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Abstract—A widely recognized performance issue in DBT is
the Condition Codes (CC) or flag bits handling. The currently
proposed techniques to ease the handling of CC consist in the
lazy evaluation of the condition codes, target ISA extensions or
additional hardware support. In this paper we present a DBT
engine developed for embedded systems and a novel technique to
handle Condition Codes using architectural debug features. To
prove the reduction on the translation overhead and generated
code size we benchmarked our system. The results show signicant
reduction of the generated code size and translation overhead
reduction. The biggest impact of the Super Lazy evaluation
technique was in the total code size, a reduction of 7.99%. The
translation overhead reduced 5.65% over the common approach.

Index Terms—Dynamic Binary Translation, lazy evaluation,
condition codes, debug features

I. INTRODUCTION AND RELATED WORK

The way Dynamic Binary Translation (DBT) works is
creating an intermediary layer between the source code and
the execution platform during run-time (dynamically) that
translates the alien code for native execution. Although the
process starts with the source code decoding, like emulators
and simulators do, on DBT and opposed to the former, the
source code is translated into target Instruction Set Archi-
tecture (ISA) code, stored into memory (a translation cache,
Tcache), and hereafter fetched and executed from there.

DBT is an attractive technique for embedded systems be-
cause of its potential to provide features like code tracing,
memory usage monitoring and identifying software inefficien-
cies in such systems [1], [2] .

A widely recognized performance issue in DBT is the
Condition Codes (CC) or flag bits handling. The currently
proposed techniques to ease the handling of CC consist in the
lazy evaluation of the condition codes, target ISA extensions
or additional hardware support [3], [4]. However, when the
deployment technology does not include configurable logic
(e.g., FPGA), architectural modifications are not an option. In
this paper we present a DBT engine developed for embedded
systems and resourceably and retargetably engineered; specifi-
cally we present a novel technique to handle Condition Codes
using architectural debug features.

II. DBT ENGINE DESCRIPTION

We’ve developed a DBT engine, depicted on Figure 1,
to explore the possibilities of binary translation, study its
integration on System on Chip (SoC) and how to reduce its
overhead through hardware support.

Fig. 1. DBT Engine Architectural Model

The DBT engine, running on top of the target processor, ac-
cesses the Ccache and translates the code which is then stored
in the Tcache, which becomes ready for native execution.

III. PROBLEM DEFINITION

As the literature points out [3], [5], [6], Condition Codes is
one of the hardest features to translate and emulate. We’ve
paired the 8051 and the ARM Cortex-M3 architectures as
source-target pair in our DBT engine. Apart from the expected
difficulties in handling the CC we’ve found additional chal-
lenges, which are here explained.

A. Condition Codes Handling

In the 8051 architecture the condition codes are kept in
the Program Status Word register (PSW), which is memory
mapped in the address 0xD0. Once Cortex-M3 doesn’t have
the same condition codes, these must be emulated.

The CC status is computed by software every time an
instruction affects, or is capable of affecting, the conditions.
This is source of great overhead.

To minimize this problem a technique known as lazy condi-
tion code evaluation is employed in several DBTs and related
[7], [8]. The technique consists in keeping a record of the last
instruction that affected the CCs and its operands. The record
might be overwritten several times, but the CC are calculated
once and only before an instruction that requires them. Despite
the good execution overhead reduction there is still translation
overhead caused by the generation of code for (1) updating



the lazy CC evaluation record and (2) calling a function to
compute the CCs.

Another problem relies on ensuring memory coherency
when condition codes are memory mapped. This is a double
issue, one, because the affectation of the condition codes have
impact on memory content and two, because of the reciprocity
of the situation, any modification in the memory address of
the condition codes will affect the state of these latter.

We propose a novel solution, by mixing the lazy evaluation
approach with the hardware debug features present on the
core and created an event-triggered lazy CC evaluation that
we’ve called ”super lazy CC evaluation”’. This approach
incurs in even less translation overhead and generates less
code because instructions depending on the CC do not include
code generation. It also ensures memory coherency, because
if the CC’s memory address is read an updating event will be
trigger, thus ensuring the coherency. The authors of this paper
believe that this approach is pioneer in this area.

B. Lazy Condition Codes Evaluation Integration with Debug
Features

One component of ARM’s Debug Architecture is the
Debug Watchpoint and Trace (DWT) block, which can be
programmed to watch a certain data address and trigger a
debugging exception on a match. We’ve programmed it to
watch the accesses to the PSW in the memory and trigger
a watchpoint debug exception. The from the debug exception
handler we call the lazy evaluation routine. Bellow there is a
code snippet with the configuration routine of the DWT block.

1 void DEBUGMONInit(int * Mem_Address)
{

3 // Configure the Debug Exception and Monitor Control
for watchpoint generated interrupts

CoreDebug->DEMCR = (1 << CoreDebug_DEMCR_TRCENA_Pos) |
5 (1 << CoreDebug_DEMCR_MON_EN_Pos) ;

7 //Setting the Address to be watched
DWT->COMP0 = *(int*)(void*)&Mem_Address;

9 DWT->MASK0 = 0;
DWT->FUNCTION0 = 0x5;

11 }

Whenever the PSW is read the debug monitor exception
handler executes and calls the CC update routine.

IV. EXPERIMENTAL RESULTS

A. Application Scenario

To prove the reduction on the translation overhead and
generated code size we’ve run the ”16-bit 2-dim Matrix”
benchmark application from [9]. Despite not computation
intensive there are several control flow instructions, which
are CC affected, thus will require CC updating. We run
the benchmark first with the common approach, and then
using the Super Lazy Evaluation technique. We’ve gathered
Tcache usage info and isolated the translation time from the
total execution time to evaluate the translation overhead. The
table I shows the comparative results.The biggest impact of
the Super Lazy evaluation technique was in the total code

size, a reduction of 7.99%. The translation overhead reduced
5.65% over the common approach. Due to incompleteness of
system development, the presented benchmark is the only one
currently runnable from the suite we will use to validate the
whole system. Our preliminary experiences, however, lead us
to be fairly confident these results will hold across different
workloads.

TABLE I
EXPERIMENTAL COMPARATIVE RESULTS

Metric Lazy CC Evalua-
tion (conventional
method)

Super Lazy CC
Evaluation

Reduction

Generated
Code Size

1 0.92 7.99%

Translation
Overhead

1 0.94 5.65%

V. CONCLUSION AND FUTURE WORK

In this paper we’ve presented a novel approach to handle
Condition Codes in Dynamic Binary Translation. The pro-
posed Super Lazy CC Evaluation benefits are (1) generated
code size reduction and (2) reduced translation overhead.
Thus this technique proves itself of great impact on generated
code size reduction and performance impact. The integration
of architectural debug features in DBT systems should not
be limited to condition codes handling. This technique was
deployed on a specic target architecture (ARM Cortex-M3),
however due to the wide availability of embedded processors
with on-chip hardware debug features the technique is passive
to be migrated for other architectures.
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