
Evaluation of the Notification Oriented Paradigm

applied to Real-Time Systems

Robson R. Linhares
1,2,3,5

 , Douglas P. B. Renaux
1,2,4

, Jean M. Simão
1,2,3,4

, Paulo C. Stadzisz
1,2,3,5

1 - Graduate School in Applied Computing (PPGCA)

2 - Laboratory of Embedded Systems Innovation and Technology (LIT-CITEC)

3 - Graduate School in Electrical Engineering and Industrial Computer Science (CPGEI)

4 - Department of Electronic Engineering (DAELN)

5 - Department of Informatics (DAINF)
Federal University of Technology - Paraná (UTFPR) - Curitiba - PR, Brazil

{linhares, douglasrenaux, jeansimao, stadzisz} @ utfpr.edu.br

Abstract — Software development based upon current

paradigms, such as the Imperative Paradigm (IP) and the

Declarative Paradigm (DP), often presents drawbacks such as

waste of processing capacity and coupling among entities. This is

due to their orientation to a monolithic inference mechanism that

is based on causal evaluation implemented by means of searches

over passive computational entities. The Notification-Oriented

Paradigm (NOP) was conceived as a new approach for

conception, structuring, and execution of software leading to

performance improvements, organization of causal knowledge,

and decoupling of programming entities. The NOP introduces a

different manner of structuring software and realization of its

inferences, which are based upon small, smart, and decoupled

collaborative entities that interact by means of precise

notifications. In this way, NOP achieves responsiveness,

distributiveness, consistency, and robustness. These features are

among the demands of Real-Time Systems. This paper analyzes

the NOP applicability to Real-Time Systems by confronting the

demands of the latter with the characteristics of the former. As

conclusion, the NOP is considered applicable to this sort of

computational system.

Keywords — Real-Time Systems; Notification Oriented

Programming.

I. INTRODUCTION

Embedded real-time systems have particular demands for
programming. These demands must accommodate the ever
increasing number and complexity of requirements as well as
the evolutions of the hardware platforms. Nowadays, of
particular interest are the multi-core and many-core
architectures for which the traditional programming paradigms
are becoming less appropriate.

Computing platforms have historically evolved from
single-processor to multi-processor architectures [1], either in
the form of tightly-coupled multi-core systems or in the form
of loosely-coupled distributed systems. Hence, there is an
increasing need to efficiently perform distributed computations
over multiple cores and multiple network nodes [2][3]. The
change to multiprocessor architectures aims at improving
response-time, scalability, decoupling, error isolation, and
robustness [1][2][4][5].

Apart from the aforementioned changes in the computing
platforms, there is also a change in the manner that the
computers are used [6][7][8]. They are progressively more

pervasive in different contexts of society, and they are
available in a variety of forms and functions such as
smartphones, cameras, and GPS. In an era of the Internet of
Things (IoT), processing elements are available anyplace,
anytime and in any object (anything) [10].

Furthermore, these artifacts of ubiquitous computing are
not isolated. Normally, they communicate among themselves
or communicate with ‘traditional’ computing platforms by
some means such as wireless technologies [7]. In fact, these
collaborative artifacts generate another kind of computing
distribution, thereby achieving the ubiquitous computing where
an example is the sensor network [8]. In a general way, many
of the computing tasks performed by those artifacts (sensor
control, communication protocols, etc.) depend on meeting
timing requirements and/or constraints to work properly, thus
allowing their categorization as real-time computing
applications.

The considered context compels the development of new
programming techniques in order to facilitate the conception
and implementation of the aforementioned real-time computing
applications. An example is the Notification Oriented
Programming Paradigm (NOP) whose essence is an alternative
inference solution based on direct notifications among logical-
causal entities and factual entities [3][4][5]. It is believed that
the NOP nature could help to develop optimized and
distributed software in an easier manner than current
approaches [4][5].

There are a number of current research efforts around the
NOP. Nevertheless, the efforts in the NOP research about the
area of Real-Time Computing are in an early phase, in which it
is expected that a number of contributions can be achieved.
One of these expected contributions is the development of a
NOP language that provides support for real-time systems.
Thus, this paper presents an analysis of NOP applicability in
the context of Real-Time Computing, in order to evaluate the
requirements for this language.

II. NOTIFICATION ORIENTED PARADIGM (NOP)

The main current paradigms can be classified as imperative
and declarative ones. The imperative could be established as
comprising the procedural and object-oriented approaches,
whereas the declarative could be established comprising
functional and logic approaches [10]. In short, the imperative

programming presents a lot of code redundancy and coupling,
whereas the declarative one presents some coupling and
processing overhead in inference solutions because, even with
suitable algorithms, they use computationally expensive data-
structures [3].

In fact, the current programming paradigm and approaches
are driven by monolithic (implicit or explicit) inference, which
researches on passive fact base elements (e.g. variables,
objects, vectors, etc) in order to test logical/causal expression
(e.g. if-then statement or similar rules). This frequently results
in code coupling, as well as redundancies or processing
overheads as detailed in [3][4]. Therefore, this given context
impels efforts to develop new solutions.

A new programming technique, called Notification
Oriented Paradigm (NOP), was proposed [4][5]. The NOP
basis was initially proposed by J. M. Simão as a manufacturing
discrete-control solution [11]. This solution was evolved as a
general discrete-control solution [11] and then as a new
inference-engine solution [4][5], achieving finally the form of a
new programming paradigm [3][4][5].

The NOP presents a new concept to conceive and execute
applications based upon notifiable rule-entities composed of
collaborative sub-entities. The essence of the NOP is its
inference process based upon small, smart, and decoupled sub-
entities that collaborate by means of precise notifications
[4][5][11]. This solves redundancies and centralization
problems of the current approaches of causal-logical
processing, thereby solving processing-capacity misuse and
coupling issues of the current paradigms [4][5][10].

The idea of the NOP is to make easier the task of building
better software, in terms of easier composition of optimized
and distributable code [4][5]. In this context, it is expected to
save processing resources, thereby enhancing application
performance, as well as make it easier to compose multi-core
based applications and distributed applications in general.

A. NOP Structural View and Inference Process

In the NOP, the causal expressions are represented by
common causal rules, which is natural to programmers of
current paradigms and persons in general when a user-friendly
interface is used. Anyway, each causal rule is technically dealt
with a special computational-entity Rule. A Rule, in a causal
rule form, is illustrated in Figure 1.

Structurally, a Rule has a Condition and an Action, as
shown by means of an UML class diagram in Figure 2. Both
are entities that work together to carry out the causal
knowledge of the Rule. The Condition concerns to its
decisional part related to the referenced element(s), whereas
the Action concerns to execution related to this(ese) element(s).
In the considered example, the referenced element is the
Semaphore1, which comprises a pair of traffic lights, North-
South (NS) and West-East (WE), used to control a crossing in
a vehicle traffic control system.

In the NOP, the evaluated elements are represented by an
entity type called Fact_Base_Element (FBE). A FBE is
composed of one or more attributes. Each attribute is
represented by another entity type called Attribute, for example

queuedCars_NS and TrafLightNS_State in the case of the FBE
Semaphore1. The states of Attributes are analyzable, in an
inference process, in the Conditions of Rules by using other
collaborator entities called Premises as modeled in Figure 2. In
the considered Rule (Figure 1), the Condition is composed of
three Premises.

Figure 1 - The representation of a Rule.

Figure 2 – Rule and Fact_Base_Element class diagram [4][5]

When each Premise of a Condition is inferred as true, the
Rule becomes true and may activate its Action composed of
entities called Instigations. In the considered Rule, the Action
contains two Instigations. In fact, Instigations are linked to and
instigate Methods (TrafficLightWE_Alert and StartAlertTime in
the considered Rule), which are another entity of FBE. Each
Method allows executing FBE services. Generally, the call of
FBE Method changes FBE Attribute states, feeding the
inference process.

The inference process of the NOP is innovative once the
Rules have their inference carried out by active collaboration of
its notifier entities [4]. In short, the collaboration happens in
the following way: for each change in an Attribute state of a
FBE, the state evaluation occurs only in the related Premises
and then only in related and pertinent Conditions of Rules by
means of punctual notifications among the collaborators.

In order to detail the inference process by notification, it is
firstly necessary to explain the Premise nature and
composition. Each Premise represents a Boolean value about

one or even two Attribute states and is composed of: (a) a
reference to an Attribute discrete value, called Reference,
which is received by notification; (b) a logical operator, called

Operator, useful to make comparisons; and (c) another value
called Value that can be a constant or even a value of other
referenced Attribute also received by notification.

Figure 3 – Rule Notification chain [12]

A Premise makes a logical calculation when it receives
notification of one or even two Attributes (Reference and even
Value). This calculation is carried out by comparing Reference
and Value, using the Operator. In a similar way, a Premise
collaborates with the causal evaluation of a Condition. If the
Boolean value of a notified Premise is changed, then it notifies
the related Conditions. Thus, each notified Condition calculates
its Boolean value by the conjunction of the Premises values.

When all Premises that integrate a Condition are satisfied,
the Condition itself is satisfied and notifies the respective Rule
to execute. The collaboration among the NOP entities by
means of notifications can be observed at the schema
illustrated in Figure 3. In this schema, the flow of notifications
is represented by arrows linked to rectangles that, in turn,
represent the NOP entities.

An important point to clarify about the collaborative
entities of the NOP is that each notifier (e.g. an Attribute)
registers its clients (e.g. Premises) in its creation. For example,
when a Premise is created and makes reference to an Attribute,
the latter automatically includes the former in its internal set of
elements to be notified when its state change. Of course, all
entities composition and links should be done in friendly
environment.

B. NOP Nature

In NOP, each Attribute state is evaluated by a set of logical
and causal expressions (i.e. Premises and Conditions) in the

changing of its state. Thanks to the cooperation by means of
precise notifications, the NOP avoids the two types of
redundancies verified inclusively in imperative language, the
temporal redundancy (unnecessary logical/causal expression
evaluation) and structural redundancy (repetition of logical
expression in causal ones).

The temporal redundancy is solved in the NOP by
eliminating searches over passive elements, once some data-
entities (i.e. Attributes) are reactive in relation to their state
updating and can punctually notify only the parts of a causal
expression that are interested in the updated state (i.e.
Premises), avoiding that other parts and even other causal
expressions be unnecessarily evaluated or re-evaluated.

Also, the structural redundancy is solved in NOP when a
Premise is shared with two or more causal expressions (i.e.
Conditions). Thus, the Premise carries out logic calculation
only once and shares the logic result with the related
Conditions, thereby avoiding re-evaluations. Indeed, the
avoidance of structural redundancies and mainly the avoidance
of temporal ones allow improving performance [4].

Besides solving performance problems, the NOP also is
potentially applicable to develop parallel/distributed
applications because of the “decoupling” (or minimal coupling
to be precise) of entities. In inference terms, there is not great
difference if an entity is notified in the same memory region, in
the same computer memory or in the same sub-network. For
instance, a notifier entity (e.g. an Attribute) can execute in one

machine or processor whereas a “client” entity (e.g. a Premise)
can execute in another. For the notifier, it is “only” necessary
to know the address of the client entity [4]. However, these
issues are under technical implementation and experimentation.

Actually, it would be needed to implement particular
language and compiler to NOP, which could eventually take
into account the ease of distribution. Moreover, this technology
could improve performance by technically optimizing the
implementation of data-structures of NOP entities. This
technology is currently under development. Meanwhile, in
order to allow implementations based on the NOP, its entities
were materialized in the form of classes in a C++ framework
that are instantiated by developed applications [10]. Moreover,
a wizard tool has been proposed to automate and thus facilitate
this process. It is the NOP Development Environment – a tool
that generates the NOP smart-entities from causal rules
elaborated in a graphical interface.

In this case, software developers “only” need to implement
FBEs with Attributes and Methods, once other NOP special-
entities will be completely composed and linked by the tool.
This allows using the time mainly to the construction of the
causal base (i.e. in the composition of the NOP rules) without
concerns about the instantiation of the NOP entities.

III. REQUIREMENTS FOR REAL-TIME PROGRAMMING

LANGUAGES

A programming language that is used in the development
of a Real-Time System should provide specific support for this
kind of system. This support includes [13][14]:

 Time management - including access to a real-time
clock, task suspension for a specified time (delay) and
the specification of timeouts.

 Deadlines and Scheduling - the programmer should
be able to explicit the deadline of each job as well as
specify the scheduling policy and scheduling related
characteristics of tasks, such as the task priority.

 Support for Schedulability Analysis - languages
constructs that specify an upper limit to loop iterations
provide relevant input for schedulability analysis

 Concurrency - a real-time programming language
must provide constructs that explicit the concurrency
of the application, as well as inter-task communication
and synchronization

 Dependability - a language may provide partial
support for dependability via strong type checking and
exception handling

The C Programming Language provides none of the
requirements listed above. Not even its type checking is strong
enough. This does not preclude its use for programming real-
time systems. In fact, it is the most used language for
embedded and real-time systems [15]. C programmers have to
rely on RTOS services to provide some of these requirements.
Languages such as Ada provide some support for these
requirements. Nevertheless, real-time support in NOP will be
evaluated against these requirements.

IV. NOTIFICATION ORIENTED PARADIGM (NOP)

PROPERTIES

This current section presents properties of the Notification
Oriented Paradigm (NOP) and considerations about its
suitability to Real-Time Computing, in terms of the desired
Real-Time programming requirements presented in the
previous section.

A. Time management

NOP software is able to instantiate a set of Attributes to be
used as software timers. These software timers would be
suitable to control task suspension and generate timeouts for
the real-time tasks.

In fact, one Attribute can be instantiated and configured to
have its value decremented by an interrupt service routine
(ISR) that is triggered by a hardware timer. This Attribute
would notify a concerned Premise, which would evaluate if the
Attribute initial value has reached zero and, if so, would
generate a notification to the concerned timer Condition. This
same mechanism can be used to provide access to the Real-
Time clock value, as long as its ISR can also be configured to
update a set of NOP Attributes.

As the notification from a certain timer to its related
Condition is only generated when the timer expires, the
temporal redundancies related to repeatedly testing the timer
expiration are avoided. This would lead to a more efficient use
of processing capacity, which is a characteristic of NOP that is
useful, particularly when dealing with a set of tasks that have
real-time requirements.

The responsiveness to the timers can be set by
programming the relative priorities of the involved Rules (i. e.
the Rules that can be activated by the timer-related
Conditions). The responsiveness of NOP software in general
has been discussed in previous work [12], in terms of
computational time complexity when compared to other
paradigms.

Regarding the requirements for a Real-Time NOP
Language, they include time management primitives, in the
form of specific annotations, to properly categorize some
Attributes as software timers.

B. Deadlines and scheduling

The activation of a set of NOP Rules, and consequently the
activation of their connected FBE Methods, is what essentially
triggers the execution of useful work in NOP software.
Therefore, a single Rule (or even every one of its Methods) can
be considered a “task” in this context. Additionally, the NOP
elements that execute logical-causal evaluations (Premises and
Conditions) can also be considered “micro-tasks” (i.e. tasks
with a very small granularity), in the sense that they also have
to be scheduled for execution upon reception of a notification.
The fine granularity of each schedulable NOP element
(“micro-task’) improves the flexibility of the allocation
activity, as each “micro-task” depends solely on a
communication channel to receive/propagate notifications
from/to other micro-tasks.

The scheduler can treat each of these “micro-tasks” as an
independently-schedulable unit, given the low coupling among
the corresponding NOP elements and given their control flow
that is only dependent on the propagation of the notifications.
This motivates the definition, in the Real-Time NOP
Language, of timing annotation constructs for each of the NOP
elements, which could be used by the programmer to provided
relevant timing information. These annotations could be
dynamically used by a scheduler to organize the ready queue
based on policies such as earliest deadline first, for instance.
For this purpose, timing annotations of “micro-tasks” could be
complemented by annotations concerning the notification path
for end-to-end “macro-tasks” (e. g., from sensing an external
attribute to effectively actuating over the environment).

It is worth noticing that, despite the fine granularity of each
schedulable element, the notification dynamics helps reducing
the scheduling overhead because each “micro-task” is only
eligible for scheduling as it receives a notification. As every
“micro-task” is simple and inherently sequential, its temporal
analysis would not incur in determining loop boundaries or
infeasible paths. Hence, its timing annotations can easily be
automatically generated by a static timing analysis tool.

With respect to the scheduling priority, it can be supported
by means of the relative priorities of a set of activated Rules.

C. Support for schedulability analysis

The inference method performed in NOP applications is
closer to the Petri nets’ nature than those inference methods
based on search, since Petri nets somehow operate like
notifications [4]. These aspects were particularly detailed in
[11] in terms of control solution, in [4] in terms of inference
solution, and in [16] in terms of development paradigm. The
implication of this characteristic is that Rules can be
automatically and quite directly translated to Petri nets and,
possibly, to timed Petri nets by adding the suitable timing
annotations to the model.

Since the Real-Time NOP Language shall provide
primitives for timing annotations, the schedulability analysis
can make use of such timing annotations regarding each
“micro-task” and also regarding the expected frequency of
notifications among NOP elements. These annotations can be
provided by the user or inferred through static analysis of the
NOP software. As the timed Petri nets have been successfully
used to model real-time systems [17], they could be used as a
suitable approach to obtain the timing information and
expected frequency of notifications among NOP elements, thus
providing support for schedulability analysis.

D. Concurrency

The concurrency is explicit in NOP software, given that the
execution of a logical-causal relation defined by a Premise or a
Condition or the execution of a Method can be potentially
triggered (by notification) simultaneously to the execution of
other NOP elements.

Inter-task communication is intrinsically implemented in
NOP software by means of Methods that update Attributes.
This is due to the fact that updating Attributes, by a certain
Rule (task) and its Methods, is the primary mechanism to
trigger a new cycle of notifications that would eventually lead

to the execution of other Rules that represent other (micro)
tasks.

Synchronization mechanisms, such as semaphores and
mutexes, can be conceptually implemented in NOP software.
However, in order to allow the scheduling of the “micro-tasks”,
the propagation of notifications among NOP elements would
eventually not be atomic, which could lead to inconsistencies
due to race conditions. To avoid this, it would be necessary to
improve the behavior of NOP elements (such as Methods) to
allow atomic operations in the form of “test and set” that would
be suitable to implement safe synchronization mechanisms, or
even implement mechanisms based on transactional memories.
The mechanism based on “test and set” is already implemented
in a computer architecture that is specifically designed to
execute NOP software [18]. It can be used by the Real-Time
NOP Language to define critical regions, i. e., sequences of
enchained Methods that must be executed atomically.

It is important to emphasize that a single NOP Method can
implement a sequence of operations, similar to a function in
imperative programming, which would facilitate
implementations of semaphores or mutexes according to
classical algorithms such as Peterson´s [19]. However, this sort
of Method would not be schedulable as a “micro-task”, thus
relying on schedulability analysis techniques similar to those
used for imperative programming.

E. Dependability

As previously discussed in [12], in the context of Sentient
Computing, the NOP software can make use of some
mechanisms to improve robustness. These mechanisms include
techniques to achieve deterministic inference and to create
synchronized NOP elements that can operate redundantly. The
NOP language can also provide constructs that support the
explicit use of those mechanisms.

The improved robustness of NOP, mainly in terms of
redundancy of operation, helps improving the availability and
reliability of the NOP applications. The availability and the
reliability are two of the main attributes that should be
maximized in order to improve the dependability of a system
[20].

Also, the maintainability attribute of a dependable system
can be favored by the fact that the NOP elements (including
Rules) are highly decoupled, thus facilitating maintenance
operations. It includes not only corrective and preventive
maintenance, which could be achieved by activation or
deactivation of existing Rules and their related NOP elements,
but also adaptive and augmentive maintenance as proposed by
[20] that would involve the creation and addition of new Rules
to the software.

F. Table of Real-time programming requirements x NOP

properties

For the sake of succinctness, Table I presents the set of
requirements concerning real-time programming here
highlighted and how they are facilitated or fulfilled by the
NOP.

TABLE I. REAL-TIME PROGRAMMING X NOP

N Requirement NOP

A Time management
Yes (specific Attributes for software

timers)

B Deadlines and scheduling Partially (micro tasks)

C
Support for schedulability

analysis

Yes (timing annotations for micro

tasks)

D Concurrency Yes

E Dependability Yes

V. CONCLUSION AND FUTURE WORK

NOP is characterized by its problem representation in the
form of causal rules, which are composed of elements that can
be considered as “micro-tasks” with fine granularity and high
degree of parallelism and decoupling. These characteristics,
together with suitable timing annotations, tend to facilitate the
scheduling and timing analysis of the NOP software.

The NOP elements also tend to be very efficient on using
processing resources, because they activate and effectively
execute some processing only upon reception of notifications
from other elements. Additionally, NOP software can make use
of determinism and redundancy mechanisms that are being
developed in the context of the paradigm.

The combination of these characteristics and their effects (i.
e., improved efficiency, robustness and ease of schedulability
analysis) completely or partially meets the requirements for
real-time programming as reviewed in this paper. Thus, the
preliminary analysis presented here indicates a high
applicability of NOP to Real-Time programming.

This research will proceed by implementing the Real-Time
NOP Language including its timing annotations, as well as the
development of timing analysis techniques and tools to support
the schedulability analysis of NOP software. These
investigations and their results will support a more detailed
analysis of the applicability of NOP to real-time software
programming.

REFERENCES

[1] W. A. Gruver. “Distributed Intelligence Systems: A New Paradigm for
Systems Integration”. IEEE International Conference on Information
Reuse and Integration, 2007.

[2] G. Coulouris, J. Dollimore, and T. Kindberg. “Distributed Systems –
Concepts and Designs”. Pearson – Addison Wesley, 2001.

[3] J. M. Simão, R. F. Banaszewski, C. A. Tacla, P. C. Stadzisz,
"Notification Oriented Paradigm (NOP) and Imperative Paradigm: A
Comparative Study," Journal of Software Engineering and Applications
(JSEA), p.402-416, v.5, n.6, 2012.

[4] J. M. Simão and P. C. Stadzisz, “Inference Based on Notifications: A
Holonic Meta-Model Applied to Control Issues”. IEEE Transactions on
Systems, Man and Cybernetics, Part A. Vol. 39, Issue 1, Jan. 2009 Pg.
238-250 (Submitted on July 2007, Approved on July 2008). Digital
Object Identifier 10.1109/TSMCA.2008.2006371.

[5] J. M. Simão, P. C. Stadzisz, “Notification Oriented Paradigm (NOP) —
A Notification Oriented Technique to Software Composition and
Execution”. Original title in Portuguese “Paradigma Orientado a
Notificações (PON)—Uma Técnica de Composição e Execução de
Software Orientada a Notificações”. Patent pending submitted to
INPI/Brazil in 2008 and UTFPR Innovation Agency 2007. INPI
Number: PI0805518-1. http://www.patentesonline.com.br/paradigma-orientado-a-

notificacoes-pon-uma-tecnica-de-composicao-e-execucao-de-software-234943.html.

[6] W. Wolf, High-Performance Embedded Computing: Architectures,
Applications, and Methodologies. Morgan Kaufmann, 2007.

[7] S. Loke, “Context-Aware Pervasive Systems: Architectures for a New
Breed of Applications”. Auerbach, 2006.

[8] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
“Wireless sensor networks: a survey”. Comput. Networks, 38(4): 393-
422, 2002.

[9] International Telecommunication Union. "ITU Internet Report 2005:
The Internet of Things." (2005).

[10] R. F. Banaszewski, “Notification Oriented Paradigm: Advances and
Comparisons”. Original title in Portuguese: “Paradigma Orientado a
Notificações: Avanços e Comparações”. Master in Science Thesis,
Graduate School in Electrical Engineering and Industrial Computer
Science (CPGEI) at the Federal University of Technology - Paraná
(UTFPR). Curitiba, Paraná, Brazil, March 27, 2009.
http://arquivos.cpgei.ct.utfpr.edu.br/Ano_2009/dissertacoes/Dissertacao
_500_2009.pdf .

[11] J. M. Simão. “A Contribution to the Development of a HMS simulation
tool and Proposition of a Meta-Model for Holonic Control”, Ph. D.
Thesis – Double Diploma – Graduate School in Electrical Engineering
and Industrial Computer Science (CPGEI) at The Federal University in
Technology of Paraná (CEFET-PR/UTFPR), Brazil – Research Center
for Automatic Control of Nancy (CRAN), Henry Poincaré University
(UHP), France, June, 2005 (at CPGEI/UTFPR) – http://tel.archives-

ouvertes.fr/docs/00/08/30/42/PDF/ThesisJeanMSimaoBrazil.pdf.

[12] J. M. Simão, D. P. B. Renaux, R. R. Linhares, and P. C. Stadzisz,
“Evaluation of the Notification Oriented Paradigm applied to Sentient
Computing”. In Proceedings of the 17th International Symposium of
Object/Component-Oriented Real-Time Distributed Computing (ISORC
2014), p. 253-260, Reno, USA, June 2014.

[13] A. Burns and A. J. Wellings. “Real-Time Systems and Programming
Language”. Addison Wesley, 2nd edition, 1996.

[14] W. A. Halang and K. Mangold. “Real-Time programming languages”.
In M. Schiebe and S. Pferrer, editors, Real-Time Systems Engineering
and Applications, chapter 6, pages 141-200. Kluwer Academic
Publisher, 1992.

[15] D. Blaza and A. Wolfe, “2013 Embedded Market Study,” DesignWest,
April 2013. Available at:
http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

[16] J. M. Simão, P. C. Stadzisz, L. V. B. Wiecheteck.”UML Profile to
Notification Oriented Paradigm (NOP), UML Profile to Rule Oriented
Paradigm (ROP), Notification Oriented Development (NOD) Method,
and Rule Oriented Development (ROD) Method”. Original title in
Portuguese: “Perfil UML para o Paradigma Orientado a Notificações
(PON), Perfil UML para o Paradigma Orientado a Regras (POR),
Método de Desenvolvimento Orientado a Notificações (DON) e Método
de Desenvolvimento Orientado a Regras (DOR)”. 2012. Patent pending
submitted to INPI/Brazil in 2012 and UTFPR Innovation Agency 2012.
INPI Provisory Number: BR 10 2012 026430 7

[17] A. Cerone and A. Maggiolio-Schettini, “Time-based expressivity of
timed Petri nets for system specification”. Theoretical Computer
Science, Vol. 216 Issue 1-2, p. 1-53, 1999. DOI 10.1016/S0304-
3975(98)00008-5.

[18] R. R. Linhares, “A Contribution to the Development of a Computer
Architecture Proper to the Notification Oriented Paradigm”. Original
title in Portuguese: “Contribuição para o Desenvolvimento de uma
Arquitetura de Computação Própria ao Paradigma Orientado a
Notificações”. Doctorate Thesis, Graduate School in Electrical
Engineering and Industrial Computer Science (CPGEI) at the Federal
University of Technology - Paraná (UTFPR). Curitiba, Paraná, Brazil,
2014. Unpublished work.

[19] G. L. Peterson, “Myths About the Mutual Exclusion Problem”.
Information Processing Letters 12(3), p. 115-116, 1981.

[20] A. Avizienis, J-C. Laprie, B. Randell and C. Landwehr, “Basic Concepts
and Taxonomy of Dependable and Secure Computing”. IEEE
Transactions on Dependable and Secure Computing, Vol. 1, No. 1, p.
11-33, 2004.

http://www.patentesonline.com.br/paradigma-orientado-a-notificacoes-pon-uma-tecnica-de-composicao-e-execucao-de-software-234943.html
http://www.patentesonline.com.br/paradigma-orientado-a-notificacoes-pon-uma-tecnica-de-composicao-e-execucao-de-software-234943.html
http://arquivos.cpgei.ct.utfpr.edu.br/Ano_2009/dissertacoes/Dissertacao_500_2009.pdf
http://arquivos.cpgei.ct.utfpr.edu.br/Ano_2009/dissertacoes/Dissertacao_500_2009.pdf
http://tel.archives-ouvertes.fr/docs/00/08/30/42/PDF/ThesisJeanMSimaoBrazil.pdf
http://tel.archives-ouvertes.fr/docs/00/08/30/42/PDF/ThesisJeanMSimaoBrazil.pdf
http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

