
Análise Experimental de Alocadores de Memória

em Nível de Kernel

Taís B. Ferreira, Rivalino Matias, Autran Macêdo, Bruno Evangelista

Faculdade de Computação

Universidade Federal de Uberlândia

Uberlândia-MG, Brasil

taisborgesferreira@gmail.com, rivalino@fc.ufu.br, autran@fc.ufu.br, bruno_evangelista@si.ufu.br

Resumo — O gerenciamento da memória principal é uma das

tarefas mais importantes de um sistema operacional, pois tem

impacto direto no desempenho e disponibilidade dos sistemas

computacionais. O elemento responsável por esse gerenciamento

é o alocador de memória do kernel. Problemas inerentes ao

funcionamento de alocadores de memória em nível de kernel são

a fragmentação e o sobreuso (overhead) de alocação, entre outros.

Esses problemas são intrínsecos ao processo de alocação

dinâmica de memória e se fazem notar, preponderantemente, em

sistemas que realizam longas execuções ininterruptas. Minimizar

ou contornar esses problemas é um desafio para os alocadores de

memória em nível de kernel. Este trabalho apresenta um estudo

experimental comparativo de quatro alocadores de memória em

nível de kernel (SLAB, SLOB, SLUB, e SLQB). Essa comparação

considerou o tempo de execução, consumo de memória e o nível

de fragmentação da memória de cada alocador, submetido a uma

carga de trabalho padrão. Considerando os achados obtidos

neste estudo experimental, conclui-se que os alocadores que

apresentaram melhor desempenho geral foram o SLOB e SLAB,

com vantagem para o primeiro.

Palavras-chave — alocador de memória; kernel, sistema

operacional

I. INTRODUÇÃO

O gerenciamento da memória principal tem impacto
significativo no desempenho e disponibilidade dos sistemas
computacionais. Este gerenciamento é realizado em dois níveis
do ponto de vista do sistema operacional (SO), tanto no user
level quanto no kernel level. Em ambos os níveis o conjunto de
rotinas responsável por esta tarefa é denominado alocador de
memória.

O alocador de memória do espaço do usuário é chamado de
UMA (user level memory allocator) [1] e tem por objetivo
atender as necessidades de alocação dinâmica de memória
dentro do processo de aplicação. Para isso, o UMA gerencia o
espaço de endereçamento na heap do processo. Cada processo
possui o seu UMA que, usualmente, é parte da biblioteca
padrão do sistema (ex. libc); portanto, este é ligado ao código
do programa durante a geração do seu executável (linking
stage). Alguns programas implementam seu próprio UMA.

Já um alocador de memória do kernel, denominado KMA
(kernel level memory allocator) [1], é a parte do núcleo do SO

que atende as requisições de alocação dinâmica dos seus
subsistemas (ex. device drivers e system calls), bem como
provê espaço de endereçamento para os processos de aplicação
(regiões de dados, código, pilha e heap). Diferente do UMA,
que pode variar por processo, o KMA é único para todo o
sistema operacional, atendendo tanto as demandas do próprio
kernel quanto dos processos de aplicação, neste último caso
fornecendo espaço de memória para o UMA de cada processo.
A Fig. 1 ilustra a interação de ambos os tipos de alocadores.

Fig. 1. Interação KMA e UMAs.

Em [2], avaliou-se experimentalmente o desempenho de
sete implementações de alocadores do tipo UMA,
considerando o tempo de resposta, consumo de memória e taxa
de fragmentação da memória. Esta avaliação foi realizada
utilizando uma aplicação middleware usada na indústria. Em
[3], foi realizada a análise teórica dos algoritmos de cada UMA
avaliado em [2], considerando suas complexidades de espaço e
tempo. A fim de complementar ambos os trabalhos citados
anteriormente, em [4] foi apresentado um estudo teórico-
experimental sobre os sete alocadores estudados previamente,
usando um gerador de carga sintética que permitiu avaliá-los
sob diferentes cenários de uso, considerando fatores como
número de alocações, tamanho das alocações, número de
threads e número de processadores. Dando continuidade nas
pesquisas nesta área, o presente trabalho é voltado para
alocadores do tipo KMA. Até onde foi possível averiguar, não
foi encontrado trabalho similar ao aqui apresentado.

Este artigo apresenta um estudo experimental comparativo
de quatro alocadores do tipo KMA. Os alocadores investigados
foram: SLAB, SLOB, SLUB e SLQB. Estes são KMAs
disponíveis atualmente no kernel Linux e são baseados no slab
allocator proposto em [5]. As demais seções deste trabalho

estão organizadas como segue. Na Seção II são apresentados a
metodologia e instrumental adotados. Na Seção III são
descritos os principais aspectos internos de cada KMA
analisado. A Seção IV apresenta os resultados do estudo
experimental e a Seção V as conclusões do trabalho.

II. METODOLOGIA

Inicialmente, os quatro alocadores investigados neste
trabalho foram estudados quanto às suas estruturas de dados e
rotinas de gerenciamento de memória. Esse estudo foi apoiado,
principalmente, na análise do código fonte dos alocadores, pois
é bastante limitada a literatura nesta área, em especial
abordando detalhes de implementação. Como resultado, uma
síntese das principais características de cada alocador é
apresentada na Seção III. Posteriormente, foi analisado o
comportamento dinâmico dos alocadores, tendo como base o
estudo experimental apresentado na Seção IV. Nesta etapa, foi
utilizado o SysBench, um benchmark voltado para avaliar o
desempenho do SO, para cargas de trabalho voltadas para I/O
de arquivos, transferência de dados em memória, entre outras.
Seu uso objetivou exercitar o subsistema de gerenciamento de
memória do sistema operacional, que foi instrumentado com
cada um dos quatro KMAs analisados. O SO usado neste
estudo foi o kernel Linux (versão 2.6.39), cujo atual KMA
padrão é o SLUB. Dado que um KMA é único para o SO,
foram geradas quatro versões diferentes do kernel Linux, uma
para cada KMA, a fim de avaliar o desempenho de cada
alocador sob a mesma carga de trabalho gerada pelo SysBench
(ver Seção II.A). Os critérios de desempenho considerados
foram o tempo de execução das operações do SysBench, o
consumo de memória dentro do kernel e o nível de
fragmentação da memória principal. O tempo de execução foi
obtido diretamente do SysBench. O consumo de memória do
SO foi medido com um shell script que monitorou o valor das
variáveis LowTotal e LowFree, no arquivo /proc/meminfo, a
cada dez segundos, durante a execução SysBench. A
fragmentação foi medida com o SystemTap (ver Seção II.B), o
qual contou os eventos de fragmentação da memória principal
durante a execução do SysBench. Os experimentos foram
realizados em um computador com processador Dual-Quad
Core, 24 GB RAM.

A. SysBench

SysBench [6] é um programa multiplataforma e
multithreaded desenvolvido para avaliar parâmetros do sistema
operacional, em especial com foco para sistemas servidores.
Dentre as cargas de trabalho implementadas pelo SysBench,
neste estudo foram usadas cargas correspondentes aos modos
memory e fileio. O modo memory executa a transferência de
um conteúdo da memória de uma posição para outra, onde o
conteúdo transferido corresponde a valores do tipo inteiro. O
destino da transferência é um vetor alocado antes do
lançamento das threads que realizam a transferência, de forma
concomitante, ou seja, compartilhando o vetor. A quantidade
de threads é um parâmetro do SysBench. Cada thread executa
um loop, dentro do qual faz 128 destas transferências de
memória, até que a quantidade de memória transferida atinja
100 gigabytes. O segundo modo de carga de trabalho usado foi
o fileio, o qual é executado em três etapas distintas: prepare,

run e cleanup. Na etapa prepare o SysBench cria 128 arquivos
de dezesseis megabytes. Na etapa run este aloca um vetor de
file descriptors com 128 posições e então abre cada um dos
arquivos criados na etapa prepare, atribuindo seus respectivos
file descriptors a uma posição do vetor. Posteriormente lança
as threads, onde cada uma executa um loop dentro do qual
escolhe um dos arquivos abertos de forma aleatória e escreve
dezesseis kilobytes em alguma posição do arquivo até que o
número máximo de operações seja atingido. Tanto o número de
threads quanto o máximo de operações são parâmetros
informados na execução da etapa run. A última etapa, cleanup,
apenas exclui os arquivos criados na etapa prepare. Ambas as
cargas usadas neste trabalho (memory e fileio) foram
previamente identificadas [7] como propensas à produção de
eventos de fragmentação de memória, o que é de interesse para
este estudo.

B. SystemTap

O SystemTap [8] é uma ferramenta de rastreamento de
eventos, a qual permite inserir diferentes pontos de
monitoramento dentro do kernel Linux sem que haja alteração
e recompilação do código fonte, ou seja, isso é feito em tempo
de execução. Esta ferramenta oferece, por meio de uma
linguagem de script própria, a infraestrutura necessária para
monitorar as atividades de gerenciamento de memória dentro
do kernel, durante sua execução. Por este motivo o SystemTap
é usado não apenas como ferramenta para depuração do código
do kernel, mas também para realizar variadas medições de
desempenho. Neste trabalho, o uso do SystemTap foi dirigido à
coleta de eventos de fragmentação dentro do kernel,
observados durante a execução dos experimentos com as
cargas de trabalho do SysBench. Este procedimento é descrito
em detalhes em [7].

III. ALOCADORES INVESTIGADOS

Nesta seção são apresentados os detalhes de implementação
dos KMAs analisados neste trabalho. Todos os quatro
alocadores possuem características comuns, as quais são
descritas na Seção III.A. As características específicas de cada
alocador são apresentadas nas demais seções (III.B até III.E),
respectivamente.

A. Características Comuns dos Alocadores Analisados

Quando um subsistema do kernel Linux necessita alocar
memória, dinamicamente, para um dado objeto, como um
inode ou um dentry, ou precisa liberar um objeto que não está
mais em uso, tal subsistema faz uso das rotinas kmalloc() e
kmem_cache_alloc(), kfree() e kmem_cache_free() [9]. O
KMA é o código responsável por implementar essas rotinas.
Para esta implementação, os alocadores estudados neste
trabalho têm como característica comum o uso de uma
estrutura de dados conhecida como slab. Um slab é uma
porção de memória que tipicamente tem o tamanho de uma
página de memória (ex. 4096 bytes), ou múltiplo de uma
página, dependendo da implementação do KMA. Assim,
KMAs baseados nessa estrutura são denominados slab
allocators. Considerando a arquitetura do kernel Linux, o
KMA se situa sobre o alocador primário de páginas (page-level
allocator – PLA), sendo parte integrante do subsistema de

gerenciamento de memória virtual. A Fig. 2 ilustra esse
posicionamento. O sentido das setas indica o destinatário do
resultado da respectiva chamada. Por exemplo, um subsistema
do kernel (ex. device driver) recebe um slab via kmalloc(), o
qual é retornado pelo KMA. Para a implementação do seu
conjunto de slabs, o KMA solicita páginas de memória junto
ao PLA, via alloc_pages(). Na medida em que os slabs tornam-
se livres, ou seja, deixam de ser usados, eles são liberados via
kfree() e suas respectivas páginas podem retornar ao PLA,
neste caso via free_pages().

Fig. 2. KMA e demais subsistemas no kernel Linux.

De forma geral, outro ponto comum entre os KMAs é a
existência de uma política específica para tratar o acesso à
memória em máquinas NUMA (Non-Uniform Memory
Access). Nesse tipo de computador, a memória principal está
dividida em bancos de memória, em geral conhecidos como
nós, que podem estar associados a um ou mais
processadores/núcleos. O tempo de acesso varia de acordo com
a distância que o banco de memória está de cada processador.

Nas próximas seções são apresentadas as características
específicas de cada KMA analisado. Os alocadores são SLAB,
SLOB, SLUB e SLQB. Os três primeiros são parte integrante
do kernel padrão (mainstream) do Linux e podem ser
selecionados para uso durante a compilação do kernel. O
quarto alocador encontra-se disponível como um patch a partir
da versão 2.6.30 do kernel Linux.

B. SLAB

O SLAB [5] foi o KMA padrão do kernel Linux entre as
versões 2.2 e 2.6.23. Esse alocador é fortemente baseado no
alocador originalmente proposto para o sistema operacional
SunOS, descrito em [5], o qual se baseia em diferentes caches
de slabs. Cada slab consiste de uma ou mais páginas de
memória para acomodar objetos (blocos de memória)
dinamicamente alocados. Cada cache armazena objetos de
mesmo tamanho. Em cada cache, os slabs são organizados em
três listas: full, partial e free (ver Fig. 3). A lista full armazena
os slabs que não possuem um único objeto livre e, portanto,
não podem ser utilizados para atender uma requisição de
memória. A lista partial mantém slabs que possuem pelo
menos um objeto alocado e no mínimo um objeto livre; é essa
lista que preferencialmente é utilizada para satisfazer
requisições de memória. A lista free armazena qualquer slab
que tenha se tornado totalmente vazio, ou seja, não possui
objetos. Essa lista é utilizada para satisfazer uma requisição de
memória somente quando a lista partial está vazia. Uma cache,
tal como descrita anteriormente, é denominada de cache de uso
geral e armazena diferentes tipos de objetos. Esse tipo de cache

é utilizada por subsistemas do kernel que requisitam uma
porção de memória via kmalloc(). O parâmetro dessa função é
o tamanho do objeto a ser alocado. Assim, o alocador utiliza o
tamanho para decidir qual de suas caches de uso geral irá
retornar a porção de memória solicitada. As caches de uso
geral são criadas automaticamente pelo SLAB. Por outro lado,
é possível criar uma cache para um tipo específico de objeto
(ex. dentry). Essa cache específica é criada explicitamente por
meio da rotina kmem_cache_create(). É necessário, entretanto,
especificar um construtor e destrutor a ser usado com tal tipo
de objeto. O construtor indicado na criação destas caches é
utilizado apenas quando o alocador busca mais páginas de
memória para a cache e divide estas páginas em novos objetos.
O destrutor será chamado apenas quando o alocador decidir
devolver páginas de memória para o PLA. Desta forma, não
haverá necessidade de fazer chamadas do construtor de um
objeto enquanto houver memória na cache, nem chamadas ao
destrutor deste objeto, o que melhora o tempo de resposta das
operações de alocação e desalocação de memória. A criação,
manutenção e definição das políticas de acesso a uma cache
específica são de responsabilidade do subsistema que a criou.
Por exemplo, no subsistema de gerenciamento de arquivos,
como há necessidade de alocar, frequentemente, algumas
estruturas específicas, este subsistema se responsabiliza por
criar as caches que necessita, tais como as caches dentry e
inode_cache. Um subsistema que necessita requisitar um
objeto a uma cache específica deve fazer uso da função
kmem_cache_alloc(), passando como parâmetro o endereço da
cache de interesse. A política do SLAB para máquinas NUMA
é criar as três listas de slabs (full, partial e free) para cada nó
encontrado. Assim, quando o SLAB percebe que a requisição
que chegou a uma dada cache é proveniente de um
determinado nó, ele a direciona para a lista partial deste nó.

Fig. 3. Organização da cache no SLAB.

C. SLOB

O alocador SLOB [10] foi desenvolvido para sistemas com
limitação de memória. Esse alocador foi introduzido na versão
2.6.14 do kernel Linux. Este é o alocador recomendado quando
se está compilando o kernel para sistemas embarcados. Apesar
de implementar as interfaces de alocação do SLAB, tais como
kmalloc() e kmem_cache_alloc(), ele apenas simula o uso das
caches. O SLOB mantém listas encadeadas de páginas que são
utilizadas para atender requisições por objetos menores do que
uma página (4096 bytes). As listas são organizadas de acordo
com o tamanho dos objetos, como ilustrado na Fig. 4. A lista
small mantém objetos menores do que 256 bytes; a lista
medium mantém objetos com tamanho entre 256 e 1023 bytes;

e a lista large mantém objetos com tamanho entre 1024 e 4095
bytes. A organização em apenas três listas tem como objetivo
reduzir o consumo de memória provocado pelas caches e listas
do alocador SLAB. No entanto, armazenar diferentes tamanhos
de objetos em uma mesma página, dependendo do
comportamento da aplicação, pode acarretar fragmentação
interna, o que resulta no aumento de consumo de memória. Se
a porção de memória requisitada para um objeto for maior ou
igual a uma página, o SLOB requisita um conjunto de páginas
suficiente para conter o tamanho requisitado, diretamente do
PLA. A liberação de tais objetos provoca o retorno das
respectivas páginas diretamente ao PLA. Por fim, a política do
SLOB para máquinas NUMA é simplesmente entregar um
bloco de memória que pertença a uma página proveniente do
nó especificado.

Fig. 4. Listas de páginas do SLOB.

D. SLUB

O alocador SLUB [11] tornou-se disponível a partir da
versão 2.6.22 do kernel Linux [12]. Esse KMA foi proposto
para corrigir problemas observados no alocador SLAB, tais
como de escalabilidade, complexidade do código fonte e
sobreuso (overhead) de memória, causados por metadados de
gerenciamento de memória. Assim como o SLAB, o SLUB é
organizado em caches, onde cada cache mantém vários slabs;
cada slab tem o tamanho de uma página e reúne objetos do
mesmo tamanho. O SLUB também classifica seus slabs como
full, partial e free. No entanto, apenas a lista partial é
realmente mantida. Quando um slab se torna full, esse slab é
removido da lista de slabs e ignorado pelo alocador até que um
de seus objetos seja liberado. Quando um slab se torna free,
sua página é imediatamente devolvida ao PLA. Com esta
medida o SLUB reduz a quantidade de páginas que mantém,
reduzindo assim o consumo de memória. Focando ainda no
baixo consumo de memória, o SLUB não implementa
estruturas de controle por slab e nem metadados sobre objetos.
A página que compõe um slab possui um ponteiro para o
primeiro objeto da lista de objetos livres dentro do slab e um
contador que indica o número de objetos do slab que já foram
alocados, conforme ilustrado na Fig. 5.

Quando ocorre uma alocação, o contador inuse é
incrementado, o primeiro objeto da lista de livres é retornado e
o ponteiro freelist é atualizado. Na liberação de um objeto,
essas operações são realizadas na ordem inversa. Finalmente, a
política do SLUB para máquinas NUMA é manter uma lista de
partial slabs por nó. Além disso, cada processador/core
mantém um slab exclusivo (active slab), eliminando a
necessidade de mecanismos de exclusão mútua. Este é o
primeiro slab consultado pelo alocador quando ocorre uma
requisição (alocação ou liberação).

Fig. 5. Alocação de um objeto no SLUB.

E. SLQB

O alocador SLQB [13] utiliza várias ideias implementadas
nos alocadores SLAB e SLUB, mas possui uma estrutura
diferente para tratar seus slabs. O SLQB implementa uma
cache (abstrata) que mantém objetos de tamanho fixo. Objetos
são requisitados via kmem_cache_alloc() ou kmalloc(), tal que
esta última é apenas um redirecionamento para a primeira. A
estrutura da cache é ilustrada na Fig. 6. A estrutura
kmem_cache mantém vários parâmetros globais, tais como o
tamanho dos objetos (size), o nome da cache (name) e a ordem
de alocação das páginas (order). Cada processador/core tem a
sua própria kmem_cache_cpu. Requisições por objetos são
atendidas, inicialmente, pelos objetos disponíveis na lista
freelist. Essa lista é gerenciada como uma pilha (novas
requisições usam objetos recém-liberados) para otimizar o uso
da memória cache. Quando ocorre uma requisição e não há
objetos livres na freelist, o SLQB requisita uma nova página do
PLA. A nova página é adicionada à lista partial e o objeto,
para atender à requisição, é retirado dessa página. Outros
objetos podem ser retirados dessa página, mas somente quando
a freelist estiver vazia. Eventualmente, os objetos retornam, via
kmem_cache_free() ou kfree(), à freelist. Quando o tamanho
dessa lista alcança um limiar (definido por hiwater), os objetos
são devolvidos para suas páginas na lista partial. Essas páginas
por sua vez são devolvidas ao PLA, quando completamente
preenchidas com objetos livres. Contudo, um objeto da freelist
pode ter sido alocado originalmente em outro core, nesse caso,
então, o objeto é movido para a lista rlist. Quando o tamanho
dessa lista alcança um limiar (definido por freebatch), o SLQB
percorre a lista rlist de cada core, movendo cada objeto para a
lista remote_free do core no qual o objeto foi alocado
originalmente. Os objetos permanecem na remote_free até que
um limiar (definido por remote_free_check) seja atingido.
Neste caso, objetos dessa lista são transferidos para a freelist
ou para as páginas de origem (na lista partial).

Fig. 6. Estruturas do SLQB.

IV. AVALIAÇÃO EXPERIMENTAL

Como informado na Seção II, foram criadas quatro
instâncias do kernel Linux, cada uma sendo o resultado da
compilação da versão 2.6.39 configurada com um dos quatro
KMAs apresentados na Seção III. Um experimento consistiu
na execução do SysBench, nos modos de operação fileio e
memory, com cada instância compilada do kernel e variando o
número de processadores (cores) de 1 até 8. Cada experimento
foi repetido cinco vezes e seus resultados foram analisados
com base na média das repetições. Portanto, foram realizadas
160 execuções considerando todas as combinações. Salienta-se
que o SysBench foi parametrizado para executar 64 threads e
realizar 100 mil operações de escrita. Ao final de cada conjunto
de cinco repetições do mesmo experimento, o computador foi
reiniciado a fim de configurar o novo cenário de teste.

A. Resultados do SysBench no Modo “fileio”

A Fig. 7 mostra o tempo médio de execução do SysBench,
em modo fileio, sob cada KMA. O menor tempo de execução
foi obtido com o SLOB em um core. Nenhum dos alocadores
foi predominantemente melhor ou pior. Os achados
experimentais sugerem que o SLQB melhora seu desempenho
a partir de quatro cores. Já o SLUB foi o alocador que
apresentou maior variabilidade nos resultados entre os
diferentes números de core, ao contrário do SLOB que
apresentou a menor variabilidade, sendo este também o
alocador com menor tempo médio (369,88s), seguido do SLAB
(378,88s), SLUB(382,13s) e SLQB (384,50s).

3
6

8

3
6

5

4
0

9

3
9

2

3
6

8

3
6

9

3
6

9

3
9

1

3
3

9

3
6

5

3
6

8

3
9

1

3
6

9 3
7

5

3
7

5

3
7

7

3
7

0

3
9

3

3
7

4

3
8

9

3
7

3

3
9

4

3
9

2

3
7

2

3
8

4

3
9

8

3
9

6 4
0

1

3
7

4

3
7

3

3
7

2 3
7

8

320

330

340

350

360

370

380

390

400

410

420

1 Core 2 Cores 3 Cores 4 Cores 5 Cores 6 Cores 7 Cores 8 Cores

T
em

p
o

 (
s)

SLAB SLOB SLUB SLQB

Fig. 7. Tempo médio de execução do SysBench no modo fileio.

Ressalta-se que o tempo de execução reportado pelo
SysBench corresponde ao tempo da etapa run. Desse modo, as
etapas prepare e cleanup não foram considerados. No modo
fileio, a criação dos arquivos se dá na etapa prepare e a
exclusão na etapa cleanup, portanto, os valores apresentados
não contemplam essas duas operações.

Os resultados para consumo e fragmentação de memória
foram obtidos considerando as três etapas do modo fileio. O
consumo de memória do kernel é apresentado na Fig. 8. O eixo
y representa o consumo da memória no kernel Linux, em
megabytes, após a execução do SysBench. Nota-se que o kernel
compilado com o SLQB demandou significativamente mais
memória do que os demais, independente da quantidade de
cores. A diferença foi superior a 100 megabytes. Similar ao
tempo de execução, o menor valor de consumo de memória foi
obtido com o SLOB em 1 core. Observa-se que, em média, o
consumo de memória do SLOB (186,75 MB) e SLUB (188,25

MB) foi muito próximo, com ligeira vantagem para o SLOB.
Convém ressaltar que em nível de kernel uma diferença de
alguns megabytes é significativa, principalmente em se
tratando de sistemas com restrições de memória, tal como
sistemas embarcados. Neste caso, a diferença entre SLOB e
SLUB foi de 1,5 MB. O SLUB é seguido pelo SLAB (193,13
MB) e SLQB (291,50 MB).

1
9

1

1
9

2

1
9

2

1
9

2

1
9

2

1
9

3

1
9

3 2
0

0

1
8

0 1
8

8

1
8

6

1
8

7

1
8

6

1
8

5

1
8

6 1
9

6

1
8

5

1
8

5

1
8

6

1
8

6

1
8

7 2
0

1

1
8

8

1
8

8

2
9

0

2
9

4

2
9

5

2
9

3

2
8

7 2
9

5

2
9

2

2
8

6

150

170

190

210

230

250

270

290

310

1 Core 2 Cores 3 Cores 4 Cores 5 Cores 6 Cores 7 Cores 8 Cores

C
o

n
su

m
o

 d
e

M
em

ó
ri

a
(M

B
)

SLAB SLOB SLUB SLQB

Fig. 8. Consumo de memória do kernel após o SysBench no modo memory.

A Fig. 9 apresenta o número médio de eventos de
fragmentação de memória capturados com o SystemTap
durante a execução do SysBench. Diferente dos resultados
anteriores, o pior desempenho foi do alocador SLOB,
independentemente do número de núcleos. Este foi seguido
pelo SLQB com o segundo pior desempenho, principalmente
com 1 até 4 cores. No geral, o melhor desempenho foi obtido
com o SLAB, apresentando baixo nível de fragmentação; em
algumas execuções este alocador não gerou fragmentação. O
segundo melhor resultado foi observado com o SLUB.

A carga de trabalho exercida pelo modo fileio tem como
principal característica maior número e variedade de operações
em arquivos, sendo típica de sistemas servidores de banco de
dados, arquivos, web, entre outros correlatos. Os achados
experimentais reportados nesta seção sugerem que o SLQB não
é adequado para este tipo de carga de trabalho, apresentando o
maior tempo de resposta, maior consumo de memória e
ocorrências de fragmentação de memória. Já o SLOB
demonstrou os melhores resultados para tempo de execução e
consumo de memória, porém tendo sido o alocador com maior
número de eventos de fragmentação. Para sistemas que não
executam de forma ininterrupta por longos períodos de tempo,
onde a fragmentação deixa de ser uma preocupação, o SLOB
seria a opção recomendada. Para os demais casos, então o
SLAB e o SLUB se mostram as melhores alternativas, cuja
escolha dependeria das necessidades em termos de tempo de
resposta, consumo de memória e número de processadores.

0
,2

0
,2

0

0
,2

0 0 0

0
,2

4
,8

2
,6 2

,8 3

4

3
,6 3

,8

3
,2

0
,4

0
,2

0

0
,4

1

1
,4

1 11

1
,2

1

1
,4

0
,8 1 1

1
,2

0

1

2

3

4

5

1 Core 2 Cores 3 Cores 4 Cores 5 Cores 6 Cores 7 Cores 8 Cores

N
ú
m

er
o

 d
e

E
v
en

to
s

d
e

F
ra

g
m

en
ta

çã
o

SLAB SLOB SLUB SLQB

Fig. 9. Média do número de eventos de fragmentação.

B. Resultados do Sysbench no Modo “memory”

O SysBench no modo memory realizou a transferência de
100 gigabytes entre posições de memória. Como a
transferência praticamente não gera requisições de alocação de
memória, não houve evento de fragmentação em nenhuma das
instâncias, independente do número de cores. Quanto ao tempo
de transferência, observou-se que esse sofre redução na medida
em que o número de cores varia de um até quatro. A partir de
cinco cores há aumento pouco significativo nesse tempo, como
pode ser observado na Tabela I. Cada linha dessa tabela refere-
se ao tempo (em segundos) de transferência demandado por
cada KMA analisado. As colunas referem-se à quantidade de
cores. De dois a cinco cores o melhor tempo, nesta ordem, foi
obtido por SLAB, SLOB, SLUB e SLQB. A partir de sete
cores esta ordem é invertida. Os resultados de tempo médio de
execução dos testes no modo memory com cada um dos
alocadores foram, em geral, bem próximos uns dos outros.
Com relação ao consumo de memória (em megabytes) pelo
kernel, a diferença entre os KMAs é mais destacada (ver
Tabela II). Observa-se que, para cada KMA, a quantidade de
memória consumida se manteve praticamente constante,
independente da quantidade de cores (colunas da Tabela II). O
SLQB foi o KMA que mais consumiu memória. Os alocadores
SLAB e SLUB apresentaram resultados de consumo de
memória semelhantes, uma vez que implementam estruturas de
dados muito parecidas. O alocador SLOB, dentre os analisados,
é o que apresentou o melhor resultado de consumo de memória
de kernel para esse teste.

TABELA I. TEMPO MÉDIO DE EXECUÇÃO (SYSBENCH / MEMORY)

 1 2 3 4 5 6 7 8

SLAB 178,6 95,9 67,4 50,9 55,8 62,2 67,3 67,4

SLOB 162,1 99,6 70,0 53,0 56,7 61,1 66,8 67,0

SLUB 191,7 102,3 72,1 54,6 57,0 61,5 66,3 66,8

SLQB 204,5 105,1 73,7 55,9 57,3 61,6 64,8 65,7

TABELA II. CONSUMO DE MEMÓRIA NO KERNEL (SYSBENCH / MEMORY)

 1 2 3 4 5 6 7 8

SLAB 138 139 139 139 140 141 141 142

SLOB 103 88 89 98 90 125 125 126

SLUB 135 136 136 137 137 138 138 140

SLQB 260 257 260 259 259 261 262 264

V. CONCLUSÕES

Este trabalho apresentou uma comparação de quatro KMAs
(SLAB, SLOB, SLUB, e SLQB). Os experimentos adotaram
cargas de trabalho constituídas de operações de escrita de
dados em disco e transferências de dados entre posições de
memória. Os KMAs foram analisados e comparados quanto ao
tempo de execução, fragmentação e consumo de memória. Os
achados experimentais sugerem que, de forma geral, o SLOB
foi o KMA com melhor desempenho entre todos os alocadores
avaliados, não obtendo o melhor desempenho apenas no

critério de fragmentação de memória. Esse alocador foi
seguido do SLAB, SLUB e SLQB. Em termos de tempo de
execução o SLAB foi o segundo melhor. Já em consumo de
memória o SLUB foi o segundo melhor alocador. Em número
de eventos de fragmentação, o SLAB foi o alocador com
melhor desempenho, seguido do SLUB. A Tabela III resume
estes resultados.

TABELA III. SUMÁRIO DOS RESULTADOS (RANKING GERAL)

Tempo

(I/O)

Memória

(I/O)

Eventos de

Frag. (I/O)

Tempo

(Transf.)

Memória

(Transf.)

SLAB 2º 3º 1º 2º 3º

SLOB 1º 1º 4º 1º 1º

SLUB 3º 2º 2º 3º 2º

SLQB 4º 4º 3º 4º 4º

REFERÊNCIAS

[1] U. Vahalia, UNIX internals: the new frontiers, Prentice Hall Press,
Upper Saddle River, NJ, 1995.

[2] T. B. Ferreira, R. Matias, A. Macêdo, L. B. Araujo, “A comparison of
memory allocators for multicore and multithread applications: a
quantitative approach,” in Proc. of Brazilian Symposium on Computing
Systems Engineering, Florianopolis, Brazil, 2011. SBESC., in press of
IEEE Computer Society, Washington, DC, pp. 200-205, November
2011.

[3] T. B. Ferreira, M. A. Fernantes, R. Matias, “A comphensive complexity
analysis of user-level memory allocator algorithms,” in Proc. of
Brazilian Symposium on Computing System Engineering, Natal, Brazil,
pp. 5-7, 2012. PDCAT., in press of IEEE Computer Society,
Washington, DC, pp. 99-104, November 2012.

[4] D. Elias, M. A. Fernandes, R. Matias, L. Borges, “Experimental and
theoretical analyses of memory allocation algorithms,” in Proc. of the
29th Annual ACM Symposium on Applied Computing, Gyeongju,
Korea, 2014. SAC., in press of ACM New York, NY, USA, pp. 1545-
1546, March 2014.

[5] J. Bonwick, “The slab allocator: an object-caching kernel memory
allocator,” in Proc. of USENIX Summer, Boston, USA, 1994. USTC.,
in press of USENIX Association, Berkeley, CA, pp. 87-98, June 1994.

[6] A. Kopytov, “SysBench manual”, 2004. https://launchpad.net/sysbench/

[7] R. Matias, I. Beicker, B. Leitão, P. Maciel, “Measuring software aging
effects through OS kernel instrumentation,” in Proc. of Workshop of
Software Aging and Rejuvenation, San Jose, USA, 2010. WoSAR., in
press of IEEE Computer Society, Washington, DC, pp. 1-6,
November 2010.

[8] J. Bart, P. Larson, B. Leitão e A. M. S. da Silva, SystemTap:
instrumenting the Linux kernel for analyzing performance and
functional problems., IBM Redbook, 2008.

[9] M. Gorman, Understanding the Linux Virtual Memory Manager,
Prentice Hall PTR, Upper Saddle River, NJ, 2004.

[10] M. Mackall, “slob: introduce the SLOB allocator”, LWN.net, 2005.
http://lwn.net/Articles/157944/

[11] J. Corbet, “The SLUB allocator”, LWN.net, 2007.
http://lwn.net/Articles/229984/

[12] O. M. Perla Enrico, A Guide to Kernel Exploitation: Attacking the
Core, Syngress Publishing, 2010.

[13] J. Corbet, “SLQB - and then there were four”, LWN.net, 2008.
http://lwn.net/Articles/311502/

http://dl.acm.org/citation.cfm?id=225502&CFID=430685431&CFTOKEN=46654808
http://dl.acm.org/citation.cfm?id=225502&CFID=430685431&CFTOKEN=46654808
http://www.acm.org/publications
http://dl.acm.org/citation.cfm?id=983550&CFID=430685431&CFTOKEN=46654808
http://dl.acm.org/citation.cfm?id=983550&CFID=430685431&CFTOKEN=46654808
http://lwn.net/Articles/157944/
http://dl.acm.org/citation.cfm?id=1941304&CFID=430685431&CFTOKEN=46654808
http://dl.acm.org/citation.cfm?id=1941304&CFID=430685431&CFTOKEN=46654808

