!  value of safety cases lies in removing ambiguity and
improving precision in the description of safety
arguments
%  Formalisation helps

! Positions can be reinforcing, but may in be conflict
%  e.g. precision at the expense of comprehensibility

Summary
! Principles underlie many (all?) software safety standards
" P1-3 served well, P4 & 4+1 not so well

! Assurance Cases complement standards
! Standards suffer from problems relating to specific enactment and

judgement
" Standards can’t remove (subjective) judgement

" Assurance cases are good at explicitly representing and recording
judgements

! But discipline is required:
" Structured Argumentation

" Clear separation of risk, confidence and compliance arguments

! Combining formal and informal arguments is part of the challenge

