
On the Influence of Shared Memory Contention in
Real-time Multicore Applications

Giovani Gracioli
Hardware Software Integration Lab (LISHA)

Center for Mobility Engineering (CEM)
Federal University of Santa Catarina (UFSC)

Joinville, Santa Catarina, Brazil
Email: giovani@lisha.ufsc.br

Antônio Augusto Fröhlich
Hardware Software Integration Lab (LISHA)

Computer Science Department (INE)
Federal University of Santa Catarina (UFSC)

Florianópolis, Santa Catarina, Brazil
Email: guto@lisha.ufsc.br

Abstract—The continuous evolution of processor technology
has allowed the utilization of multicore architectures in the
embedded system domain. A major part of embedded systems,
however, are inherently real-time (soft and hard) and the use
of multicores in this domain is not straightforward due to their
unpredictability in bounding worst-case execution scenarios. One
of the main factors for unpredictability is the coherence through
memory hierarchy. This paper characterizes the influence of
contention for shared data memory in the context of embedded
real-time applications. By using a benchmark, we have measured
the impact of excessive shared memory invalidations on five
processors with three different cache-coherence protocols (MESI,
MOESI, and MESIF) and two memory organizations (UMA and
ccNUMA). Results have shown that the execution time of an
application is affected by the contention for shared memory (up
to 3.8 times slower). We also provide an analysis on Hardware
Performance Counters (HPCs) and propose to use them in order
to monitor and detect excessive memory invalidations at run-time.

I. INTRODUCTION

Several embedded real-time applications are implemented
in a dedicated hardware logic (i.e., Application-Specific In-
tegrated Circuits – ASICs) to obtain maximum performance
and fulfill all the application’s requirements (processing, real-
time deadlines, etc). For instance, digital signal processing
algorithms and baseband processing in wireless communica-
tion, should process a big amount of data under real-time
conditions. Nevertheless, as they are usually implemented in
a dedicated hardware, these applications present restrictions
in terms of developing support (e.g., bug fixes, updating, and
maintainability).

The continuous evolution of processor technology, how-
ever, has enabled multicore (e.g. Symmetric Multiprocessing
- SMP) architectures to be also used in the embedded real-
time system domain [1]. In this context, an application is
implemented on top of a Real-Time Operating System (RTOS),
composed of several real-time cooperating threads (threads that
share data).

In this scenario, due to multicore processor organization,
some important characteristics must be considered, specifi-
cally, the memory hierarchy [2], [3]. The memory hierarchy
holds an important role, because it affects the estimation of
the Worst-Case Execution Time (WCET), which is extremely
important in the sense of guaranteeing that all threads will

meet their deadlines through the design phase evaluation
(schedulability analysis) [4], [5], [6].

Several works have been proposed to deal with memory
organization in multicore architectures and provide real-time
guarantees [1], [7], [8], but they only consider scenarios where
threads are independent, that is, there is not data sharing. In
situations where threads share data in a cooperating fashion, a
partitioning/locking mechanism does not avoid the contention
for shared data. For instance, consider a scenario composed of
“n” threads sharing data, running on “m” different cores in a
pipeline order (thread 2 after thread 1, thread 3 after thread 2,
and so on). Thread 1 executes and writes in the shared data
location. When the thread 2 accesses the shared data, it gets an
invalid access and must ask (snoop request) for the most recent
copy of the data or recover it from a higher memory level. The
task of performing a snoop request is done automatically by
the memory controller hardware, which increases the threads’
execution time, even without their knowledge. The time to
complete a snoop request is considerably slow (comparable to
access the off-chip RAM) [9], which can lead to an unexpected
increase of the thread’s execution time and deadline losses.

In this paper, we bring the problem of contention for shared
memory to the embedded real-time system domain by measur-
ing its influence on five different processors with three different
cache-coherence protocols (MESI, MOESI, and MESIF)1 and
two memory organizations (UMA and ccNUMA). We use
a benchmark composed of two versions of the same appli-
cation (sequential and parallel). If the sequential version is
schedulable (proved by a schedulability analysis), the parallel
version should be schedulable as well (it executes the same
code but in parallel). We demonstrate in our experiments that
due to the current multicore memory organization, the parallel
version has its execution time affected (up to 3.8 times slower),
which can lead to deadline losses. In order to monitor and
detect when data sharing occurs, we also provide an analysis
of Hardware Performance Counters (HPCs) in one multicore
processor. HPCs are special registers available in the most
modern microprocessors through the hardware Performance
Monitoring Unit (PMU). They offer support to counting or
sampling several micro-architectural events at run-time [13]
and can be used to capture hardware events that reflect the
software behavior.

1Further information about cache-coherence protocols can be found in [10],
[11], [12].

In summary, in this paper, we make the following contri-
butions:

(I) We motivate the problem by measuring the influ-
ence of contention for shared memory in the context of
hard real-time applications; (II) We evaluate the problem
on five different multicore processors, with three different
cache-coherence protocols (MESI, MOESI, and MESIF) and
two memory organizations (UMA and ccNUMA) by using a
benchmark composed of a sequential and parallel versions
of the same application; (III) We evaluate HPCs in one
of the five processors. HPCs together with the OS scheduler
and memory partitioning are good alternatives to decrease the
contention for shared data memory and provide predictability
and performance gains to real-time applications. We present an
analysis of hardware events that can be used to this purpose.

The remainder of this paper is organized as follows.
Section II evaluates and discusses the problem. Section III an-
alyzes some hardware events. Section IV provides an overview
of related works, and Section V concludes the paper.

II. PROBLEM EVALUATION AND DISCUSSION

The problem we are addressing in this paper raises from the
memory hierarchies present in the today’s SMP architectures
and their memory coherence protocols. When a core writes
into a data that other cores have cached, the cache-coherence
protocol invalidates all copies, causing an implicit delay in
the application’s execution time. At the same way, when a
core reads a shared data that was just written by another core,
the cache-coherence protocol does not return the data until it
finds the cache that has the data, annotate that cache line to
indicate that there is shared data, and recover the data to the
reading core. These operations are performed automatically by
the hardware and take hundreds of cycles (about the same time
as accessing the off-chip RAM), increasing the application’s
execution time [9]. Two kinds of scaling problem occur
due to shared memory contention [9]: access serialization to
the same cache line done by the cache coherence protocol
and saturation into the inter-core interconnection, preventing
parallel processing gains. Reducing the effects of cache line
contention can significantly improve the application’s overall
performance and avoid deadline misses

In order to evaluate the influence of contention for shared
data memory in the execution time of an application, we
have designed a benchmark to generate memory invalidatons
composed of two versions of a pipeline application and a best-
case application for comparing purposes (Figure 1):

(I) Sequential: in this version, two threads are executed in a
sequential order. There are no memory conflicts (Figure 1(a)).
The objective of this version is to simulate an algorithm that
does not have shared memory invalidations.

(II) Parallel: two threads run at the same time and share
data (Figure 1(b)). The objective of this version is to evaluate
the performance of the previous version when it is imple-
mented in a multicore architecture. Both threads (1 and 2)
from sequential and parallel versions have the same operations
and memory accesses (see Figure 2). Common sense dictates
that this version should run about two times faster than
the sequential one. Consequently, if the sequential version is

Thread 2

end

Initia.

Thread 1

(a)

Thread 1
Shared

data

end

Initia.

Thread 2

(b)

Thread 1

end

Initia.

Thread 2

(c)

Figure 1. Benchmark applications: (a) sequential (b) parallel (c) best-case.

schedulable (proved by a schedulability analysis), the parallel
version should be schedulable as well. We do not use any kind
of synchronization (i.e., semaphores, mutexes, or condition
variables) to ensure the data consistency, because we are only
interested in measuring the shared data contention overhead.

(III) Best-case application: two threads run at the same
time, but do not share data (Figure 1(c)). This application
should run about 2 times faster than the sequential one on
a multicore processor. The objective is to have a best-case
scenario comparable to the sequential and parallel versions.

All three applications have two two-dimensional arrays of
varying size ROWS x COLS and a loop of 10000 iterations,
in which math operations are executed. The shared data in
the parallel version is accessed by reading and writing in
both arrays and in the same positions, thus we are sure
that both threads are accessing the corresponding cache line.
Figure 2 shows part of the source code from one of the
functions implemented in the sequential and parallel versions.
At initialization phase, the arrays are started with zero and the
threads are created (parallel and best-case applications). The
benchmark was implemented as a Linux application, in C++
(GNU g++ 4 compiler without using optimization parameters),
and using the pthread library version 2.11.12 for the parallel
and best-case versions. Each thread in these versions was
assigned to a different core by using the pthread setaffinity np
function. We ran each application version 100 times and then
we extracted the sampled worst-case execution time2. The time
was measured by the Linux time tool. The kernel version used
in all test was the 2.6.32. The arrays’ size was set to 64x64
(32 KB), 128x128 (128 KB), 256x256 (512 KB), 512x512
(2 MB), 1024x1024 (8 MB), and 2048x2048 (32 MB), con-
sidering an integer as 4 bytes. Table I shows the configuration
of 3 processors used during the evaluations.

Figure 3 presents the WCET (in logarithm scale) for each
application version on the Intel Core 2 Quad Q9550 processor.
As expected, the best-case application was about 2 times faster
than the sequential one. However, we note that, independently
of the arrays’ size, the parallel version was always slower than
the sequential version (up to 1.31 time). The relative standard
deviation for the sequential, parallel, and best-case applications
was 0.78%, 0.71%, and 0.36% of the total execution time,
respectively. In addition, we repeated the evaluation using
an optimized version of the Linux kernel [9]. Basically, the
Linux was modified to avoid locks and atomic instructions
by reengineering data structures and unnecessary sharing. All
applications presented similar performance, and the parallel

2From now on, whenever we refer to the WCET we are actually referring
to the sampled WCET.

1 register unsigned int sum0;
2 register unsigned int sum1;
3
4 for(unsigned int i = 0; i <= REP; i++) {
5 for(unsigned int j = 0; j < ROWS; j++) {
6 sum0 = 0;
7 sum1 = 0;
8 for(unsigned int k = 0; k < COLS; k++) {
9 sum0 += array0[j][k];

10 sum1 += array1[j][k];
11 }
12 for(unsigned int k = 0; k < COLS; k++) {
13 array0[j][0] = sum0;
14 array1[j][0] = sum1;
15 }
16 }
17 }

Figure 2. Part of the source code of sequential and parallel applications.

Table I. AMD OPTERON 280, INTEL I5-650, AND INTEL Q9550
CONFIGURATIONS.

Feature/ Opteron 280 Intel i5-650 Intel Q9550
Processor
Frequency 2.4 GHz 3.2 GHz 2.83 GHz

Physical dies 2 1 1
Cores per die 2 2 4

SMT - 2 -
Bus Speed HyperTransport QPI 1.3 GHz FSB 1.3 GHz

1.0 GHz
L1 private data 128 KB 2-way 32 KB 64 KB

cache size associative
L2 cache 1 MB 16-way 256 KB per 12 MB

size associative core (private)
L3 shared - 4 MB -
Memory ccNUMA ccNUMA UMA

architecture
Coherence MOESI MESIF MESI
protocol

version was always slower than the sequential one. This
performance degradation is caused especially by data sharing
(lines 9, 10, 13, and 14 of Figure 2), which causes excessive
invalidations in the same cache line due to the MESI cache-
coherence protocol and bus snooping. Moreover, considering
the embedded real-time domain, this performance degradation
may imply in deadline losses.

WCET Intel 9550 original kernel

W
C

E
T

 (
in

 s
e

c
o

n
d

s
)

0.1

1

10

100

Data size
32KB 128KB 512KB 2MB 8MB 32MB

Best-case
Parallel
Sequential

(a)

WCET Intel Q9550 optimized

W
C

E
T

 (
in

 s
e

c
o

n
d

s
)

0.1

1

10

100

Data size
32KB 128KB 512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(b)

Figure 3. Benchmark evaluation on Intel dual-core Q9550 processor: (a)
Original Linux kernel (b) Optimized Linux kernel.

We also ran the three applications in other two SMP
processor, Intel Xeon 5030 and a PowerPC-based dual-core on

the Cell architecture (MESI/UMA)3. We obtained even worse
execution times: for the PowerPC processor the parallel version
was up to 2.62 times slower than the sequential one, while for
the Intel Xeon 5030 the parallel was up to 3.87 times slower
when the data size was 32 MB. For the Intel Xeon processor,
the performance degradation increased due to bus saturation
(FSB) caused by a greater frequency of data transfer between
the L2 cache and the main memory and also by the cache-
coherence protocol that writes the data back to memory.

Our next evaluation was carried out in the AMD Opteron
280 processor (MOESI/ccNUMA - see Table I). We evaluated
two execution scenarios:

(I) Scenario 1: threads running on cores in the same
die (CPUS 0 and 2). (II) Scenario 2: Linux Completely
Fair Scheduler (CFS) responsible for allocating a thread to
a core. CFS supports the creation of groups of tasks, round-
robin, FIFO, and real-time scheduling policies. Jones presents
a complete description about the CFS implementation [14].

The objective of this experiment was to analyze the relation
between the physical core location and the shared memory
coherence by measuring the applications WCET. Figure 4(a)
shows the measured WCET for scenario 1. The parallel version
was always slower than the sequential one (up to 2.82 times
using arrays’ size of 32 KB). We can also note a decreasing
in the WCET difference as the arrays’ size increases. The
relative standard deviation in this scenario for the sequential,
parallel, and best-case was 2.86%, 9.88%, and 4.29%. Fig-
ure 4(b) represents the measured WCET for scenario 2. The
applications performance was similar to the scenario 1. The
relative standard deviation for the sequential, parallel, and best-
case was 4.68%, 3.91%, and 4.99%. We also ran the threads on
cores located in different dies, and the sequential application
was slightly faster than the parallel one for data size of 8 and
32 MB. As expected from a ccNUMA processor, there is a
variation in the WCET when executing applications in cores
physically located on different dies.

WCET AMD Opteron 280
CPUs 0 and 2

W
C

E
T

 (
in

 s
e

c
o

n
d

s
)

0.1

1

10

100

Data size
32KB 128KB512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(a)

WCET AMD Opteron 280 CFS

W
C

E
T

 (
in

 s
e

c
o

n
d

s
)

1

10

100

Data size
32KB 128KB 512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(b)

Figure 4. Benchmark evaluation on AMD Opteron 280 processor assigning
threads to specific cores: (a) CPUS 0 and 2 (b) Linux CFS scheduler.

Our next evaluation was carried out in the Intel i5-650
processor (MESIF/ccNUMA4 - see Table I - without using
hyperthreding). We ran each application in two different sce-
narios:

(I) Scenario 1: threads running on two different cores

3Note for the reviewers: Due to space constraints, we suppress the graphs
of these experiments.

4Remember here that the non-uniform memory in the Intel i5 refers to cache
instead of the main memory as in the computer architecture point of view.

(CPUS 0 and 1). (II) Scenario 2: Linux CFS responsible for
allocating a thread to a core.

Figure 5 shows the WCET of each application in the
two described scenarios. We can observe that the difference
between the parallel and best-case WCET was almost the same
in the two scenarios. In general, the parallel version was faster
than the sequential one. Only in scenario 1 with data size of
32 MB, the parallel one was slower than the sequential. The
relative standard deviation of sequential, parallel, and best-
case applications in scenario 1 was 0.95%, 3.30%, and 1.53%,
and in scenario 2 was 1.35%, 3.07%, and 2.92% of the total
execution time. The performance increasing can be explained
by the processor organization, composed of Intel’s QuickPath
Interconnect (QPI) and MESIF protocol. Compared to the FSB,
QPI provides higher bandwidth and lower latency for NUMA-
based architectures. Each processor has an integrated memory
controller and features a point-to-point link (all processors are
connected), allowing parallel data transfer and shortest snoop
request completion [12].

WCET Intel i5-650
CPUs 0 and 1

W
C

E
T

 (
in

 s
e

c
o

n
d

s
)

0.1

1

10

100

Data size
32KB 128KB 512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(a)

WCET Intel i5-650 CFS

W
C

E
T

 (
in

 s
e

c
o

n
d

s
)

0.1

1

10

100

Data size
32KB 128KB 512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(b)

Figure 5. Benchmark evaluation on Intel i5-650 processor assigning threads
to specific cores: (a) CPUS 0 and 1 (b) Linux CFS scheduler.

Discussion. During our evaluations we observed a set of
interesting facts regarding the evaluated problem:

SMP architectures: We executed our benchmark on
five different processors that implement MESI, MESIF, and
MOESI, as cache-coherence protocol, and two different mem-
ory organizations (ccNUMA and UMA). The five processors
have proved that the impact of memory coherence is not
negligible and should be mainly considered for real-time and
processing intensive applications. The ccNUMA processors
have suffered less impact considering the contention for shared
data due to their bus, cache-coherence protocol, and memory
organizations. However, because their different memory access
times and unpredictability, ccNUMA architectures are not
the most adequate for real-time applications. A execution
time degradation up to 3.8 times for the parallel application
compared to the sequential one was obtained using the Intel
Xeon 5030 processor, which can certainly violate real-time
guarantees if not correctly handled.

Memory partitioning: In order to reduce cache line inval-
idations and the interference among threads that do not share
resources, methods such as memory partitioning [2] could be
used. However, in a cooperating real-time application, such as
those found in digital signal processing area, where threads
share data, memory partitioning does not solve the problem,
because threads will access the same data location on the
memory hierarchy. Memory partitioning can be used together
with other techniques, such as scheduling and cache locking, in

order to decrease the contention for shared resources between
several applications and application’s threads.

Operating systems: We used the Linux operating system.
In general, OSs do not have any support for handling the
contention for shared data. Moreover, the state-of-art real-time
multicore scheduling algorithms do not consider the problem.
Scheduling is a good alternative to solve the problem, because
it is totally transparent to applications, there is no need to
change APIs nor libraries, and can be easily integrated in
virtually any RTOS. HPCs can be used to provide to the OS
scheduler information about data sharing. The next section
provides an analysis of some hardware events that can be used
to this purpose.

III. HPCS ANALYSIS

HPCs are a good alternative to monitor shared memory
invalidations and provide to the OS a correct view of the
application behavior. The current related work neither take
into consideration the problem nor provide an analysis of
available HPCs. Hence, our objective is to analyze the main
hardware events that could be used to monitor shared memory
invalidations at run-time. Observing the events available in the
Intel Core 2 Q9550 processor, we identified that the following
events are interesting to our purpose, because they provide
information about cache lines and bus snooping [15]:

(I) L2 cache requests: we count all completed L2 cache
requests. This event can count occurrences of accesses to
cache lines at different MESI states. Since data sharing and
invalidations are generated when lines are in S or I states, we
monitor all L2 cache requests for these two states; (II) L1
data cache snooped by other core: we count the number of
times the L1 data cache is snooped for a cache line that is
needed by the other core in the same processor. The cache
line is either missing in the data cache of the other core or
is available for reading only and the other core wishes to
write the cache line. We monitor all snoops for cache lines
in S and I states; (III) External snoops: we count the snoop
responses to bus transactions. We monitor all snoop responses
to bus transactions that found a cache line in the modified state
(HITM).

We use the perf Linux tool to read the HPCs and the
libpfm4 to list all available HPCs and use them as input
to perf. We ran each application (Figure 1) and each event
configuration for 100 times and extracted the average value.
All tests were executed in the Intel Q9550 processor using
Linux 2.6.32.

Figure 6 shows the measured values for the L2 cache
request events (in logarithm scale). In Figure 6(a), we can
note an exponential increase in the events for the sequential and
best-case application after 2 MB. When the data size is 32 MB,
all the three application have similar behavior, because the data
size is greater than the shared L2 cache size. Consequently,
there is more data being replaced from/to the cache to/from
the main memory and thus more invalid cache lines. Hence,
this event is not a good alternative to monitor shared memory
invalidation for data sizes greater than 2 MB.

Figure 6(b) shows the L2 cache requests for lines in the
shared state. The difference among the three applications was

L2 Requests I State
N

u
m

b
e

r
o

f
re

q
u

e
s

ts

104

105

106

107

108

109

1010

Data size
32KB 128KB512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(a)

L2 Requests S State

N
u

m
b

e
r

o
f

re
q

u
e

s
ts

105

106

107

108

109

1010

Data size
32KB 128KB512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(b)

Figure 6. Benchmark HPCs evaluation on Intel Q9550 processor: L2 requests
for (a) I state and (b) S state.

not too significant. The explanation for shared data in the se-
quential and parallel applications is the natural implementation
of a multicore kernel, where mutual exclusion of shared data
structures is guaranteed by shared spin locks. When the data
size is greater than the half size of the L2 cache, we observe
a reduction in the cache lines in S state and an increasing of
cache lines in I state. As both threads in the parallel version
are always writing into the shared data, this event has shown
not to be a good alternative to measure memory invalidations.

The next evaluation measured the number of times the L1
data cache is snooped by another core. Figure 7 shows the
obtained values of snoops for cache lines in I state (Figure 7(a))
and S state (Figure 7(b)). There is a greater difference in
the number of snoops between the parallel and the other two
applications considering snoops for cache lines in I state, as
also observed in Figure 6. The parallel version has obtained
up to 2 order of magnitude more snoops than the sequential
and best-case applications. As the data size increase, there is
more false sharing occurring, more data being replaced in the
cache, and consequently more snoops. False sharing occurs
when threads running on different cores access data addresses
that are in the same cache line. As conclusion for this event,
the number of snoops for cache lines in I state is a good option
for monitoring shared data invalidations.

Snoops for lines in I State

N
U

m
b

e
r

o
f

s
n

o
o

p
s

105

106

107

Data size
32KB 128KB 512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(a)

Snoops for lines in S State

N
u

m
b

e
r

o
f

S
n

o
o

p
s

105

106

107

108

109

1010

Data size
32KB 128KB 512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

(b)

Figure 7. Benchmark HPCs evaluation on Intel Q9550 processor: snoop
requests for I and S states.

Finally, the next experiment evaluates the number of snoop
responses to bus transactions. Bus transactions are generated
due to the cache coherence. For example, when a processor
writes into a shared data (cache line in the S state), a bus
transaction is generated to invalidate other data copies. The
writing operation only ends when the snoop response for the
bus transaction arrives. Figure 8 shows the number of snoop
responses to bus transactions that reach a cache line in the M
state, that is, a core has written to a data and another core
wants to read or write the same data.

Snoop resposes HITM

N
u

m
b

e
r

o
f

s
n

o
o

p
s

104

105

106

107

Data size
32KB 128KB 512KB 2MB 8MB 32MB

Best-case

Parallel

Sequential

Figure 8. Benchmark HPCs evaluation on Intel Q9550 processor: external
snoops HITM.

We can note that the curves in Figure 8 are similar to the
curves in Figure 7(a). This was expected, because both threads
have the same writing and reading operations. Figure 7(a) has
shown the number of times the L1 data cache of a core is
snooped and Figure 8 shows the number of snoop responses
of this same core for a snoop request from the other core. Thus,
both events are complementary and good options to monitor
shared memory invalidations.

For instance, the scheduler could monitor the number of
external snoops HITM and snoop requests for I state during
a quantum in all cores. If the read value is greater than
a threshold (5000 for example – sequential and best-case
applications have obtained up to 100 requests in a quantum of
10 ms) in two or more cores, the scheduler can detect memory
invalidation activities in those threads running on different
cores, and take a decision, as to schedule or not a thread or to
stop it for a while in order to decrease the overhead associated
to the memory coherency.

Improving the PMU support. Initially, hardware design-
ers have added PMU capabilities into processors to collect
information for their own use [16]. However, PMUs features
have become useful for other performance measurements,
such as energy management and scheduling decision. In
consequence, the hardware designers are now adding more
functionalities to PMUs, which can certainly help the software
developer even more. Features like data address sampling,
monitoring address space intervals, processing cycles spent in
specific events, and interrupt generation when a pre-defined
value is reached could be very useful for detecting memory
coherency activities. We believe that the analysis made by this
paper can help hardware designers to improve PMU features
in multicore processors and their use in real-time applications.

IV. RELATED WORK

Shared cache partitioning is the most common method used
to address contention and provide real-time guarantees to mul-
ticore applications. Partitioning is used to isolate applications
workloads that interfere each other and thus increasing pre-
dictability [17], [2]. Another important research topic related
to memory hierarchy in multicore architectures is the timing
and delay analyses. A framework for estimating the worst-
case response time of tasks sharing an instruction cache was
developed by Suhendra et al. [18]. However, this work assumes
that data memory references (i.e., data cache) do not interfere
in the tasks’ execution time. We have shown in this paper that
the data memory hierarchy poses an important influence in the
application’s execution time. Schedule-Sensitive and Synthetic

are two methods to measure cache-related preemption and
migration delays (CPMD) [19]. The evaluation shows that the
CPMD in a system under load is only predictable for working
set sizes that do not trash the L2 cache [19].

Considering HPCs as an alternative to easily detect sharing
pattern among threads and help scheduling decisions, Bellosa
and Steckermeier were the first to suggest using HPCs to
dynamically co-locate threads onto the same processor [20].
Tam et al. use HPCs to monitor the addresses of cache lines
that are invalidated due to cache-coherence activities [16]. West
et al. [21] propose an online technique based on a statistical
model to estimate per-thread cache occupancies online through
the use of HPCs. However, data sharing is not considered
by the authors. Another work to address shared resource
contention via scheduling was proposed by Zhuravlev [3]. The
paper identifies the main problems that can cause contention
in shared multicore processors (e.g., memory controller con-
tention, memory bus contention, prefetching hardware, and
cache space contention). The authors propose two scheduling
algorithms (Distributed Intensity - DI, and Distributed Intensity
Online - DIO). DI uses a threads’ memory pattern classification
as input, and distributes threads across caches such that the
miss rates are distributed as evenly as possible. DIO uses
the same idea, but it reads the cache misses online, through
HPCs. Calandrino and Anderson have proposed a cache-aware
scheduling algorithm [7]. The algorithm uses HPCs to estimate
the working set of each thread and to schedule them in order
to avoid cache thrashing and provide real-time guarantees for
soft real-time applications. However, to correctly estimate the
working set, the threads must not share data and and the data
size of the running threads must be less than the cache size.
FPCA is a cache-aware scheduling algorithm that divides the
shared cache space into partitions [22]. Tasks are scheduled in
a way that at any time, any two running tasks’ cache spaces
(e.g., a set of partitions) are non-overlapped. A task can execute
only if it gets an idle core and enough cache partitions. In
general, all the above related work do not consider a multicore
system where threads share data. We demonstrated through our
benchmark evaluation that the contention for shared memory
data can influence the application’s execution time and lead to
performance degradation and deadline losses.

V. CONCLUSION

This paper evaluated the influence of contention for shared
data memory in the context of real-time multicore applications.
We have designed a benchmark in order to measure how
the application’s execution time is affected by the memory
coherency hardware mechanism (e.g., snooping). The bench-
mark, composed of two versions of an application (sequential
and parallel), was evaluated in 5 different processors with
3 different cache-coherence protocols (MESI, MOESI, and
MESIF) and two memory architectures (UMA and ccNUMA).
The results have shown that real-time applications mainly on
top of UMA processors must consider the coherence between
the memory hierarchy. A execution time degradation up to
3.87 times in the parallel version was obtained only because
the contention for shared data memory. As a step forward to
mitigate the problem, we analyze some hardware events that
could be used by the OS scheduler at run-time to obtain a
precise view of the data sharing activities between cores. As

future work, we plan to integrate the studied HPCs into a real-
time multicore scheduler.

REFERENCES

[1] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-time
scheduling algorithm for multiprocessors. In RTSS ’06, pages 101–110.
IEEE, 2006.

[2] S.P. Muralidhara, M. Kandemir, and P. Raghavan. Intra-application
cache partitioning. In IPDPS 10’, pages 1–12, 2010.

[3] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Ad-
dressing shared resource contention in multicore processors via schedul-
ing. In ASPLOS ’10, pages 129–142, 2010.

[4] Lars Wehmeyer and Peter Marwedel. Influence of memory hierarchies
on predictability for time constrained embedded software. In DATE ’05,
pages 600–605, Washington, DC, USA, 2005. IEEE Computer Society.

[5] Vivy Suhendra and Tulika Mitra. Exploring locking & partitioning for
predictable shared caches on multi-cores. In DAC ’08, pages 300–303,
New York, NY, USA, 2008. ACM.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution-time problem overview of methods and survey of tools. ACM
TECS, 7:36:1–36:53, May 2008.

[7] John M. Calandrino and James H. Anderson. On the design and
implementation of a cache-aware multicore real-time scheduler. In
EUROMICRO’09, pages 194–204, Washington, DC, USA, 2009. IEEE.

[8] R.I. Davis and A. Burns. A survey of hard real-time scheduling
algorithms and schedulability analysis techniques for multiprocessor
systems. techreport YCS-2009-443, University of York, 2009.

[9] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
An Analysis of Linux Scalability to Many Cores. In OSDI 2010.

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 4th Ed., September 2006.

[11] AMD. Amd64 architecture programmers manual volume 2: System
programming, June 2010. Publication # 24593. revision: 3.17.

[12] Intel. An introduction to the intel quickpath interconnect, January 2009.
Document Number: 320412-001US.

[13] B. Sprunt. Pentium 4 performance-monitoring features. IEEE Micro,
22(4):72–82, Jul/Aug 2002.

[14] M. Tim Jones. Inside the linux 2.6 completely fair scheduler, December
2009 [Accessed: 02 Mar. 2011].

[15] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual. Number 253668-037US. January 2011.

[16] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware
scheduling on smp-cmp-smt multiprocessors. SIGOPS Ope. Sys. Rev.,
41:47–58, March 2007.

[17] S. Cho and L. Jin. Managing distributed, shared l2 caches through os-
level page allocation. In MICRO ’06, pages 455–468, Washington, DC,
USA, 2006. IEEE Computer Society.

[18] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and Abhik Roychoud-
hury. Timing analysis of concurrent programs running on shared cache
multi-cores. In RTSS ’09, pages 57–67, Washington, DC, USA, 2009.

[19] Andrea B. and B. B. Brandenburg J. H. Anderson. Cache-related
preemption and migration delays: Empirical approximation and impact
on schedulability. In OSPERT ’10, pages 33–44, Brussels, Jul 2010.

[20] Frank Bellosa and Martin Steckermeier. The performance implications
of locality information usage in shared-memory multiprocessors. Jour-
nal of Par. Dist. Comp., 37:113–121, August 1996.

[21] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang. Online cache
modeling for commodity multicore processors. SIGOPS Oper. Sys. Rev.,
44:19–29, December 2010.

[22] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling
and analysis for multicores. In EMSOFT ’09, pages 245–254, New
York, NY, USA, 2009. ACM.

