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Self-Awareness & Adaptation in Biology 

[David Gallo: Underwater astonishments, TED] 
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Self-Awareness vs Context-Awareness 

•  Self-Awareness [Hinchey2006]:  System is aware of its self  
states and behaviors  

•  Context-Awareness [Parashar 2005] : System is aware of 
context – i.e., its operational environment   

•  Self-configuring -> capability of reconfiguring automatically 
•  Self-healing [Robertson2005] -> self-diagnosing and self-

repairing 
•  Self-optimizing-> capability of self-tuning or Self-adjusting 
•  Self-protecting -> capability of detecting dangerous outcomes 

(e.g. security breaches) and recovering from their effects 

 Copyright © 2014  Dutt Research Group       https://duttgroup.ics.uci.edu          #6 

A Hierarchical View Self-* 

[SALEHIE 2009, TAAS] 

Global Properties  

self-managing, self-
governing, self-
maintenance, self-
control, self-evaluating, 
self organizing   

in accordance 
to biological self-adaptation 

self-
monitoring, 
self-situated 
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Self-Reflection 

•  Self-Reflection:  

–  Ability to create a self-model 

–  Ability to model their own body/structure (usually known self-modeling) 
 

–  Ability to model their own behavior  

–  Metacognition capacity: ‘models one’s own thinking’, ‘think about thinking’ 

–  System with two/multiple minds: one being modeled  and other doing 
modeling  

–  Control Systems Theory: also called Dynamical System identification  
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Self-Assembling Robots (Sensemaking) 

[Kilobots, Harvard 2014] 
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Outline 

•  Self-Awareness, Sentience, Sensemaking 

•  Cyber-Physical Systems-on-Chip (CPSoC) 

•  CPSoC Exemplars and Prototype 

•  Wrap-up 
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What are Sentient Chips? 

•  Sentient chips 
– Construct model of behaviors and environment 

using sensor data 
– Achieve self-awareness through on-chip sensors 

and monitors   
•  Experience phenomena  
•  Aware of state and behavior 

– The ability to introspect  
– Adapt behavior based on model of external and 

internal environment  
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Why On-Chip Self-Awareness? 

•  Tremendous variation in applications, 
environment, platforms 

•  Chips must adapt to Dynamic Performance, 
Power, Resilience, Security,….  
– See Radar chart (Kiviat graph) examples 

•  Provide Guarantees 
•  Exploit trade-offs in several dimensions 
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Ideal Radar Chart? 
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Performance Driven  Energy/Power Driven 
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QoS Combination  

Reality 
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Performance Driven  Energy/Power Driven 

Reliability Driven Security Driven  

QoS Combination  

What we want: 
QoS Combination 
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Performance Driven  Energy/Power Driven 

Reliability Driven Security Driven  

QoS Combination  

Need Adaptability 
and Autonomy 
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Outline 

•  Self-Awareness, Sentience, Sensemaking 

•  Cyber-Physical Systems-on-Chip (CPSoC) 
– First Step Towards Sentient Chips 

•  CPSoC Exemplars and Prototype 

•  Wrap-up 
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CPSoC	  Vision:	  Across	  Design	  Features	  

Tradi7onal	  MPSoC	   Cyber-‐Physical	  SoC	  (CPSoC)	  CPSoC	  provides	  opportunity	  to	  improve	  mul3ple	  
design	  dimensions	  (in	  addi3on	  to	  performance)	  
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CPSoC Vision: Across Applications  

General	  Purpose	  
Processor	  
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Applica7ons	  FFT	  Matrix	  Mult.	  LDPC	  
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Processor	  

Asymmetric  
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Simple adaptation  

CPSoC Vision: Across Applications  
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Accelerators	  
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Accelerators	  

General	  Purpose	  
Processor	  
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Self-Aware Cross-Layer Adaptation 

CPSoC Vision: Across Applications  

CPSoC	  aims	  to	  adapt	  across	  a	  wide	  range	  of	  dynamic	  
applica3ons	  to	  yield	  acceptable	  QoS	  
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Cyber-Physical System-on-Chip (CPSoC) 

•  Cross-Layer Virtual and Physical Sensing & Actuation 
•  Sensor fusion and Actuation 

–  Combine hardware and software sensors  

•  Self-Awareness and Adaptation 
•  Combines Simple and Self-Aware adaptions 
•  A reflexive (Observe-Decide-Adapt) architecture to achieve 

closed loop system control 

•  Predictive Modeling & Learning 
•  Dynamic characterization of platform variability across  

multiple levels of the system stack. 
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Cross-Layer Physical/Virtual 
Sensing & Actuation  

Applications 

Operating System 

Network/Bus 
Communication 

Architecture  

Hardware Architecture 

Device/Circuit Architecture   

SA 
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Layers Virtual/Physical Sensors Virtual/Physical Actuators  

Application Execution Time, Workload Power, 
Energy,  

Loop perforation 
Algorithmic Choice 

Operating   
System 

System Utilization 
Peripheral States 

Task Allocation, Scheduling, 
Migration, Duty  Cycling  

Network/Bus 
Communication 

Bandwidth; Packet/Flit status;  
Channel Status, Congestion, 
Latency  

Adaptive Routing 
Dynamic Bandwidth Allocation 
Ch. no and direction 

Hardware 
Architecture 

Cache misses, Miss rate; access 
rate; IPC,  Throughput, ILP/MLP, 
Core asymmetry 

Cache Sizing; Reconfiguration,  
Resource  Provision 
Static/Dynamic Redundancy 

Circuit/Device Circuit Delay, Aging, leakage 
Temperature, oxide breakdown 

DVFS, DFS, DVS ABB, Clock and 
Power-gating 

Examples of Virtual Sensors and 
Actuators Across Layers of CPSoC 
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CPSoC	  Basic	  Computa7onal	  Block	  

ACTUATORS 

CORE 

SE
N

SO
R

S 

MEMORIES 
NIA 

ACCELERATORS 
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CPSoC	  Computa7onal	  PlaMorm	  
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•  Sensor/Actuator-rich SoC 
fabric 
–  OCSA: On-Chip Sensing 

and Actuation unit 

•  NoC overlay (or separate 
network) 

•  SW enabled sensors & 
actuators 

•  Adaptive control of 
platform resources 
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CPSoC	  Hardware	  Fabric	  
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CPSoC	  HW/SW	  Stack	  
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CPSoC	  HW/SW	  Stack	  
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Cross-Layer Physical/Virtual 
Sensing & Actuation  

Applications 
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Cross-‐Layer	  Physical/Virtual	  Sensing	  

•  Many restrictions in physical deployment of 
sensors and test structures in MPSoCs: 
– Resource constraints 

•  e.g., Area, Power  
– Limited number, resolution, accuracy, range  
– Placement Restrictions  
– Complexity of sensing and observation structures 
–  Inaccessibility or inability of direct measurement 
– Prohibitive cost  

Virtual	  Sensing	  is	  a	  Indirect	  Computa3onal	  	  
Approach	  to	  overcome	  several	  sensing	  limita3ons	  
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Example Virtual Power Sensing 
with few Thermal Sensors 
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Example Virtual Power Sensing 
with few Thermal Sensors 
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Cyber-Physical System-on-Chip (CPSoC) 

•  Cross-Layer Virtual and Physical Sensing & Actuation 
•  Sensor fusion and Actuation 

–  Combine hardware and software sensors  

•  Self-Awareness and Adaptation 
•  Combines Simple and Self-Aware adaptions 
•  A reflexive (Observe-Decide-Adapt) architecture to achieve 

closed loop system control 

•  Predictive Modeling & Learning 
•  Dynamic characterization of platform variability across  

multiple levels of the system stack. 
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MPSoC with Simple Adaptation 

Self-monitoring and simple adaptation 

Simple Controller 

QoS/  
Goals output 

Simple Adaptation Self-monitoring chip 
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Sentient Chips  (Self-Awareness): 
CPSoC 

Self-monitoring and behavior modeling  

Adaptive 
Polices / 

Controller / 
Governor 

QoS/  
Goals 

System Behavior 
(Model Building) 

measurement 

input 

Se
lf-

Aw
ar

e 
A

da
pt

at
io

n 
output 

Simple Adaptation Self-monitoring chip 

[Sarma14, CODES+ISSS14] 
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Adaptive, Reflexive CyPhy Middleware 

•  Self-Aware Linux with 
CyPhy Middleware 

•  Middleware Layer 
incorporates adaptation 
policies   
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Outline 

•  Self-Awareness, Sentience, Sensemaking 

•  Cyber-Physical Systems-on-Chip (CPSoC) 

•  CPSoC Exemplars and Prototype 

•  Wrap-up 
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Sample Application and Use cases 
•  Energy Efficiency (Throughput/Power) 

–  Dynamic Workloads 
–  Opportunistic Load balancing 
–  Adaptive Scheduler 
–  Evolutionary Approach 

•  Thermal-Aware Performance 
–  Dynamic/Adaptive Parallelization  
–  Heterogeneous  Architecture 
–  Adaptive Scheduling  

•  Aging and Resilience 
–  Opportunistic Allocation 
–  Duty cycling of Active and Resting periods    
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Energy Efficiency Improvement 

[Sarma13, CECS TR] 

Goal: 
•  Energy Efficiency 
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Thermal-Aware Performance 

Goal: 
•  Improve throughput 

under max temp & 
power constraint 
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Thermal-Aware  Performance  

For same power consumption and peak temperature, throughput improved   

4 core 

20 core, equal area 
 

Throughput 
Improved by  
70% -300% 
For same power 
& peak temp  
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Thermal-Aware  Performance  

Throughput improved for same power and peak temperature! 

4 core 

20 core, equal area 
 

Throughput 
Improved by  
70% -300% 
For same power 
& peak temp  
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Thermal-Aware  Performance  

For same power consumption and peak temperature, throughput improved   

4 core 

20 core, equal area 
 

Throughput 
Improved by  
70% -300% 
For same power 
& peak temp  
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CPSoC FPGA Prototype 

NSF Expedition in Computing, Variability-Aware Software for Efficient Computing with Nanoscale Devices  http://variability.org  

Xilinx Vertex 6 Board 

•  Goal: validate simulation studies 
for task migration, temperature, 
wear-out, etc. 

•  Platforms:  Virtex 5  and Virtex 6 
•  Processor Core  : SPARC/Leon 3, 

Leon 2, S1 
•  No Of Processor : 2-8 
•  NoC : Mesh Connected, 200-800 

MBPS Bandwidth 
•  On-chip Memory : 16-64kB per 

core 
•  External Memory: 4 GB of DRAM 
•  Sensors: 

–  Ring Oscillators: 20-50 
–  Thermal:  20-40 
–  Aging:  10-20 
–  Razor/EDS: 20-50 

•  OS: Linux 2.x/3.x 
[Sarma14, RSP14] 
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FPGA Library for CPSoC 

• DPLL 
• Clock Gating 
• ABB 
• Accelerators 

• LEON 
• Alpha 
• OpenRISC 

• RO 
• Thermal 
• TDC 
• Aging 
• .. 

• sNOC 
• Aggregation Tree 
• Ring  

• cNoC 
• Mesh 
• Mesh edge extension 

Networks-
On-chip  Sensors 

Actuators 
Processors 

& 
Memories 

[Sarma14, RSP14] 

Develop an 
FPGA library 
to construct 
CPSoC 
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CPSoC Multi-FPGA Distributed Platform 

[Sarma13, CECS TR] 
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Self-* Computing: Related Efforts 

•  Autonomic Computing (IBM) 

•  SEEC (MIT & Milano) 
–  Software centric/focused adaptation with homogeneous 

arch 
–  Uses ODA loop for feedback control 

•  Invasive Computing (Erlangen & KIT) 
–  Adaptive use of computing platform resources  
–  Distributed management  
–  No Self-modeling and system behavior identification 
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Self-Awareness in Software Systems  
(IBM’s Autonomic Computing)  

[Autonomic Computing, IBM] [Kephart2003] 
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SEEC [MIT+Milano] 

[Hoffmann2012, DAC] 
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Invasive Computing (Erlangen/KIT) 

•  Definition: Invasive Programming denotes the capability of a program 
running on a parallel computer to request and temporarily claim processor, 
communication and memory resources and to be capable to subsequently 
free these resources again. 

Program A Program A Program B Program B 

Program C Program C 
[Kobe11] [www.invasic.de/] 
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Outline 

•  Self-Awareness, Sentience, Sensemaking 

•  Cyber-Physical Systems-on-Chip (CPSoC) 

•  CPSoC Exemplars and Prototype 

•  Wrap-up 
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Key Take-Aways 
  CPSoC:  First step towards Sentient Chips 
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Key Take-Aways 
  CPSoC:  First step towards Sentient Chips 

 

Key CPSoC features: 
 

•  Cross-Layer Virtual and Physical Sensing & Actuation 

•  Combine hardware and software sensors across multiple layers  
 

Applications 

Operating System 
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Hardware Architecture 
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Key Take-Aways 
  CPSoC:  First step towards Sentient Chips 

Key CPSoC features: 
 

•  Self-Awareness and Adaptation 
•  Simple and Self-Aware adaptions 
•  Adaptive, reflexive architecture (Observe-Decide-Adapt)  

•  Predictive Modeling & Learning 
•  Dynamic platform characterization across  multiple levels 

Adaptive Polices / 
Controller / 
Governor 

QoS/  
Goals 

System Behavior 
(Model Building) 

measurement 

input 

Se
lf-

Aw
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e 
A

da
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output 

Simple Adaptation Self-monitoring chip 
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Key Take-Aways 
  CPSoC:  First step towards Sentient Chips 

Key CPSoC features: 
 

•  Cross-Layer Virtual and Physical Sensing & Actuation 

•  Combine hardware and software sensors  

•  Self-Awareness and Adaptation 
•  Simple and Self-Aware adaptions 
•  Adaptive, reflexive architecture (Observe-Decide-Adapt)  

•  Predictive Modeling & Learning 
•  Dynamic platform characterization across  multiple abstraction 

levels 
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Quo Vadis, Sentient Chips?  

Good? Evil? or 
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Professor’s Worst Nightmare: 
MOOCs + Sentient Robots 



11/5/14 

36 

 Copyright © 2014  Dutt Research Group       https://duttgroup.ics.uci.edu          #71 

Acknowledgements 
•  Santanu Sarma 

–  Lead PhD student on CPSoC theme 

•  Other members of Dutt Research Group  
–  Tiago Mück, Majid Shoustari, Bryan Donyanavard, Hossein 

Tajik, Abbas BanaiyanMofrad, Roger Hsieh, Jurngyu Park 

•  Collaborating Faculty: 
–  UCI: Profs. Alex Nicolau, Nalini Venkatasubramanian 
–  UCLA: Prof. Puneet Gupta 

•  NSF Variability Expedition Project Team 
– www.variability.org  

 Copyright © 2014  Dutt Research Group       https://duttgroup.ics.uci.edu          #72 

www.variability.org NSF Variability Expedition 

Dutt Research Group:  http://duttgroup.ics.uci.edu/ 



11/5/14 

37 

 Copyright © 2014  Dutt Research Group       https://duttgroup.ics.uci.edu          #73 

Key References  
•  [Sarma14] S. Sarma, N. Dutt, P. Gupta, A. Nicolau, N. Venkatasubramanian, “On-Chip Self-Awareness 

Using Cyberphysical-Systems-On-Chip (CPSoC)” (CODES+ISSS'14) 
•  [Sarma14] S. Sarma, N. Dutt, “FPGA Emulation and Prototyping of a CyberPhysical-System-On-Chip 

(CPSoC)” RSP’14. 
•  [Hoffmann12] Hoffmann et al. “Self-aware Computing in the Angstrom Processor”, DAC 2012. 
•  [Invasive] Invasive Computing. TCRC 89, 2014. [Online]. Available: http://invasic.informatik.uni-

erlangen.de/en/index.php 
•  [SPP1500] Dependable Embedded Systems. DFG SPP 1500, 2014. [Online]. Available: 

http://spp1500.itec.kit.edu/ 
•  [Kephard03] J. Kephart et al., “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp. 41 – 50, 

jan 2003. 
•  [Sarma13] S.Sarma et al., “Cyberphysical System-On-Chip (CPSoC): Sensor-actuator rich self-aware 

computational platform,” University of California Irvine, Tech. Rep. CECS TR-13-06, May 2013. 
•  [Gallo] David Gallo, Underwater astonishments, TED Talks. 

http://www.ted.com/talks/david_gallo_shows_underwater_astonishments 
•  [Harvard] Programmable self-assembly in a thousand-robot swarm, 

http://www.seas.harvard.edu/news/2014/08/self-organizing-thousand-robot-swarm?
utm_source=youtube&utm_medium=social&utm_campaign=harvard-youtube 

•  [RoboBee] http://robobees.seas.harvard.edu/ 

  

 Copyright © 2014  Dutt Research Group       https://duttgroup.ics.uci.edu          #74 

www.variability.org NSF Variability Expedition 

Dutt Research Group:  http://duttgroup.ics.uci.edu/ 


