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Resumo — O gerenciamento da memdria principal é uma das
tarefas mais importantes de um sistema operacional, pois tem
impacto direto no desempenho e disponibilidade dos sistemas
computacionais. O elemento responsavel por esse gerenciamento
é o alocador de memdria do kernel. Problemas inerentes ao
funcionamento de alocadores de meméria em nivel de kernel sdo
a fragmentacao e o sobreuso (overhead) de alocagéo, entre outros.
Esses problemas sdo intrinsecos ao processo de alocacdo
dindmica de memoria e se fazem notar, preponderantemente, em
sistemas que realizam longas execucdes ininterruptas. Minimizar
ou contornar esses problemas é um desafio para os alocadores de
memoria em nivel de kernel. Este trabalho apresenta um estudo
experimental comparativo de quatro alocadores de memdria em
nivel de kernel (SLAB, SLOB, SLUB, e SLQB). Essa comparacéo
considerou o tempo de execucdo, consumo de memdria e o nivel
de fragmentacéo da memoria de cada alocador, submetido a uma
carga de trabalho padrdo. Considerando os achados obtidos
neste estudo experimental, conclui-se que os alocadores que
apresentaram melhor desempenho geral foram o SLOB e SLAB,
com vantagem para o primeiro.
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I.  INTRODUCAO

O gerenciamento da meméria principal tem impacto
significativo no desempenho e disponibilidade dos sistemas
computacionais. Este gerenciamento é realizado em dois niveis
do ponto de vista do sistema operacional (SO), tanto no user
level quanto no kernel level. Em ambos os niveis o conjunto de
rotinas responsavel por esta tarefa € denominado alocador de
memoria.

O alocador de memoria do espaco do usuario € chamado de
UMA (user level memory allocator) [1] e tem por objetivo
atender as necessidades de alocacdo dindmica de memoria
dentro do processo de aplicagdo. Para isso, 0 UMA gerencia o
espaco de enderecamento na heap do processo. Cada processo
possui 0 seu UMA que, usualmente, € parte da biblioteca
padrédo do sistema (ex. libc); portanto, este é ligado ao cddigo
do programa durante a geracdo do seu executdvel (linking
stage). Alguns programas implementam seu proprio UMA.

J& um alocador de memdria do kernel, denominado KMA
(kernel level memory allocator) [1], € a parte do nlcleo do SO

gue atende as requisi¢des de alocacdo dindmica dos seus
subsistemas (ex. device drivers e system calls), bem como
prové espaco de enderecamento para 0s processos de aplicacdo
(regiBes de dados, cddigo, pilha e heap). Diferente do UMA,
gue pode variar por processo, 0 KMA é Unico para todo o
sistema operacional, atendendo tanto as demandas do proprio
kernel quanto dos processos de aplicacdo, neste Ultimo caso
fornecendo espaco de memoria para 0 UMA de cada processo.
A Fig. 1 ilustra a interacdo de ambos os tipos de alocadores.
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Fig. 1. Interacdo KMA e UMAs.

Em [2], avaliou-se experimentalmente o desempenho de
sete implementacfes de alocadores do tipo UMA,
considerando o tempo de resposta, consumo de meméria e taxa
de fragmentacdo da memoria. Esta avaliagdo foi realizada
utilizando uma aplicacdo middleware usada na indUstria. Em
[3], foi realizada a analise tedrica dos algoritmos de cada UMA
avaliado em [2], considerando suas complexidades de espago e
tempo. A fim de complementar ambos os trabalhos citados
anteriormente, em [4] foi apresentado um estudo tedrico-
experimental sobre os sete alocadores estudados previamente,
usando um gerador de carga sintética que permitiu avalia-los
sob diferentes cenarios de uso, considerando fatores como
namero de alocacdes, tamanho das alocagBes, nimero de
threads e nimero de processadores. Dando continuidade nas
pesquisas nesta area, o presente trabalho é voltado para
alocadores do tipo KMA. Até onde foi possivel averiguar, nao
foi encontrado trabalho similar ao aqui apresentado.

Este artigo apresenta um estudo experimental comparativo
de quatro alocadores do tipo KMA. Os alocadores investigados
foram: SLAB, SLOB, SLUB e SLQB. Estes sdo KMAs
disponiveis atualmente no kernel Linux e s&o baseados no slab
allocator proposto em [5]. As demais se¢Bes deste trabalho



estdo organizadas como segue. Na Secéo Il sdo apresentados a
metodologia e instrumental adotados. Na Secdo Il sdo
descritos 0s principais aspectos internos de cada KMA
analisado. A Secdo IV apresenta os resultados do estudo
experimental e a Secéo V as conclusdes do trabalho.

1.  METODOLOGIA

Inicialmente, os quatro alocadores investigados neste
trabalho foram estudados quanto as suas estruturas de dados e
rotinas de gerenciamento de memdria. Esse estudo foi apoiado,
principalmente, na analise do cddigo fonte dos alocadores, pois
¢ bastante limitada a literatura nesta area, em especial
abordando detalhes de implementacdo. Como resultado, uma
sintese das principais caracteristicas de cada alocador ¢é
apresentada na Secéo Ill. Posteriormente, foi analisado o
comportamento dindmico dos alocadores, tendo como base o
estudo experimental apresentado na Secéo IV. Nesta etapa, foi
utilizado o SysBench, um benchmark voltado para avaliar o
desempenho do SO, para cargas de trabalho voltadas para 1/0
de arquivos, transferéncia de dados em memodria, entre outras.
Seu uso objetivou exercitar o subsistema de gerenciamento de
memdria do sistema operacional, que foi instrumentado com
cada um dos quatro KMAs analisados. O SO usado neste
estudo foi o kernel Linux (versdo 2.6.39), cujo atual KMA
padrdo é o SLUB. Dado que um KMA ¢ Unico para o SO,
foram geradas quatro versfes diferentes do kernel Linux, uma
para cada KMA, a fim de avaliar o desempenho de cada
alocador sob a mesma carga de trabalho gerada pelo SysBench
(ver Secao II.A). Os critérios de desempenho considerados
foram o tempo de execucdo das operacGes do SysBench, o
consumo de memdria dentro do kernel e o nivel de
fragmentacdo da meméaria principal. O tempo de execucéo foi
obtido diretamente do SysBench. O consumo de meméria do
SO foi medido com um shell script que monitorou o valor das
variaveis LowTotal e LowFree, no arquivo /proc/meminfo, a
cada dez segundos, durante a execucdo SysBench. A
fragmentacéo foi medida com o SystemTap (ver Secéo I1.B), o
gual contou os eventos de fragmentacdo da memoria principal
durante a execucdo do SysBench. Os experimentos foram
realizados em um computador com processador Dual-Quad
Core, 24 GB RAM.

A. SysBench

SysBench [6] €é um programa multiplataforma e
multithreaded desenvolvido para avaliar parametros do sistema
operacional, em especial com foco para sistemas servidores.
Dentre as cargas de trabalho implementadas pelo SysBench,
neste estudo foram usadas cargas correspondentes aos modos
memory e fileio. O modo memory executa a transferéncia de
um contetdo da memoria de uma posicdo para outra, onde 0
contetdo transferido corresponde a valores do tipo inteiro. O
destino da transferéncia é um vetor alocado antes do
langamento das threads que realizam a transferéncia, de forma
concomitante, ou seja, compartilhando o vetor. A quantidade
de threads é um pardmetro do SysBench. Cada thread executa
um loop, dentro do qual faz 128 destas transferéncias de
memodria, até que a quantidade de memoria transferida atinja
100 gigabytes. O segundo modo de carga de trabalho usado foi
o fileio, 0 qual é executado em trés etapas distintas: prepare,

run e cleanup. Na etapa prepare o SysBench cria 128 arquivos
de dezesseis megabytes. Na etapa run este aloca um vetor de
file descriptors com 128 posicdes e entdo abre cada um dos
arquivos criados na etapa prepare, atribuindo seus respectivos
file descriptors a uma posi¢do do vetor. Posteriormente langa
as threads, onde cada uma executa um loop dentro do qual
escolhe um dos arquivos abertos de forma aleatoria e escreve
dezesseis kilobytes em alguma posicdo do arquivo até que o
nlmero maximo de operagdes seja atingido. Tanto o ndmero de
threads quanto o maximo de operacBes sdo parametros
informados na execucao da etapa run. A Ultima etapa, cleanup,
apenas exclui os arquivos criados na etapa prepare. Ambas as
cargas usadas neste trabalho (memory e fileio) foram
previamente identificadas [7] como propensas a producdo de
eventos de fragmentagdo de memoria, o que é de interesse para
este estudo.

B. SystemTap

O SystemTap [8] é uma ferramenta de rastreamento de
eventos, a qual permite inserir diferentes pontos de
monitoramento dentro do kernel Linux sem que haja alteracéo
e recompilacdo do codigo fonte, ou seja, isso € feito em tempo
de execucdo. Esta ferramenta oferece, por meio de uma
linguagem de script propria, a infraestrutura necessaria para
monitorar as atividades de gerenciamento de memoria dentro
do kernel, durante sua execucdo. Por este motivo o SystemTap
é usado ndo apenas como ferramenta para depuracdo do codigo
do kernel, mas também para realizar variadas medicgBes de
desempenho. Neste trabalho, o uso do SystemTap foi dirigido a
coleta de eventos de fragmentagdo dentro do kernel,
observados durante a execugdo dos experimentos com as
cargas de trabalho do SysBench. Este procedimento é descrito
em detalhes em [7].

IIl.  ALOCADORES INVESTIGADOS

Nesta secéo sdo apresentados os detalhes de implementagéo
dos KMAs analisados neste trabalho. Todos os quatro
alocadores possuem caracteristicas comuns, as quais S0
descritas na Secdo Il1.A. As caracteristicas especificas de cada
alocador sdo apresentadas nas demais se¢des (I11.B até Il1.E),
respectivamente.

A. Caracteristicas Comuns dos Alocadores Analisados

Quando um subsistema do kernel Linux necessita alocar
memoria, dinamicamente, para um dado objeto, como um
inode ou um dentry, ou precisa liberar um objeto que ndo esta
mais em uso, tal subsistema faz uso das rotinas kmalloc() e
kmem_cache_alloc(), kfree() e kmem_cache free() [9]. O
KMA é o codigo responsavel por implementar essas rotinas.
Para esta implementacdo, os alocadores estudados neste
trabalho tém como caracteristica comum o uso de uma
estrutura de dados conhecida como slab. Um slab é uma
porcdo de memoria que tipicamente tem o tamanho de uma
pagina de memdria (ex. 4096 bytes), ou multiplo de uma
pagina, dependendo da implementacdo do KMA. Assim,
KMAs baseados nessa estrutura sdo denominados slab
allocators. Considerando a arquitetura do kernel Linux, o
KMA se situa sobre o alocador primario de paginas (page-level
allocator — PLA), sendo parte integrante do subsistema de



gerenciamento de memoria virtual. A Fig. 2 ilustra esse
posicionamento. O sentido das setas indica o destinatario do
resultado da respectiva chamada. Por exemplo, um subsistema
do kernel (ex. device driver) recebe um slab via kmalloc(), o
qual é retornado pelo KMA. Para a implementacdo do seu
conjunto de slabs, 0 KMA solicita paginas de meméria junto
ao PLA, via alloc_pages(). Na medida em que os slabs tornam-
se livres, ou seja, deixam de ser usados, eles sdo liberados via
kfree() e suas respectivas paginas podem retornar aoc PLA,
neste caso via free_pages().

kernel subsystem

kmalloc()T lkfree()

KMA

alloc_pages()T lfree_pages()

page-level allocator

Fig. 2. KMA e demais subsistemas no kernel Linux.

De forma geral, outro ponto comum entre os KMAs é a
existéncia de uma politica especifica para tratar o acesso a
memdria em maquinas NUMA (Non-Uniform Memory
Access). Nesse tipo de computador, a memdria principal esta
dividida em bancos de meméria, em geral conhecidos como
nés, que podem estar associados a um ou mais
processadores/nicleos. O tempo de acesso varia de acordo com
a distancia que o banco de memodria esté de cada processador.

Nas préximas secOes sdo apresentadas as caracteristicas
especificas de cada KMA analisado. Os alocadores sdo SLAB,
SLOB, SLUB e SLQB. Os trés primeiros sdo parte integrante
do kernel padrdo (mainstream) do Linux e podem ser
selecionados para uso durante a compilacdo do kernel. O
quarto alocador encontra-se disponivel como um patch a partir
da vers&o 2.6.30 do kernel Linux.

B. SLAB

O SLAB [5] foi o KMA padrdo do kernel Linux entre as
versbes 2.2 e 2.6.23. Esse alocador é fortemente baseado no
alocador originalmente proposto para o sistema operacional
SunOS, descrito em [5], o qual se baseia em diferentes caches
de slabs. Cada slab consiste de uma ou mais paginas de
memdria para acomodar objetos (blocos de memdria)
dinamicamente alocados. Cada cache armazena objetos de
mesmo tamanho. Em cada cache, os slabs sdo organizados em
trés listas: full, partial e free (ver Fig. 3). A lista full armazena
os slabs que ndo possuem um Unico objeto livre e, portanto,
ndo podem ser utilizados para atender uma requisicdo de
meméria. A lista partial mantém slabs que possuem pelo
menos um objeto alocado e no minimo um objeto livre; é essa
lista que preferencialmente é utilizada para satisfazer
requisicdes de meméria. A lista free armazena qualquer slab
que tenha se tornado totalmente vazio, ou seja, ndo possui
objetos. Essa lista é utilizada para satisfazer uma requisicdo de
memoria somente quando a lista partial esta vazia. Uma cache,
tal como descrita anteriormente, é denominada de cache de uso
geral e armazena diferentes tipos de objetos. Esse tipo de cache

é utilizada por subsistemas do kernel que requisitam uma
porcao de memoria via kmalloc(). O parametro dessa funcéo é
o0 tamanho do objeto a ser alocado. Assim, o alocador utiliza o
tamanho para decidir qual de suas caches de uso geral ira
retornar a porcdo de memoria solicitada. As caches de uso
geral sdo criadas automaticamente pelo SLAB. Por outro lado,
é possivel criar uma cache para um tipo especifico de objeto
(ex. dentry). Essa cache especifica é criada explicitamente por
meio da rotina kmem_cache_create(). E necessario, entretanto,
especificar um construtor e destrutor a ser usado com tal tipo
de objeto. O construtor indicado na criagdo destas caches é
utilizado apenas quando o alocador busca mais paginas de
memoria para a cache e divide estas paginas em novos objetos.
O destrutor sera chamado apenas quando o alocador decidir
devolver paginas de memoria para o PLA. Desta forma, ndo
haverd necessidade de fazer chamadas do construtor de um
objeto enquanto houver memoria na cache, nem chamadas ao
destrutor deste objeto, 0 que melhora o tempo de resposta das
operacOes de alocacéo e desalocacdo de memdria. A criagdo,
manutencdo e defini¢cdo das politicas de acesso a uma cache
especifica sdo de responsabilidade do subsistema que a criou.
Por exemplo, no subsistema de gerenciamento de arquivos,
como ha necessidade de alocar, frequentemente, algumas
estruturas especificas, este subsistema se responsabiliza por
criar as caches que necessita, tais como as caches dentry e
inode_cache. Um subsistema que necessita requisitar um
objeto a uma cache especifica deve fazer uso da funcédo
kmem_cache_alloc(), passando como parametro o endereco da
cache de interesse. A politica do SLAB para maquinas NUMA
é criar as trés listas de slabs (full, partial e free) para cada no
encontrado. Assim, quando o SLAB percebe que a requisi¢do
que chegou a uma dada cache € proveniente de um
determinado nd, ele a direciona para a lista partial deste no.
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Fig. 3. Organizacéo da cache no SLAB.

C. SLOB

O alocador SLOB [10] foi desenvolvido para sistemas com
limitacdo de memodria. Esse alocador foi introduzido na versdo
2.6.14 do kernel Linux. Este é o alocador recomendado quando
se esta compilando o kernel para sistemas embarcados. Apesar
de implementar as interfaces de aloca¢do do SLAB, tais como
kmalloc() e kmem_cache_alloc(), ele apenas simula o uso das
caches. O SLOB mantém listas encadeadas de paginas que sdo
utilizadas para atender requisi¢cdes por objetos menores do que
uma pagina (4096 bytes). As listas sdo organizadas de acordo
com o tamanho dos objetos, como ilustrado na Fig. 4. A lista
small mantém objetos menores do que 256 bytes; a lista
medium mantém objetos com tamanho entre 256 e 1023 bytes;



e a lista large mantém objetos com tamanho entre 1024 e 4095
bytes. A organizacdo em apenas trés listas tem como objetivo
reduzir o consumo de memoria provocado pelas caches e listas
do alocador SLAB. No entanto, armazenar diferentes tamanhos
de objetos em uma mesma pagina, dependendo do
comportamento da aplicacdo, pode acarretar fragmentacdo
interna, o que resulta no aumento de consumo de memoria. Se
a porcdo de memoria requisitada para um objeto for maior ou
igual a uma pagina, o SLOB requisita um conjunto de paginas
suficiente para conter o tamanho requisitado, diretamente do
PLA. A liberagdo de tais objetos provoca o retorno das
respectivas paginas diretamente ao PLA. Por fim, a politica do
SLOB para maquinas NUMA ¢ simplesmente entregar um
bloco de memoria que pertenca a uma pagina proveniente do
n6 especificado.

[=-] [--]
free_slob_large , —» g & —
\1__________/ =]
o~ -l
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free_slob_mediu — o~ —
u
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_ free_slob_small , —» =) =~ —
\“‘—————/ ~ —

Fig. 4. Listas de paginas do SLOB.

D. SLUB

O alocador SLUB [11] tornou-se disponivel a partir da
versdo 2.6.22 do kernel Linux [12]. Esse KMA foi proposto
para corrigir problemas observados no alocador SLAB, tais
como de escalabilidade, complexidade do cédigo fonte e
sobreuso (overhead) de memodria, causados por metadados de
gerenciamento de memoria. Assim como o SLAB, o SLUB é
organizado em caches, onde cada cache mantém varios slabs;
cada slab tem o tamanho de uma pégina e retne objetos do
mesmo tamanho. O SLUB também classifica seus slabs como
full, partial e free. No entanto, apenas a lista partial é
realmente mantida. Quando um slab se torna full, esse slab é
removido da lista de slabs e ignorado pelo alocador até que um
de seus objetos seja liberado. Quando um slab se torna free,
sua pagina € imediatamente devolvida ao PLA. Com esta
medida 0 SLUB reduz a quantidade de paginas que mantém,
reduzindo assim o consumo de meméria. Focando ainda no
baixo consumo de memdria, o SLUB nao implementa
estruturas de controle por slab e nem metadados sobre objetos.
A pégina que compde um slab possui um ponteiro para o
primeiro objeto da lista de objetos livres dentro do slab e um
contador que indica o nimero de objetos do slab que ja foram
alocados, conforme ilustrado na Fig. 5.

Quando ocorre uma alocacdo, o contador inuse €
incrementado, o primeiro objeto da lista de livres é retornado e
0 ponteiro freelist é atualizado. Na liberacdo de um objeto,
essas operacgdes sdo realizadas na ordem inversa. Finalmente, a
politica do SLUB para méaquinas NUMA é manter uma lista de
partial slabs por n6. Além disso, cada processador/core
mantém um slab exclusivo (active slab), eliminando a
necessidade de mecanismos de exclusdo muitua. Este é o
primeiro slab consultado pelo alocador quando ocorre uma
requisi¢do (alocacdo ou liberagdo).

freelist

inuse=2
<iab struct page
| free
ALLOC
. inuse
~ - B _—
| | freelist
\ AN
inuse=3

struct page
slab

Fig. 5. Alocagdo de um objeto no SLUB.

E. SLQB

O alocador SLQB [13] utiliza varias ideias implementadas
nos alocadores SLAB e SLUB, mas possui uma estrutura
diferente para tratar seus slabs. O SLQB implementa uma
cache (abstrata) que mantém objetos de tamanho fixo. Objetos
séo requisitados via kmem_cache_alloc() ou kmalloc(), tal que
esta Ultima é apenas um redirecionamento para a primeira. A
estrutura da cache é ilustrada na Fig. 6. A estrutura
kmem_cache mantém vérios pardmetros globais, tais como o
tamanho dos objetos (size), 0 nome da cache (name) e a ordem
de alocacdo das paginas (order). Cada processador/core tem a
sua prépria kmem_cache_cpu. Requisicbes por objetos sdo
atendidas, inicialmente, pelos objetos disponiveis na lista
freelist. Essa lista é gerenciada como uma pilha (novas
requisi¢des usam objetos recém-liberados) para otimizar o uso
da memoria cache. Quando ocorre uma requisi¢cdo e ndo ha
objetos livres na freelist, 0 SLQB requisita uma nova pagina do
PLA. A nova péagina ¢é adicionada a lista partial e o objeto,
para atender & requisicdo, é retirado dessa pagina. Outros
objetos podem ser retirados dessa pagina, mas somente quando
a freelist estiver vazia. Eventualmente, os objetos retornam, via
kmem_cache_free() ou kfree(), a freelist. Quando o tamanho
dessa lista alcan¢a um limiar (definido por hiwater), os objetos
sdo devolvidos para suas paginas na lista partial. Essas paginas
por sua vez sdo devolvidas ao PLA, quando completamente
preenchidas com objetos livres. Contudo, um objeto da freelist
pode ter sido alocado originalmente em outro core, nesse caso,
entdo, o objeto é movido para a lista rlist. Quando o tamanho
dessa lista alcanca um limiar (definido por freebatch), o SLQB
percorre a lista rlist de cada core, movendo cada objeto para a
lista remote free do core no qual o objeto foi alocado
originalmente. Os objetos permanecem na remote_free até que
um limiar (definido por remote free check) seja atingido.
Neste caso, objetos dessa lista sdo transferidos para a freelist
ou para as paginas de origem (na lista partial).

struct kmem_cache

hiwater ¥ struct kmem_cache_cpu
freebatch remote_free ——+ object — object
size remote_free_check
order rlist———————— obiject
name freel ist\
partial object — object — object

cpu_slab \.

v struct page

\ struct page

Fig. 6. Estruturas do SLQB.



IV. AVALIAGAO EXPERIMENTAL

Como informado na Se¢do IlI, foram criadas quatro
instdncias do kernel Linux, cada uma sendo o resultado da
compilacdo da versdo 2.6.39 configurada com um dos quatro
KMAs apresentados na Se¢éo I1l. Um experimento consistiu
na execucdo do SysBench, nos modos de operacdo fileio e
memory, com cada instancia compilada do kernel e variando o
namero de processadores (cores) de 1 até 8. Cada experimento
foi repetido cinco vezes e seus resultados foram analisados
com base na média das repeticdes. Portanto, foram realizadas
160 execucBes considerando todas as combinagdes. Salienta-se
que o SysBench foi parametrizado para executar 64 threads e
realizar 100 mil operagdes de escrita. Ao final de cada conjunto
de cinco repeticbes do mesmo experimento, o computador foi
reiniciado a fim de configurar o novo cendrio de teste.

A. Resultados do SysBench no Modo ‘fileio”

A Fig. 7 mostra o tempo médio de execucdo do SysBench,
em modo fileio, sob cada KMA. O menor tempo de execugdo
foi obtido com o SLOB em um core. Nenhum dos alocadores
foi predominantemente melhor ou pior. Os achados
experimentais sugerem que o SLQB melhora seu desempenho
a partir de quatro cores. J& o SLUB foi o alocador que
apresentou maior variabilidade nos resultados entre o0s
diferentes nimeros de core, ao contrario do SLOB que
apresentou a menor variabilidade, sendo este também o
alocador com menor tempo médio (369,88s), sequido do SLAB
(378,88s), SLUB(382,13s) e SLQB (384,50s).
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400 A
390 4

@ 380 1

§37o g

2 360 -
350 -
340 -
330 -
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oo [NNSSRNANEENANREE] 301

1 Core 2 Cores 3 Cores 4 Cores 5 Cores 6 Cores 7 Cores

Fig. 7. Tempo médio de execucédo do SysBench no modo fileio.

Ressalta-se que o tempo de execucdo reportado pelo
SysBench corresponde ao tempo da etapa run. Desse modo, as
etapas prepare e cleanup ndo foram considerados. No modo
fileio, a criacdo dos arquivos se d& na etapa prepare e a
exclusdo na etapa cleanup, portanto, os valores apresentados
ndo contemplam essas duas operagoes.

Os resultados para consumo e fragmentagcdo de memoria
foram obtidos considerando as trés etapas do modo fileio. O
consumo de memoria do kernel é apresentado na Fig. 8. O eixo
y representa o consumo da memoria no kernel Linux, em
megabytes, apds a execucdo do SysBench. Nota-se que o kernel
compilado com o SLQB demandou significativamente mais
memoria do que os demais, independente da quantidade de
cores. A diferenca foi superior a 100 megabytes. Similar ao
tempo de execugdo, 0 menor valor de consumo de memoria foi
obtido com o SLOB em 1 core. Observa-se que, em média, 0
consumo de memdria do SLOB (186,75 MB) e SLUB (188,25

MB) foi muito préoximo, com ligeira vantagem para o SLOB.
Convém ressaltar que em nivel de kernel uma diferenca de
alguns megabytes é significativa, principalmente em se
tratando de sistemas com restricbes de memdria, tal como
sistemas embarcados. Neste caso, a diferenca entre SLOB e
SLUB foi de 1,5 MB. O SLUB ¢é seguido pelo SLAB (193,13
MB) e SLQB (291,50 MB).
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Fig. 8. Consumo de meméria do kernel apés o SysBench no modo memory.

A Fig. 9 apresenta o numero medio de eventos de
fragmentacdo de memodria capturados com o SystemTap
durante a execugdo do SysBench. Diferente dos resultados
anteriores, o pior desempenho foi do alocador SLOB,
independentemente do numero de nucleos. Este foi seguido
pelo SLQB com o segundo pior desempenho, principalmente
com 1 até 4 cores. No geral, o melhor desempenho foi obtido
com o SLAB, apresentando baixo nivel de fragmentacdo; em
algumas execucdes este alocador ndo gerou fragmentacdo. O
segundo melhor resultado foi observado com o SLUB.

A carga de trabalho exercida pelo modo fileio tem como
principal caracteristica maior nimero e variedade de operacfes
em arquivos, sendo tipica de sistemas servidores de banco de
dados, arquivos, web, entre outros correlatos. Os achados
experimentais reportados nesta se¢do sugerem que o SLQB néo
é adequado para este tipo de carga de trabalho, apresentando o
maior tempo de resposta, maior consumo de memodria e
ocorréncias de fragmentagdo de meméria. J& o SLOB
demonstrou 0s melhores resultados para tempo de execucao e
consumo de memoria, porém tendo sido o alocador com maior
namero de eventos de fragmentagdo. Para sistemas que ndo
executam de forma ininterrupta por longos periodos de tempo,
onde a fragmentacdo deixa de ser uma preocupacao, o SLOB
seria a opcdo recomendada. Para os demais casos, entdo o
SLAB e 0 SLUB se mostram as melhores alternativas, cuja
escolha dependeria das necessidades em termos de tempo de
resposta, consumo de memdria e nimero de processadores.
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B. Resultados do Sysbench no Modo “memory”

O SysBench no modo memory realizou a transferéncia de
100 gigabytes entre posicdes de memdria. Como a
transferéncia praticamente ndo gera requisicdes de alocacdo de
memoria, ndo houve evento de fragmentagcdo em nenhuma das
instancias, independente do nimero de cores. Quanto ao tempo
de transferéncia, observou-se que esse sofre reducdo na medida
em que o namero de cores varia de um até quatro. A partir de
cinco cores ha aumento pouco significativo nesse tempo, como
pode ser observado na Tabela I. Cada linha dessa tabela refere-
se ao tempo (em segundos) de transferéncia demandado por
cada KMA analisado. As colunas referem-se a quantidade de
cores. De dois a cinco cores 0 melhor tempo, nesta ordem, foi
obtido por SLAB, SLOB, SLUB e SLQB. A partir de sete
cores esta ordem & invertida. Os resultados de tempo médio de
execucdo dos testes no modo memory com cada um dos
alocadores foram, em geral, bem préximos uns dos outros.
Com relagdo ao consumo de memdria (em megabytes) pelo
kernel, a diferenca entre os KMAs é mais destacada (ver
Tabela Il). Observa-se que, para cada KMA, a quantidade de
memdria consumida se manteve praticamente constante,
independente da quantidade de cores (colunas da Tabela I1). O
SLQB foi 0 KMA que mais consumiu memoria. Os alocadores
SLAB e SLUB apresentaram resultados de consumo de
memdria semelhantes, uma vez que implementam estruturas de
dados muito parecidas. O alocador SLOB, dentre os analisados,
€ 0 que apresentou 0 melhor resultado de consumo de memdria
de kernel para esse teste.

TABELA I TEMPO MEDIO DE EXECUGAO (SYSBENCH / MEMORY)

1 2 3 4 5 6 7 8

SLAB | 178,6 | 95,9 67,4 50,9 55,8 62,2 67,3 67,4

SLOB | 162,1 | 99,6 70,0 53,0 56,7 61,1 66,8 67,0

SLUB | 191,7 | 102,3 | 72,1 54,6 57,0 61,5 66,3 66,8

SLQB | 204,5 | 1051 | 73,7 55,9 57,3 61,6 64,8 65,7

TABELA Il CONSUMO DE MEMORIA NO KERNEL (SYSBENCH / MEMORY)

1 2 3 4 5 6 7 8

SLAB 138 139 139 139 140 141 141 142

SLOB | 103 88 89 98 90 125 125 126

SLUB 135 136 136 137 137 138 138 140

SLOB | 260 257 260 259 259 261 262 264

V. CONCLUSOES

Este trabalho apresentou uma comparacdo de quatro KMAs
(SLAB, SLOB, SLUB, e SLQB). Os experimentos adotaram
cargas de trabalho constituidas de operagBes de escrita de
dados em disco e transferéncias de dados entre posicdes de
memoria. Os KMAs foram analisados e comparados quanto ao
tempo de execucdo, fragmentagdo e consumo de memdria. Os
achados experimentais sugerem que, de forma geral, o0 SLOB
foi 0 KMA com melhor desempenho entre todos os alocadores
avaliados, ndo obtendo o melhor desempenho apenas no

critério de fragmentagdo de memdria. Esse alocador foi
seguido do SLAB, SLUB e SLQB. Em termos de tempo de
execucdo o SLAB foi o segundo melhor. J& em consumo de
meméria o SLUB foi o segundo melhor alocador. Em nimero
de eventos de fragmentagdo, o SLAB foi o alocador com
melhor desempenho, seguido do SLUB. A Tabela Il resume
estes resultados.

TABELA III. SUMARIO DOS RESULTADOS (RANKING GERAL)
Tempo Meméria |Eventosde| Tempo Meméria
(1/0) (1/0) Frag. (1/10) | (Transf.) | (Transf.)
SLAB 20 3¢ 1¢ 20 30
SLOB 12 12 49 10 10
SLUB 30 20 20 30 20
SLQB 4¢ 49 30 40 40
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