
VDBSCAN*: An efficient and effective spatial data
mining algorithm using GPU

Guilherme Priólli Daniel
São Paulo State University

Department of Computer Science and Statistics
São José do Rio Preto, São Paulo, Brazil

gui.computacao@yahoo.com.br

Rodrigo Cleir Castellon Rodrigues
São Paulo State University

Department of Computer Science and Statistics
São José do Rio Preto, São Paulo, Brazil

rodrigocleir@hotmail.com

Carlos Roberto Valêncio
São Paulo State University

Department of Computer Science and Statistics
São José do Rio Preto, São Paulo, Brazil

valencio@ibilce.unesp.br

Abstract—Spatial Data Mining techniques enables the extrac-
tion of implicit knowledge in spatial databases. This information
must be reliable because the techniques help in a decision-
making process. However, sometimes the results are inadequate.
Moreover, the computational cost to execute these algorithms is
high. Thus, this paper proposes a new spatial clustering algorithm
called VDBSCAN* that implementing new approaches to allow
semantic aggregation in clustering and uses the GPU (Graphics
Processing Unit) computing to optimize performance. Based on
the results achieved it was found that the algorithm obtained an
improvement in the clusters quality and 95% higher performance
compared to the algorithm executed in CPU (Central Processing
Unit).

Keywords—GPU, Spatial Data Mining, Clustering, VDBSCAN*.

I. INTRODUCTION

There is an increasing trend of applications collecting
spatial data, which are essential for decision-making process.
Nevertheless, spatial data have greater complexity compared
to conventional data and thus the traditional data mining
techniques becomes inadequate. Consequently, spatial data
mining techniques have emerged in order minimize such
difficulties [1], [2], [3].

Spatial Data Mining is the process of discovering interest-
ing and useful patterns previously unknown for large spatial
datasets. The techniques of spatial data mining are used in dif-
ferent solutions, but the application of the algorithms in large
databases is still a challenge [4], [5]. Thus, new algorithms
have been proposed in order to make the knowledge-discovery
from spatial databases more efficient and effective [3], [6].

Moreover, GPUs have been used in various fields for
performance optimization, since modern GPUs offer a very
large memory bandwidth and high computational power at
low cost in comparison with other high-level systems. The
graphics hardware allows implementing many parallel pro-
grams, making the GPU computing an attractive alternative to
overcome problems performance of the Spatial Data Mining
algorithms [1], [7], [8].

The objective of this work is to present the VDBSCAN*
algorithm, a spatial clustering algorithm that considers the
semantic characteristics of points, implements an approach
of refinement and uses GPU computing to solve performance
problem.

This paper is arranged as follows: in section 2 the biblio-
graphical survey, in section 3 are presented the related work,
in section 4 the developed work is explained, in section 5
the experiments and results are shown, and in section 6 the
conclusions are presented.

II. BIBLIOGRAPHICAL SURVEY

In this section, we present the basic concepts of spatial data
and Spatial Data Mining techniques, the basis algorithms for
VDBSCAN* and the concepts of GPU programming.

1) Spatial Data Mining: Spatial data refer to the spatial
location expressing geographic entities from the real world
and can be represented by points, lines, polygons and other
geometric types describing spatial phenomena. Thus, the spa-
tial objects are more complex than conventional objects (e.g.,
string, integer and real), and in relation to other data types
contains temporal, multi-dimensional and volume characteris-
tics [9], [10], [11].

The spatial data manipulation is extremely important for
the knowledge discovery that is not possible to be found by
conventional computing techniques. In this way, the concept
of Spatial Data Mining has emerged that is the process
of extracting implicit knowledge, interesting patterns, useful
information and spatial relationships and non-spatial in large
spatial databases [2], [12].

There are various spatial data mining techniques. One of
them is clustering technique, which is a useful tool for the
distribution patterns discovery in data sets. This technique aims
to group the points so that the objects within the same group
have similar characteristics, while objects in different groups
are dissimilar [1], [2], [5], [13].

The cluster analysis is one of the first methods of knowl-
edge discovery in spatial database; its advantage is that the
clusters are obtained without the need for prior knowledge.
There are five categories of clustering algorithms: partitioning,
hierarchical, density, grid and model algorithms [13], [14],
[15].

The algorithm presented in this paper uses the density-
based method. This technique analyzes the density of objects
in a particular region to find clusters of points and their
neighbors [14], [15].

2) GPU (Graphics Processing Unit): GPU (Graphics Pro-
cessing Unit) is a high-performance architecture specializing in
image processing that, in recent years, has become an integral
part of high performance systems. Modern GPUs implements
many parallel algorithms for use directly in graphics hardware.
Thus, algorithms that require a high computational cost, can
utilize GPUs to achieve a speed increase [16], [17], [18].

This performance is attainable, because the GPU is capa-
ble of performing more floating-point calculations due to its
architectural design that has more transistors devoted to data
processing [17], as illustrated in Figure 1.

Fig. 1. Transistors in CPU and GPU [17].

This parallelism strategy is called GPGPU (General-
Purpose Computation on Graphics Processing Unit) or GPU
computing. The main solutions for GPU computing is OpenCL
(Open Computing Language) and CUDA (Compute Unified
Device Architecture) [16]. The algorithm proposed was de-
veloped in CUDA, because this platform is stable and widely
used by researchers. Thus, CUDA is detailed below.

CUDA is a platform of data structure and parallel process-
ing on GPU which was designed by NVIDIA, the communica-
tion is made through API (Application Programming Interface)
that support graphics functions, mathematical functions, many
libraries, runtime and driver [17], [19].

The CUDA programming model is composed of threads,
blocks and grids. A thread is a program that can run inde-
pendently or concurrently, and is the smallest unit of process.
Groups of threads form a block and groups of blocks form a
grid [17], [20]. The Figure 2 shows a grid example.

The functions in CUDA C defined by the programmer
are called kernel. In contrast to common functions in C,
these functions can be executed multiple times in parallel by
different threads [17].

3) Base Algorithms for VDBSCAN*: DBSCAN (Density
Based Spatial Clustering of Applications with Noise) [21] is a
major density-based clustering algorithm and has always been

Fig. 2. Hierarchy of the CUDA threads [17].

the focus of research by scientific community to improve the
clusters quality and the performance of the algorithm.

Thus, the algorithm VDBSCAN emerged in 2007 with the
goal of removing the input parameter of DBSCAN, which is
defined search radius, called Eps, in addition to the possibility
of finding clusters of varying densities [15].

Thus, the VDBSCAN process is divided into two main
steps: finding Eps values and finding clusters. In the first step,
the algorithm set k-dist plot, which is a graph that contains
the distance of the k-th nearest neighbor of all objects to be
analyzed in ascending order, where k is the minimum number
of points that a cluster must have. In each jump of values in
the graph is defined as a search radius (Eps), as can be seen
in Figure 3 [15].

Fig. 3. Example chart k-dist [15].

In the second step of the algorithm, DBSCAN algorithm
is executed for each value of Eps, which makes it possible
clusters with different density [15].

To facilitate understanding, in Figure 4 we illustrate the
operation of DBSCAN in clusters search, where the k is 3.
The purple point is marked as core because within a circle
of radius Eps it reached the number of objects satisfying the

minimum points required to form the cluster. The green point
is marked as border, because a core point achieves it, but within
a radius Eps, it does not have enough neighbors to be a core
point. Finally, the red point is marked as noise because any
point does not reach it [1], [15], [21].

Fig. 4. DBSCAN behavior in the classification of points [1].

Although VDBSCAN return better results than the DB-
SCAN, it is not as efficient when applied to large databases.
Thus, in 2013 VDBSCAN+ algorithm emerged, which is a
version of VDBSCAN adapted for GPU computing. In this
algorithm, the computation of k-dist plot, the marking of core
and border points and the clusters formation and are made in
parallel on GPU [1].

III. RELATED WORK

In the literature, several works are proposed in order to
solve the performance problem of spatial data mining algo-
rithms. Some papers that use GPU computing to optimize the
runtime of the algorithms are presented.

In 2013, the G-DBSCAN algorithm presented a parallel
implementation of DBSCAN on GPU. While there are other
parallel versions of this algorithm, the G-DBSCAN is distin-
guished by simplicity of indexing the data through graphs and
G-DBSCAN is up to 100 times faster than DBSCAN [22].

In the same year, the k-Means algorithm was implemented
on GPU. This implementation defined two strategies: the first
explores the GPU registers to reduce access latency to data sets
of low dimension and the other simulated matrix multiplication
and explored the GPU shared memory to achieve high rate
calculation for memory access to data sets of high dimension.
Thus, the results of this study was 3-8 times faster than the
others K-means algorithms on GPU [23].

In 2011, another important algorithm was implemented
on GPU, called WaveCluster [14]. This algorithm is divided
into two sub-algorithms: the first is designated for calculating
the extraction of low-frequency signal component by wavelet
transform and the second is referred to the calculation of
connected component labeling. The modified algorithm was
107 times faster in the first stage and 6 times faster in the
second stage, compared to the original algorithm runs in
CPU [4].

Finally, there is the VDBSCAN+ [1] that implements the
VDBSCAN [15] on GPU in 2013. The algorithm divides the
VDBSCAN+ in four parallel stages: the first one calculates
the radius, the second one finds and marks the core points,
the third one finds and marks the border points and the last
one generates the clusters. Thus, the VDBSCAN+ can be 95%
faster than VDBSCAN.

IV. VDBSCAN*

VDBSCAN* is a spatial clustering algorithm which is
based on VDBSCAN and was implemented in CUDA. To
achieve best results were inserted new steps in the algorithm as
well as an input parameter that includes a non-spatial feature
in the cluster formation, the refinement technique to remove
the noises points and the use of GPU computing to improve
the runtime.

In Figure 5, shows the algorithm flowchart of the steps
performed in the CPU and GPU.

Fig. 5. VDBSCAN* flowchart.

In the initial phase, the points are loaded into memory and
the analyst defines the similarity level that the algorithm will
use to form clusters.

In the second step, a point is selected for distances com-
parison with other points. From there, K-Dist Kernel runs on
GPU. In this method are measured the distances between the
selected point and the others points and the result is stored in
the distance vector.

The Quick Sort method sorts the distance vector and the
k-th position value is added to the K-dist vector. In contrast,
Methods Selects Point, K-Dist Kernel and Quick Sort are
invoked for each data point. After these steps, the Quick Sort
will sort K-dist vector and therefore the refinement will be
performed.

In the refinement step is recalculated the density levels
and performed the elimination of outliers, which can cause

distortion in the clusters. In Figure 6 shows the noises found
in K-dist plot removed by refinement.

Fig. 6. Noises found in refinement step.

After the refinement stage, Eps are selected and DBSCAN
runs for each value of Eps found, which allows finding the
clusters of varying density.

For CUDA implementation, DBSCAN is programmed dif-
ferently from the traditional. For this, for each step was added
to the comparing technique for non-spatial similarity between
the points.

The Core Kernel calculates the distance and the similarity
of one point for each neighbor. If the neighbor is within the
radius Eps and the non-spatial characteristic meet the similarity
level, the number of neighbors is incremented. If the number
of neighbors is greater than the minimum number of points
required to form a cluster, is defined as the center point.

The Border Kernel finds the border points from a core
point. If the neighbor point is not a core, is in the radius Eps
and the observed characteristic satisfy the similarity conditions,
the neighbor is marked as border point.

The Cluster Kernel runs on GPU to generate clusters. As
in previous methods, this method checks the distances and the
level of similarity between objects, and if the conditions are
satisfied, the point is added to the cluster.

Finally, clusters found are saved in the database and are
displayed for the analyst to check the clusters quality.

V. EXPERIMENTS AND RESULTS

For the experiments we used a real database of occupa-
tional accidents occurring in the region of São José do Rio
Preto, São Paulo. The occupational accidents were collected
by SIVAT - Sistema de Informação e Vigilância de Acidentes
do Trabalho (Work Accident Vigilance System), developed
by GBD - Grupo de Banco de Dados (Database Group) in
partnership with CEREST - Centro de Referência de Saúde
do Trabalhador (Worker’s Health Reference Center) of São
José do Rio Preto.

For the clusters formation the spatial attribute that cor-
responds to the geographical location of the accident was
used and as non-spatial characteristic was used the attribute
occupation, which is the occupation of the injured person.
Thus, the cluster will be defined by people of the same
occupation that injured nearby. The algorithms were run on

a machine with CPU Intel(R) Core(TM) i5-4200U and a
NVIDIA GeForce GTX 660 Ti.

A. Experiment 1

The first experiment aimed to demonstrate the gain in
semantic aggregation in clustering. Thus, initially was executed
VDBSCAN* algorithm and after the VDBSCAN+ algorithm.

From the results obtained, it was possible to verify that the
VDBSCAN* had better clusters than VDBSCAN+, because it
used the geographic location of the object and a non-spatial
feature to form the cluster. Thus, the objects that are close to
the cluster and have the different non-spatial characteristic are
discarded. The Figure 7 shows the clusters generated for both
algorithms.

Fig. 7. Clusters generated by the algorithm VDBSCAN* and VDBSCAN+.

The numbers that summarize the information obtained in
the first experiment shown in Figure 7 are as follows in Table I.
Thereby, it is possible to note that the VDBSCAN* has filtered
better the points that were part of the cluster, as just over
35% of the objects were part of a cluster. However, in the
VDBSCAN+ about 99% of objects were part of a cluster.
Moreover, the VDBSCAN+ has found fewer clusters, one of
which occupied almost the entire city of São José do Rio Preto,
which is not good to the analysis.

TABLE I. RESULTS OF VDBSCAN AND VDBSCAN*.

VDBSCAN* VDBSCAN+
Analyzed points 4589 4589
Grouped points 1620 4547
Found clusters 30 20

B. Experiment 2

The experiment 2 was focused on proving that the refine-
ment approach improves the clusters quality. Thus, initially
VDBSCAN* algorithm was executed with the refinement
technique enabled and subsequently with refinement technique
disabled.

After analyzing the results, it was observed that the clusters
found with refinement technique active had better quality
since it eliminated the objects that are located at a greater
distance from the dense region, that is, the noises points
were removed. In Figure 8 displays an example of cluster
benefited by refinement technique, where the left image is the

Fig. 8. Cluster found without refinement technique and cluster found with
refinement technique.

cluster generated without refinement technique and right with
refinement technique.

This is beneficial to the quality of spatial data mining
results, since the location is a relevant factor and the cluster of
a very distant object do not represent geographical similarity.

C. Experiment 3

Finally, the last experiment the focus was the performance
of the algorithm on GPU. For this, VDBSCAN* algorithm has
been run for 4589 data points for both GPU and CPU, and the
runtimes (in ms) were measured.

The results showed that the VDBSCAN* executed on CPU
in 677155 ms and the algorithm executed on the GPU in 30477
ms, achieved an efficiency greater than 95%. In Figure 9, is
presented the graph of runtimes of VDBSCAN* on GPU and
CPU, where the performance improved by GPU is evident.

Fig. 9. Runtimes of VDBSCAN* in CPU and GPU.

VI. CONCLUSIONS

The proposed algorithm was VDBSCAN-based and intro-
duced a new approach to improving results in analyzing of
large spatial databases, focusing in runtime optimization using
GPU computing.

Through the experiments, it was confirmed that the ap-
proaches that were implemented enabled avoided the semantic
loss in the clusters information and eliminated the noises
points.

The resource use of GPU to optimize performance also
represented a significant contribution, because spatial data

mining using conventional techniques do not present results
in adequate time.

REFERENCES

[1] C. R. Valencio, G. P. Daniel, C. A. D. Medeiros, A. M. Cansian, L. C.
Baida, and F. Ferrari, “Vdbscan+: Performance optimization based on
gpu parallelism,” in Parallel and Distributed Computing, Applications
and Technologies (PDCAT), 2013 International Conference on, Dec
2013, pp. 23–28.

[2] C. R. Valêncio, T. Kawabata, C. A. de Medeiros, R. C. G. de Souza, and
J. M. Machado, “3d geovisualisation techniques applied in spatial data
mining,” in Machine Learning and Data Mining in Pattern Recognition.
Springer, 2013, pp. 57–68.

[3] W. Tang and W. Feng, “Parallel map projection of vector-based big
spatial data: Coupling cloud computing with graphics processing units,”
Comput. Environ. Urban Syst., Feb. 2014.

[4] A. A. Yıldırım and C. Özdoğan, “Parallel wavelet-based clustering
algorithm on gpus using cuda,” Procedia Computer Science, vol. 3,
pp. 396–400, 2011.

[5] C. R. Valêncio, C. de Medeiros, F. Ichiba, and R. C. G. de Souza,
“Spatial clustering applied to health area,” in Parallel and Distributed
Computing, Applications and Technologies (PDCAT), 2011 12th Inter-
national Conference on. IEEE, 2011, pp. 427–432.

[6] R. Thapa, C. Trefftz, and G. Wolffe, “Memory-efficient implementation
of a graphics processor-based cluster detection algorithm for large
spatial databases,” Electro/Information Technol. (. . . , vol. 49401, 2010.

[7] D. Luebke and G. Humphreys, “How gpus work,” IEEE Comput., 2007.
[8] D. Coleman and D. Feldman, “Porting existing radiation code for GPU

acceleration,” Sel. Top. Appl. Earth . . . , vol. 6, no. 6, pp. 2486–2491,
2013.

[9] M. Hemalatha and N. Saranya, “A Recent Survey on Knowledge
Discovery in Spatial Data Mining,” Int. J. Comput. Sci. . . . , vol. 8,
no. 3, pp. 473–479, 2011.

[10] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and G. Chen, “Towards
Parallel Spatial Query Processing for Big Spatial Data,” 2012 IEEE
26th Int. Parallel Distrib. Process. Symp. Work. PhD Forum, pp. 2085–
2094, May 2012.

[11] W. Shuliang, D. Gangyi, and Z. Ming, “Big spatial data mining,” 2013
IEEE Int. Conf. Big Data, pp. 13–21, Oct. 2013.

[12] W. Jinlin, C. Xi, Z. Kefa, Z. Haibo, and W. Wei, “Research of GIS-
based Spatial Data Mining Model.” WKDD, pp. 159–162, Jan. 2009.

[13] Y. Kim, K. Shim, M.-S. Kim, and J. Sup Lee, “DBCURE-MR:
An efficient density-based clustering algorithm for large data using
MapReduce,” Inf. Syst., vol. 42, pp. 15–35, Jun. 2014.

[14] G. Sheikholeslami, “Wavecluster: A multi-resolution clustering ap-
proach for very large spatial databases,” VLDB, 1998.

[15] P. Liu, D. Zhou, and N. Wu, “VDBSCAN: varied density based spatial
clustering of applications with noise,” Serv. Syst. Serv. . . . , pp. 1–4, Jun.
2007.

[16] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.

[17] “NVIDIA CUDA Getting Started Guide,” 2014. [Online]. Available:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[18] R. Cook, E. Dube, I. Lee, L. Nau, C. Shereda, and F. Wang, “Survey
of novel programmingmodels for parallelizing applications at exascale,”
Technical report, Lawrence Livermore National Laboratory, 2011. 24,
Tech. Rep., 2011.

[19] Y. Zhao, Z. Huang, B. Chen, Y. Fang, M. Yan, and Z. Yang, “Local
acceleration in Distributed Geographic Information Processing with
CUDA,” 2010 18th Int. Conf. Geoinformatics, pp. 1–6, Jun. 2010.

[20] S. Dashora and N. Khare, “Implementation of graph algorithms over
GPU: A comparative analysis,” 2012 IEEE Students’ Conf. Electr.
Electron. Comput. Sci., pp. 1–8, Mar. 2012.

[21] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-
based algorithm for discovering clusters in large spatial
databases with noise.” Kdd, 1996. [Online]. Available:
http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf

[22] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and
L. Rocha, “G-DBSCAN: A GPU Accelerated Algorithm for Density-
based Clustering,” Procedia Comput. Sci., vol. 18, pp. 369–378, Jan.
2013.

[23] Y. Li, K. Zhao, X. Chu, and J. Liu, “Speeding up k-Means algorithm
by GPUs,” Journal of Computer and System Sciences, vol. 79, no. 2,
pp. 216–229, Mar. 2013.

