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Resumo — O gerenciamento da memória principal é uma das 

tarefas mais importantes de um sistema operacional, pois tem 

impacto direto no desempenho e disponibilidade dos sistemas 

computacionais. O elemento responsável por esse gerenciamento 

é o alocador de memória do kernel. Problemas inerentes ao 

funcionamento de alocadores de memória em nível de kernel são 

a fragmentação e o sobreuso (overhead) de alocação, entre outros. 

Esses problemas são intrínsecos ao processo de alocação 

dinâmica de memória e se fazem notar, preponderantemente, em 

sistemas que realizam longas execuções ininterruptas. Minimizar 

ou contornar esses problemas é um desafio para os alocadores de 

memória em nível de kernel. Este trabalho apresenta um estudo 

experimental comparativo de quatro alocadores de memória em 

nível de kernel (SLAB, SLOB, SLUB, e SLQB). Essa comparação 

considerou o tempo de execução, consumo de memória e o nível 

de fragmentação da memória de cada alocador, submetido a uma 

carga de trabalho padrão. Considerando os achados obtidos 

neste estudo experimental, conclui-se que os alocadores que 

apresentaram melhor desempenho geral foram o SLOB e SLAB, 

com vantagem para o primeiro. 

Palavras-chave — alocador de memória; kernel, sistema 

operacional 

I. INTRODUÇÃO 

O gerenciamento da memória principal tem impacto 
significativo no desempenho e disponibilidade dos sistemas 
computacionais. Este gerenciamento é realizado em dois níveis 
do ponto de vista do sistema operacional (SO), tanto no user 
level quanto no kernel level. Em ambos os níveis o conjunto de 
rotinas responsável por esta tarefa é denominado alocador de 
memória. 

O alocador de memória do espaço do usuário é chamado de 
UMA (user level memory allocator) [1] e tem por objetivo 
atender as necessidades de alocação dinâmica de memória 
dentro do processo de aplicação. Para isso, o UMA gerencia o 
espaço de endereçamento na heap do processo. Cada processo 
possui o seu UMA que, usualmente, é parte da biblioteca 
padrão do sistema (ex. libc); portanto, este é ligado ao código 
do programa durante a geração do seu executável (linking 
stage). Alguns programas implementam seu próprio UMA. 

Já um alocador de memória do kernel, denominado KMA 
(kernel level memory allocator) [1], é a parte do núcleo do SO 

que atende as requisições de alocação dinâmica dos seus 
subsistemas (ex. device drivers e system calls), bem como 
provê espaço de endereçamento para os processos de aplicação 
(regiões de dados, código, pilha e heap). Diferente do UMA, 
que pode variar por processo, o KMA é único para todo o 
sistema operacional, atendendo tanto as demandas do próprio 
kernel quanto dos processos de aplicação, neste último caso 
fornecendo espaço de memória para o UMA de cada processo. 
A Fig. 1 ilustra a interação de ambos os tipos de alocadores. 

 

Fig. 1. Interação KMA e UMAs. 

Em [2], avaliou-se experimentalmente o desempenho de 
sete implementações de alocadores do tipo UMA, 
considerando o tempo de resposta, consumo de memória e taxa 
de fragmentação da memória. Esta avaliação foi realizada 
utilizando uma aplicação middleware usada na indústria. Em 
[3], foi realizada a análise teórica dos algoritmos de cada UMA 
avaliado em [2], considerando suas complexidades de espaço e 
tempo. A fim de complementar ambos os trabalhos citados 
anteriormente, em [4] foi apresentado um estudo teórico-
experimental sobre os sete alocadores estudados previamente, 
usando um gerador de carga sintética que permitiu avaliá-los 
sob diferentes cenários de uso, considerando fatores como 
número de alocações, tamanho das alocações, número de 
threads e número de processadores. Dando continuidade nas 
pesquisas nesta área, o presente trabalho é voltado para 
alocadores do tipo KMA. Até onde foi possível averiguar, não 
foi encontrado trabalho similar ao aqui apresentado. 

Este artigo apresenta um estudo experimental comparativo 
de quatro alocadores do tipo KMA. Os alocadores investigados 
foram: SLAB, SLOB, SLUB e SLQB. Estes são KMAs 
disponíveis atualmente no kernel Linux e são baseados no slab 
allocator proposto em [5]. As demais seções deste trabalho 



estão organizadas como segue. Na Seção II são apresentados a 
metodologia e instrumental adotados. Na Seção III são 
descritos os principais aspectos internos de cada KMA 
analisado. A Seção IV apresenta os resultados do estudo 
experimental e a Seção V as conclusões do trabalho.  

II. METODOLOGIA 

Inicialmente, os quatro alocadores investigados neste 
trabalho foram estudados quanto às suas estruturas de dados e 
rotinas de gerenciamento de memória. Esse estudo foi apoiado, 
principalmente, na análise do código fonte dos alocadores, pois 
é bastante limitada a literatura nesta área, em especial 
abordando detalhes de implementação. Como resultado, uma 
síntese das principais características de cada alocador é 
apresentada na Seção III. Posteriormente, foi analisado o 
comportamento dinâmico dos alocadores, tendo como base o 
estudo experimental apresentado na Seção IV. Nesta etapa, foi 
utilizado o SysBench, um benchmark voltado para avaliar o 
desempenho do SO, para cargas de trabalho voltadas para I/O 
de arquivos, transferência de dados em memória, entre outras. 
Seu uso objetivou exercitar o subsistema de gerenciamento de 
memória do sistema operacional, que foi instrumentado com 
cada um dos quatro KMAs analisados. O SO usado neste 
estudo foi o kernel Linux (versão 2.6.39), cujo atual KMA 
padrão é o SLUB. Dado que um KMA é único para o SO, 
foram geradas quatro versões diferentes do kernel Linux, uma 
para cada KMA, a fim de avaliar o desempenho de cada 
alocador sob a mesma carga de trabalho gerada pelo SysBench 
(ver Seção II.A). Os critérios de desempenho considerados 
foram o tempo de execução das operações do SysBench, o 
consumo de memória dentro do kernel e o nível de 
fragmentação da memória principal. O tempo de execução foi 
obtido diretamente do SysBench. O consumo de memória do 
SO foi medido com um shell script que monitorou o valor das 
variáveis LowTotal e LowFree, no arquivo /proc/meminfo, a 
cada dez segundos, durante a execução SysBench. A 
fragmentação foi medida com o SystemTap (ver Seção II.B), o 
qual contou os eventos de fragmentação da memória principal 
durante a execução do SysBench. Os experimentos foram 
realizados em um computador com processador Dual-Quad 
Core, 24 GB RAM. 

A. SysBench 

SysBench [6] é um programa multiplataforma e 
multithreaded desenvolvido para avaliar parâmetros do sistema 
operacional, em especial com foco para sistemas servidores. 
Dentre as cargas de trabalho implementadas pelo SysBench, 
neste estudo foram usadas cargas correspondentes aos modos 
memory e fileio. O modo memory executa a transferência de 
um conteúdo da memória de uma posição para outra, onde o 
conteúdo transferido corresponde a valores do tipo inteiro. O 
destino da transferência é um vetor alocado antes do 
lançamento das threads que realizam a transferência, de forma 
concomitante, ou seja, compartilhando o vetor. A quantidade 
de threads é um parâmetro do SysBench. Cada thread executa 
um loop, dentro do qual faz 128 destas transferências de 
memória, até que a quantidade de memória transferida atinja 
100 gigabytes. O segundo modo de carga de trabalho usado foi 
o fileio, o qual é executado em três etapas distintas: prepare, 

run e cleanup. Na etapa prepare o SysBench cria 128 arquivos 
de dezesseis megabytes. Na etapa run este aloca um vetor de 
file descriptors com 128 posições e então abre cada um dos 
arquivos criados na etapa prepare, atribuindo seus respectivos 
file descriptors a uma posição do vetor. Posteriormente lança 
as threads, onde cada uma executa um loop dentro do qual 
escolhe um dos arquivos abertos de forma aleatória e escreve 
dezesseis kilobytes em alguma posição do arquivo até que o 
número máximo de operações seja atingido. Tanto o número de 
threads quanto o máximo de operações são parâmetros 
informados na execução da etapa run. A última etapa, cleanup, 
apenas exclui os arquivos criados na etapa prepare. Ambas as 
cargas usadas neste trabalho (memory e fileio) foram 
previamente identificadas [7] como propensas à produção de 
eventos de fragmentação de memória, o que é de interesse para 
este estudo. 

B. SystemTap 

O SystemTap [8] é uma ferramenta de rastreamento de 
eventos, a qual permite inserir diferentes pontos de 
monitoramento dentro do kernel Linux sem que haja alteração 
e recompilação do código fonte, ou seja, isso é feito em tempo 
de execução. Esta ferramenta oferece, por meio de uma 
linguagem de script própria, a infraestrutura necessária para 
monitorar as atividades de gerenciamento de memória dentro 
do kernel, durante sua execução. Por este motivo o SystemTap 
é usado não apenas como ferramenta para depuração do código 
do kernel, mas também para realizar variadas medições de 
desempenho. Neste trabalho, o uso do SystemTap foi dirigido à 
coleta de eventos de fragmentação dentro do kernel, 
observados durante a execução dos experimentos com as 
cargas de trabalho do SysBench. Este procedimento é descrito 
em detalhes em [7]. 

III. ALOCADORES INVESTIGADOS 

Nesta seção são apresentados os detalhes de implementação 
dos KMAs analisados neste trabalho. Todos os quatro 
alocadores possuem características comuns, as quais são 
descritas na Seção III.A. As características específicas de cada 
alocador são apresentadas nas demais seções (III.B até III.E), 
respectivamente. 

A. Características Comuns dos Alocadores Analisados 

Quando um subsistema do kernel Linux necessita alocar 
memória, dinamicamente, para um dado objeto, como um 
inode ou um dentry, ou precisa liberar um objeto que não está 
mais em uso, tal subsistema faz uso das rotinas kmalloc() e 
kmem_cache_alloc(), kfree() e kmem_cache_free() [9]. O 
KMA é o código responsável por implementar essas rotinas. 
Para esta implementação, os alocadores estudados neste 
trabalho têm como característica comum o uso de uma 
estrutura de dados conhecida como slab. Um slab é uma 
porção de memória que tipicamente tem o tamanho de uma 
página de memória (ex. 4096 bytes), ou múltiplo de uma 
página, dependendo da implementação do KMA. Assim, 
KMAs baseados nessa estrutura são denominados slab 
allocators. Considerando a arquitetura do kernel Linux, o 
KMA se situa sobre o alocador primário de páginas (page-level 
allocator – PLA), sendo parte integrante do subsistema de 



gerenciamento de memória virtual. A Fig. 2 ilustra esse 
posicionamento. O sentido das setas indica o destinatário do 
resultado da respectiva chamada. Por exemplo, um subsistema 
do kernel (ex. device driver) recebe um slab via kmalloc(), o 
qual é retornado pelo KMA. Para a implementação do seu 
conjunto de slabs, o KMA solicita páginas de memória junto 
ao PLA, via alloc_pages(). Na medida em que os slabs tornam-
se livres, ou seja, deixam de ser usados, eles são liberados via 
kfree() e suas respectivas páginas podem retornar ao PLA, 
neste caso via free_pages(). 

 
Fig. 2. KMA e demais subsistemas no kernel Linux. 

De forma geral, outro ponto comum entre os KMAs é a 
existência de uma política específica para tratar o acesso à 
memória em máquinas NUMA (Non-Uniform Memory 
Access). Nesse tipo de computador, a memória principal está 
dividida em bancos de memória, em geral conhecidos como 
nós, que podem estar associados a um ou mais 
processadores/núcleos. O tempo de acesso varia de acordo com 
a distância que o banco de memória está de cada processador.  

Nas próximas seções são apresentadas as características 
específicas de cada KMA analisado. Os alocadores são SLAB, 
SLOB, SLUB e SLQB. Os três primeiros são parte integrante 
do kernel padrão (mainstream) do Linux e podem ser 
selecionados para uso durante a compilação do kernel. O 
quarto alocador encontra-se disponível como um patch a partir 
da versão 2.6.30 do kernel Linux. 

B. SLAB 

O SLAB [5] foi o KMA padrão do kernel Linux entre as 
versões 2.2 e 2.6.23. Esse alocador é fortemente baseado no 
alocador originalmente proposto para o sistema operacional 
SunOS, descrito em [5], o qual se baseia em diferentes caches 
de slabs. Cada slab consiste de uma ou mais páginas de 
memória para acomodar objetos (blocos de memória) 
dinamicamente alocados. Cada cache armazena objetos de 
mesmo tamanho. Em cada cache, os slabs são organizados em 
três listas: full, partial e free (ver Fig. 3). A lista full armazena 
os slabs que não possuem um único objeto livre e, portanto, 
não podem ser utilizados para atender uma requisição de 
memória. A lista partial mantém slabs que possuem pelo 
menos um objeto alocado e no mínimo um objeto livre; é essa 
lista que preferencialmente é utilizada para satisfazer 
requisições de memória. A lista free armazena qualquer slab 
que tenha se tornado totalmente vazio, ou seja, não possui 
objetos. Essa lista é utilizada para satisfazer uma requisição de 
memória somente quando a lista partial está vazia. Uma cache, 
tal como descrita anteriormente, é denominada de cache de uso 
geral e armazena diferentes tipos de objetos. Esse tipo de cache 

é utilizada por subsistemas do kernel que requisitam uma 
porção de memória via kmalloc(). O parâmetro dessa função é 
o tamanho do objeto a ser alocado. Assim, o alocador utiliza o 
tamanho para decidir qual de suas caches de uso geral irá 
retornar a porção de memória solicitada. As caches de uso 
geral são criadas automaticamente pelo SLAB. Por outro lado, 
é possível criar uma cache para um tipo específico de objeto 
(ex. dentry). Essa cache específica é criada explicitamente por 
meio da rotina kmem_cache_create(). É necessário, entretanto, 
especificar um construtor e destrutor a ser usado com tal tipo 
de objeto. O construtor indicado na criação destas caches é 
utilizado apenas quando o alocador busca mais páginas de 
memória para a cache e divide estas páginas em novos objetos. 
O destrutor será chamado apenas quando o alocador decidir 
devolver páginas de memória para o PLA. Desta forma, não 
haverá necessidade de fazer chamadas do construtor de um 
objeto enquanto houver memória na cache, nem chamadas ao 
destrutor deste objeto, o que melhora o tempo de resposta das 
operações de alocação e desalocação de memória. A criação, 
manutenção e definição das políticas de acesso a uma cache 
específica são de responsabilidade do subsistema que a criou. 
Por exemplo, no subsistema de gerenciamento de arquivos, 
como há necessidade de alocar, frequentemente, algumas 
estruturas específicas, este subsistema se responsabiliza por 
criar as caches que necessita, tais como as caches dentry e 
inode_cache. Um subsistema que necessita requisitar um 
objeto a uma cache específica deve fazer uso da função 
kmem_cache_alloc(), passando como parâmetro o endereço da 
cache de interesse. A política do SLAB para máquinas NUMA 
é criar as três listas de slabs (full, partial e free) para cada nó 
encontrado. Assim, quando o SLAB percebe que a requisição 
que chegou a uma dada cache é proveniente de um 
determinado nó, ele a direciona para a lista partial deste nó. 

 
Fig. 3. Organização da cache no SLAB. 

C. SLOB 

O alocador SLOB [10] foi desenvolvido para sistemas com 
limitação de memória. Esse alocador foi introduzido na versão 
2.6.14 do kernel Linux. Este é o alocador recomendado quando 
se está compilando o kernel para sistemas embarcados. Apesar 
de implementar as interfaces de alocação do SLAB, tais como 
kmalloc() e kmem_cache_alloc(), ele apenas simula o uso das 
caches. O SLOB mantém listas encadeadas de páginas que são 
utilizadas para atender requisições por objetos menores do que 
uma página (4096 bytes). As listas são organizadas de acordo 
com o tamanho dos objetos, como ilustrado na Fig. 4. A lista 
small mantém objetos menores do que 256 bytes; a lista 
medium mantém objetos com tamanho entre 256 e 1023 bytes; 



e a lista large mantém objetos com tamanho entre 1024 e 4095 
bytes. A organização em apenas três listas tem como objetivo 
reduzir o consumo de memória provocado pelas caches e listas 
do alocador SLAB. No entanto, armazenar diferentes tamanhos 
de objetos em uma mesma página, dependendo do 
comportamento da aplicação, pode acarretar fragmentação 
interna, o que resulta no aumento de consumo de memória. Se 
a porção de memória requisitada para um objeto for maior ou 
igual a uma página, o SLOB requisita um conjunto de páginas 
suficiente para conter o tamanho requisitado, diretamente do 
PLA. A liberação de tais objetos provoca o retorno das 
respectivas páginas diretamente ao PLA. Por fim, a política do 
SLOB para máquinas NUMA é simplesmente entregar um 
bloco de memória que pertença a uma página proveniente do 
nó especificado. 

 
Fig. 4. Listas de páginas do SLOB. 

D. SLUB 

O alocador SLUB [11] tornou-se disponível a partir da 
versão 2.6.22 do kernel Linux [12]. Esse KMA foi proposto 
para corrigir problemas observados no alocador SLAB, tais 
como de escalabilidade, complexidade do código fonte e 
sobreuso (overhead) de memória, causados por metadados de 
gerenciamento de memória. Assim como o SLAB, o SLUB é 
organizado em caches, onde cada cache mantém vários slabs; 
cada slab tem o tamanho de uma página e reúne objetos do 
mesmo tamanho. O SLUB também classifica seus slabs como 
full, partial e free. No entanto, apenas a lista partial é 
realmente mantida. Quando um slab se torna full, esse slab é 
removido da lista de slabs e ignorado pelo alocador até que um 
de seus objetos seja liberado. Quando um slab se torna free, 
sua página é imediatamente devolvida ao PLA. Com esta 
medida o SLUB reduz a quantidade de páginas que mantém, 
reduzindo assim o consumo de memória. Focando ainda no 
baixo consumo de memória, o SLUB não implementa 
estruturas de controle por slab e nem metadados sobre objetos. 
A página que compõe um slab possui um ponteiro para o 
primeiro objeto da lista de objetos livres dentro do slab e um 
contador que indica o número de objetos do slab que já foram 
alocados, conforme ilustrado na Fig. 5.  

Quando ocorre uma alocação, o contador inuse é 
incrementado, o primeiro objeto da lista de livres é retornado e 
o ponteiro freelist é atualizado. Na liberação de um objeto, 
essas operações são realizadas na ordem inversa. Finalmente, a 
política do SLUB para máquinas NUMA é manter uma lista de 
partial slabs por nó. Além disso, cada processador/core 
mantém um slab exclusivo (active slab), eliminando a 
necessidade de mecanismos de exclusão mútua. Este é o 
primeiro slab consultado pelo alocador quando ocorre uma 
requisição (alocação ou liberação). 

 
Fig. 5. Alocação de um objeto no SLUB. 

E. SLQB 

O alocador SLQB [13] utiliza várias ideias implementadas 
nos alocadores SLAB e SLUB, mas possui uma estrutura 
diferente para tratar seus slabs. O SLQB implementa uma 
cache (abstrata) que mantém objetos de tamanho fixo. Objetos 
são requisitados via kmem_cache_alloc() ou kmalloc(), tal que 
esta última é apenas um redirecionamento para a primeira. A 
estrutura da cache é ilustrada na Fig. 6. A estrutura 
kmem_cache mantém vários parâmetros globais, tais como o 
tamanho dos objetos (size), o nome da cache (name) e a ordem 
de alocação das páginas (order). Cada processador/core tem a 
sua própria kmem_cache_cpu. Requisições por objetos são 
atendidas, inicialmente, pelos objetos disponíveis na lista 
freelist. Essa lista é gerenciada como uma pilha (novas 
requisições usam objetos recém-liberados) para otimizar o uso 
da memória cache. Quando ocorre uma requisição e não há 
objetos livres na freelist, o SLQB requisita uma nova página do 
PLA. A nova página é adicionada à lista partial e o objeto, 
para atender à requisição, é retirado dessa página. Outros 
objetos podem ser retirados dessa página, mas somente quando 
a freelist estiver vazia. Eventualmente, os objetos retornam, via 
kmem_cache_free() ou kfree(), à freelist. Quando o tamanho 
dessa lista alcança um limiar (definido por hiwater), os objetos 
são devolvidos para suas páginas na lista partial. Essas páginas 
por sua vez são devolvidas ao PLA, quando completamente 
preenchidas com objetos livres. Contudo, um objeto da freelist 
pode ter sido alocado originalmente em outro core, nesse caso, 
então, o objeto é movido para a lista rlist. Quando o tamanho 
dessa lista alcança um limiar (definido por freebatch), o SLQB 
percorre a lista rlist de cada core, movendo cada objeto para a 
lista remote_free do core no qual o objeto foi alocado 
originalmente. Os objetos permanecem na remote_free até que 
um limiar (definido por remote_free_check) seja atingido. 
Neste caso, objetos dessa lista são transferidos para a freelist 
ou para as páginas de origem (na lista partial). 

 

Fig. 6. Estruturas do SLQB. 



IV. AVALIAÇÃO EXPERIMENTAL 

Como informado na Seção II, foram criadas quatro 
instâncias do kernel Linux, cada uma sendo o resultado da 
compilação da versão 2.6.39 configurada com um dos quatro 
KMAs apresentados na Seção III. Um experimento consistiu 
na execução do SysBench, nos modos de operação fileio e 
memory, com cada instância compilada do kernel e variando o 
número de processadores (cores) de 1 até 8. Cada experimento 
foi repetido cinco vezes e seus resultados foram analisados 
com base na média das repetições. Portanto, foram realizadas 
160 execuções considerando todas as combinações. Salienta-se 
que o SysBench foi parametrizado para executar 64 threads e 
realizar 100 mil operações de escrita. Ao final de cada conjunto 
de cinco repetições do mesmo experimento, o computador foi 
reiniciado a fim de configurar o novo cenário de teste. 

A.  Resultados do SysBench no Modo “fileio” 

A Fig. 7 mostra o tempo médio de execução do SysBench, 
em modo fileio, sob cada KMA. O menor tempo de execução 
foi obtido com o SLOB em um core. Nenhum dos alocadores 
foi predominantemente melhor ou pior. Os achados 
experimentais sugerem que o SLQB melhora seu desempenho 
a partir de quatro cores. Já o SLUB foi o alocador que 
apresentou maior variabilidade nos resultados entre os 
diferentes números de core, ao contrário do SLOB que 
apresentou a menor variabilidade, sendo este também o 
alocador com menor tempo médio (369,88s), seguido do SLAB 
(378,88s), SLUB(382,13s) e SLQB (384,50s).  
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Fig. 7. Tempo médio de execução do SysBench no modo fileio. 

Ressalta-se que o tempo de execução reportado pelo 
SysBench corresponde ao tempo da etapa run. Desse modo, as 
etapas prepare e cleanup não foram considerados. No modo 
fileio, a criação dos arquivos se dá na etapa prepare e a 
exclusão na etapa cleanup, portanto, os valores apresentados 
não contemplam essas duas operações.  

Os resultados para consumo e fragmentação de memória 
foram obtidos considerando as três etapas do modo fileio. O 
consumo de memória do kernel é apresentado na Fig. 8. O eixo 
y representa o consumo da memória no kernel Linux, em 
megabytes, após a execução do SysBench. Nota-se que o kernel 
compilado com o SLQB demandou significativamente mais 
memória do que os demais, independente da quantidade de 
cores. A diferença foi superior a 100 megabytes. Similar ao 
tempo de execução, o menor valor de consumo de memória foi 
obtido com o SLOB em 1 core. Observa-se que, em média, o 
consumo de memória do SLOB (186,75 MB) e SLUB (188,25 

MB) foi muito próximo, com ligeira vantagem para o SLOB. 
Convém ressaltar que em nível de kernel uma diferença de 
alguns megabytes é significativa, principalmente em se 
tratando de sistemas com restrições de memória, tal como 
sistemas embarcados. Neste caso, a diferença entre SLOB e 
SLUB foi de 1,5 MB. O SLUB é seguido pelo SLAB (193,13 
MB) e SLQB (291,50 MB). 
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Fig. 8. Consumo de memória do kernel após o SysBench no modo memory. 

A Fig. 9 apresenta o número médio de eventos de 
fragmentação de memória capturados com o SystemTap 
durante a execução do SysBench. Diferente dos resultados 
anteriores, o pior desempenho foi do alocador SLOB, 
independentemente do número de núcleos. Este foi seguido 
pelo SLQB com o segundo pior desempenho, principalmente 
com 1 até 4 cores. No geral, o melhor desempenho foi obtido 
com o SLAB, apresentando baixo nível de fragmentação; em 
algumas execuções este alocador não gerou fragmentação. O 
segundo melhor resultado foi observado com o SLUB.  

A carga de trabalho exercida pelo modo fileio tem como 
principal característica maior número e variedade de operações 
em arquivos, sendo típica de sistemas servidores de banco de 
dados, arquivos, web, entre outros correlatos. Os achados 
experimentais reportados nesta seção sugerem que o SLQB não 
é adequado para este tipo de carga de trabalho, apresentando o 
maior tempo de resposta, maior consumo de memória e 
ocorrências de fragmentação de memória. Já o SLOB 
demonstrou os melhores resultados para tempo de execução e 
consumo de memória, porém tendo sido o alocador com maior 
número de eventos de fragmentação. Para sistemas que não 
executam de forma ininterrupta por longos períodos de tempo, 
onde a fragmentação deixa de ser uma preocupação, o SLOB 
seria a opção recomendada. Para os demais casos, então o 
SLAB e o SLUB se mostram as melhores alternativas, cuja 
escolha dependeria das necessidades em termos de tempo de 
resposta, consumo de memória e número de processadores. 
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Fig. 9. Média do número de eventos de fragmentação.  



B. Resultados do Sysbench no Modo “memory” 

O SysBench no modo memory realizou a transferência de 
100 gigabytes entre posições de memória. Como a 
transferência praticamente não gera requisições de alocação de 
memória, não houve evento de fragmentação em nenhuma das 
instâncias, independente do número de cores. Quanto ao tempo 
de transferência, observou-se que esse sofre redução na medida 
em que o número de cores varia de um até quatro. A partir de 
cinco cores há aumento pouco significativo nesse tempo, como 
pode ser observado na Tabela I. Cada linha dessa tabela refere-
se ao tempo (em segundos) de transferência demandado por 
cada KMA analisado. As colunas referem-se à quantidade de 
cores. De dois a cinco cores o melhor tempo, nesta ordem, foi 
obtido por SLAB, SLOB, SLUB e SLQB. A partir de sete 
cores esta ordem é invertida. Os resultados de tempo médio de 
execução dos testes no modo memory com cada um dos 
alocadores foram, em geral, bem próximos uns dos outros. 
Com relação ao consumo de memória (em megabytes) pelo 
kernel, a diferença entre os KMAs é mais destacada (ver 
Tabela II). Observa-se que, para cada KMA, a quantidade de 
memória consumida se manteve praticamente constante, 
independente da quantidade de cores (colunas da Tabela II). O 
SLQB foi o KMA que mais consumiu memória. Os alocadores 
SLAB e SLUB apresentaram resultados de consumo de 
memória semelhantes, uma vez que implementam estruturas de 
dados muito parecidas. O alocador SLOB, dentre os analisados, 
é o que apresentou o melhor resultado de consumo de memória 
de kernel para esse teste. 

TABELA I.  TEMPO MÉDIO DE EXECUÇÃO (SYSBENCH / MEMORY) 

 1 2 3 4 5 6 7 8 

SLAB 178,6 95,9 67,4 50,9 55,8 62,2 67,3 67,4 

SLOB 162,1 99,6 70,0 53,0 56,7 61,1 66,8 67,0 

SLUB 191,7 102,3 72,1 54,6 57,0 61,5 66,3 66,8 

SLQB 204,5 105,1 73,7 55,9 57,3 61,6 64,8 65,7 

TABELA II.  CONSUMO DE MEMÓRIA NO KERNEL (SYSBENCH / MEMORY) 

 1 2 3 4 5 6 7 8 

SLAB 138 139 139 139 140 141 141 142 

SLOB 103 88 89 98 90 125 125 126 

SLUB 135 136 136 137 137 138 138 140 

SLQB 260 257 260 259 259 261 262 264 

V.  CONCLUSÕES 

Este trabalho apresentou uma comparação de quatro KMAs 
(SLAB, SLOB, SLUB, e SLQB). Os experimentos adotaram 
cargas de trabalho constituídas de operações de escrita de 
dados em disco e transferências de dados entre posições de 
memória. Os KMAs foram analisados e comparados quanto ao 
tempo de execução, fragmentação e consumo de memória. Os 
achados experimentais sugerem que, de forma geral, o SLOB 
foi o KMA com melhor desempenho entre todos os alocadores 
avaliados, não obtendo o melhor desempenho apenas no 

critério de fragmentação de memória. Esse alocador foi 
seguido do SLAB, SLUB e SLQB. Em termos de tempo de 
execução o SLAB foi o segundo melhor. Já em consumo de 
memória o SLUB foi o segundo melhor alocador. Em número 
de eventos de fragmentação, o SLAB foi o alocador com 
melhor desempenho, seguido do SLUB. A Tabela III resume 
estes resultados. 

TABELA III.  SUMÁRIO DOS RESULTADOS (RANKING GERAL) 

 
Tempo 

(I/O) 

Memória 

(I/O) 

Eventos de 

Frag. (I/O) 

Tempo 

(Transf.) 

Memória 

(Transf.) 

SLAB 2º 3º 1º 2º 3º 

SLOB 1º 1º 4º 1º 1º 

SLUB 3º 2º 2º 3º 2º 

SLQB 4º 4º 3º 4º 4º 
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