
On Generating VHDL Descriptions from
Aspect-Oriented UML/MARTE Models

Marco Aurélio Wehrmeister
Graduate Program in Applied Computing (PPGCA)

Federal University of Technology - Paraná (UTFPR)
Av. Sete de Setembro, 3165 — 80230-901 Curitiba, Brazil

wehrmeister@utfpr.edu.br

Marcela Leite
Graduate Program in Applied Computing (PPGCA)

Santa Catarina State University (UDESC)
Instituto Federal Catarinense (IFC Araquari)
P.O Box 21 – 89245-000 Araquari, Brazil

marcela.leite@ifc-araquari.edu.br

Abstract—This paper discusses an approach to generate
VHDL descriptions from high-level specifications, specifically
UML/MARTE models that include aspect-oriented semantics.
Standard UML diagrams describe the handling of functional
requirements, whereas crosscutting concerns associated with the
non-functional requirements are handle by aspects. UML-to-
VHDL transformation is performed automatically by a script-
based code generation tool named GenERTiCA. For that, map-
ping rules scripts define how to generate VHDL constructs
from model elements, including the implementation of aspects
adaptations. The generated VHDL description does not require
any manual modification, in order to be fully synthesized onto a
FPGA device. Some case studies have been performed to evaluate
the proposed approach, however, this paper discusses the line-
following robot implemented as a FPGA-based embedded system.
An improvement in system design has been obtained, namely
an increase in system performance and a better utilization of
FPGA reconfigurable resources. Such positive results are related
to a better modularization of components achieved by using the
proposed high-level approach.

I. INTRODUCTION

Nowadays, an increasing number of embedded systems
are being delivered to the final customers with Field-
Programmable Gate Array (FPGA) devices interconnected
with traditional IC components (e.g. processors and memory)
into the system hardware platform. Programmability, flexibility
and performance are some of the reasons to add a FPGA device
to perform some tasks in the final embedded systems [1][2].

This hardware/software co-design and partitioning of sys-
tem task, as well as the increasing number of services de-
manded from modern embedded systems, increases design
complexity of FPGA-based embedded systems. New ap-
proaches are demanded in order to manage such a complexity.
An old but still valid idea is the increase of the abstraction level
used during design. Both academia and industry are seeking
for new approaches that use high-level specifications such as,
for instance, Unified Modeling Language (UML) models anno-
tated with stereotype from its profile for Modeling and Analysis
of Real-Time and Embedded Systems (MARTE). Model-Driven
Engineering (MDE) [3][4][5] make intensive use of models, in
order to manage complexity and also other project constraints,
since engineers need lesser focus on technological details.

Since late 90’s, one can find some approaches, e.g. [6], that
are able to generate VHDL descriptions from UML models.
In [7] and [8], an UML model (specially its class diagram) is
used as source of information to generate a VHDL description
containing only the system structure, i.e. its components and
their connections. System behavior is commonly generated

from state digram as in [9]. The main drawback of such ap-
proaches is that it is common to find VHDL statements within
the UML model, decreasing its abstraction level. Furthermore,
state diagrams are not usually used by software engineers,
and hence, co-design of embedded system components may
be hindered, increasing design time.

Aspect-oriented Model-Driven Engineering for Real-Time
systems (AMoDE-RT) [5] is a MDE approach that proposes
the intensive use of UML/MARTE models, from which sys-
tem implementation can be automatically generated, including
software/hardware implementation of embedded system com-
ponents. In [10], AMoDE-RT has been extended to support
the generation of VHDL descriptions, including both system
structure and behavior. System behavior is specified in a
platform-independent fashion via sequence diagrams rather
than state diagrams, since the former is easily understood
by both hardware and software engineering teams. However,
the approach proposed in [10] has some limitations: (i) it
supports only few classes/objects per system; (ii) only 1-to-
1 associations are supported; (iii) the generated behavior does
not differentiate synchronous and asynchronous methods1 calls
used within sequence diagrams. (iv) engineers need to include
unnecessary details in the UML model in order to generate
the VHDL description as complete as possible. (v) depending
on the amount of such details, generated VHDL descriptions
need some minor manual modifications before they can be
synthesized by a synthesis tool. This work improves [10] and
proposes a new set of mapping rules for the UML-to-VHDL
transformation, including the support of some object-oriented
constructions which have not been initially supported, as well
as the support for sequence diagrams full semantics.

In addition, in the embedded systems domain, non-
functional requirements (e.g. deadlines, energy consumption,
reduced footprint, communication latency, etc.) introduce
crosscutting concerns in system design and implementation.
Such concerns are not properly handled by traditional ap-
proaches (e.g. object-orientated, component-based approaches)
due to the functional decomposition [11], [12] enforced by
such approaches. This decomposition schema leads to mod-
ularization problems of crosscutting concerns, since their
handling cannot be encapsulated within single units, which,
in turn, results in scattered and tangled handling. Aspect-
Oriented Programming [11] addresses crosscutting concerns
modularization issues in software components by proposing

1In this text, a “method” encapsulates an object behavior that is executed
when its associated message is received from other object.



special constructs called aspects. VHDL descriptions are some-
how similar to a software source code files; they describe
components structure and behavior using a language based
on functional decomposition. Hence, VHDL descriptions may
present the same modularization issues related to crosscutting
non-functional requirements [13], [14], [15].

AMoDE-RT supports aspect-oriented concepts in UML/-
MARTE models, through the DERAF aspects [16]. Thus, an-
other contribution of this work is the VHDL implementation of
some DERAF aspects. Aspects adaptations have been specified
as mapping rules scripts that generate VHDL constructs to
provide crosscutting concerns handling. By using the approach
proposed, it is possible to generate a fully functional and
synthesizable VHDL description from a more abstract UML
model – there is no need for manual modifications on the
generated descriptions. Engineers can generate both hardware
and software source code from the same UML model [5],
facilitating hardware/software co-design.

In order to demonstrate the feasibility of the proposed
approach, as well as discusses the achieved improvements, this
paper discusses the design of a FPGA-based implementation
of a line-following robot. Results show a better utilization of
FPGA resources, and also a small impact in project perfor-
mance. In comparison with the results presented in [10], a
greater amount of source code lines was generated from the
UML model, which, in turn, it may lead to an effort decrease
for creating the embedded system implementation, specially
when designing larger systems. In addition, this case study
has demonstrated that by using AMoDE-RT approach, it is
possible not only to deal with non-functional requirements
earlier in the design cycle, but also to obtain automatically
a fully synthesizable VHDL description2.

The rest of this text is organized as follows: section II
discusses related works; section III describes how AMoDE-
RT generates VHDL descriptions from aspect-oriented UML
models; section IV outlines the line-following robot case study
and discusses the obtained results. Finally, section V draws
some conclusions and discusses directions for future works.

II. RELATED WORKS

Generating VHDL descriptions from high-level models has
been proposed in various works [17], [18], [10], [8], [19]. For
instance, COLA (COmponent LAnguage) tool allows system
high-level specification and also the generation of a VHDL de-
scription from such a specification [18]. The generated VHDL
description comprises the hardware structure and behavior,
which is extracted from state machine diagrams. However,
COLA has its own formal modeling semantics, which is not
a standard, hindering its adoption in comparison with UML-
based approaches/tools.

On the other hand, GASPARD is a tool that generates
VHDL descriptions from UML/MARTE models [17], [8].
GASPARD uses concepts from logical view of MARTE Hard-
ware Resource Modeling (HRM) package. Such a tool focuses
on modularization and components mapping. It is necessary to
define templates, which are static elements, in order to generate
the system VHDL description. As a consequence, GASPARD
generates only entity and components mapping. In addition, it
does not support the code generation for system behavior.

2The generated VHDL description was synthesized, uploaded and executed
on a FPGA development kit without any manual modification.

In [19], an approach is proposed aiming the generation
of VHDL descriptions for system behavior validation. Se-
quence diagrams are used to specify system interactions, from
which VHDL description is generated. Project constraints are
specified in sequence diagram as MARTE stereotypes, defin-
ing system non-functional requirements subject to validation.
However, that work generates VHDL files only for system
validation; it does not generate VHDL description for the
system functional requirements.

Recently, an increasing number of research works propose
the use of Aspect-Oriented Programming (AOP) in hardware
design. The use of AOP in conjunct with VHDL language
is analyzed in [13]. This work identified some elements in
VHDL which may be subject to aspects adaptations. According
to that work conclusions, possible join points in VHDL are
process and variables and signals assignments. These places
are suitable for code injection, specially before, after and
around each join point [13].

AspectVHDL language is an extension that includes AOP
concepts in VHDL syntax [14]. AspectVHDL language allows
the definition of join point for procedures, functions, data type
definitions, entity architecture, and processes sensitivity list.
However, in order to be able to define join points and hence
to use AspectVHDL, the system VHDL description must be
structured in functions and procedures.

This work differs from mentioned related works, since
AMoDE-RT is based on MDE techniques and high-level UM-
L/MARTE models, as well as it is supported by a flexible code
generation tool such as GenERTiCA. The VHDL generation
approach proposed in [10] has been enhanced through a proper
support for high-level constructs available in UML. System
behavior is completely specified by sequence diagrams, in-
cluding the specification of non-functional requirements using
MARTE stereotypes. This diagrams are used for generating
the VHDL components behavior. Moreover, crosscutting non-
functional requirements handling is speficied in a high-level
and independent of platform way. This work proposes and
demonstrates VHDL implementation of these high-level as-
pects. Hence, it is possible to generate a complete VHDL
description from UML/MARTE high level specification. Such
a description is synthesizable and fully functional, according
to system requirements specified in the UML model.

III. FROM ASPECT-ORIENTED UML MODELS
TO VHDL DESCRIPTIONS

Aspect-oriented Model-Driven Engineering for Real-Time
systems (AMoDE-RT) [5], [16] is an UML-based MDE ap-
proach that promotes the use of Platform Independent Models
(PIM) as the main artifacts to specify embedded real-time
system requirements, including system structure, behavior,
constraints and non-functional properties. One of its main
contributions is the separation of concerns when handling
functional and non-functional requirements. For that, AMoDE-
RT supports concepts of the Aspect-Oriented Software Devel-
opment (AOSD) within UML/MARTE models by means of the
Distributed Embedded Real-time Aspect Framework (DERAF).

Furthermore, in AMoDE-RT, system implementation is
obtained automatically from UML/MARTE models by means
of model transformations [5]. Generation of Embedded Real-
Time Code based on Aspects (GenERTiCA) tool [20] supports
this automatic generation of source code. GenERTiCA im-



plements a script-based code generation approach that uses a
set of scripts to map UML elements into constructs, services,
and/or APIs provided by a given target platform. Engineers
may specify mapping rules scripts for distinct target platforms,
including both software and hardware (i.e. using Hardware
Description Languages).

In addition, it is important to highlight that GenERTiCA
does not only generate source code but also performs aspects
weaving. In other words, GenERTiCA weaves aspects adapta-
tions into the generated code, allowing the use of aspects in
model, even though the target implementation language does
not support such concepts. Aspects adaptation are implemented
as mapping rules scripts, enabling their portability for different
platforms or/and applications. An adaptation may occur in
two ways: in model level or in code level. At model level,
adaptations may include or change elements in DERCS model
[20] generated from UML/MARTE specification). These modi-
fication are accessible to mapping rules during code generation
step. On the other hand, at code level, modifications affect
directly the generated code without changing the input model.

A. Functional Requirements
A set of mapping rules to generate VHDL code from

UML/MARTE models has already been proposed in a previous
work [10]. However, as mentioned, [10] has some limitations;
specially, when one considers the potential increase in the spec-
ification abstraction level by using object-oriented features,
e.g. encapsulation and inheritance. Besides improving design
complexity management, by using such abstractions, engineers
may improve artifacts3 modularity, and hence, their reuse.

In order to address the already mentioned issues, a new set
of mapping rules have been created, as depicted in Table I. First
column shows the UML meta-model elements; second column
depicts the VHDL elements mapping, as proposed in [10]; and,
third column shows the modifications proposed in this work
for UML-to-VHDL mapping. As one can note, classes are
mapped into entities and their related architectures. Moreover,
in addition to the support for encapsulation and inheritance,
an important contribution of these new mapping rules is the
support for synchronous and asynchronous message sending.

Furthermore, it is worth mentioning that this work sup-
ports UML structural elements (e.g. classes and objects)
and behavioral elements (e.g. interactions and actions). Some
stereotype from Hardware Resource Modeling (HRM) and
Software Resource Modeling (SRM) of MARTE profile are
also covered, as described in Table I. Moreover, it is possible
to extend the mapping rules to add different packages and
elements. In summary, 29 scripts of mapping rules have been
created, totalizing 2365 code lines. By using these mapping
rules scripts, engineers are allowed to use high-level object-
oriented concepts supported in UML: encapsulation by means
of get/set methods; 1-to-n relationships such as aggregations
and compositions; inheritance/generalization relationships; full
semantics of sequence diagrams, such as combined fragments,
synchronous and asynchronous method calls. For additional
details, readers are encouraged to consult [21].

B. Non-Functional Requirements
AMoDE-RT uses DERAF aspects to handle crosscutting

concerns in a platform independent way within UML/MARTE

3e.g. model, source code, description of components, etc.

TABLE I. MAPPING CONCEPTS FROM UML/MARTE TO VHDL

UML VHDL[10] New Mapping

Class

Structure Entity-Arch.
Pair

Entity-Architecture Pair

Association Entity Ports
(1-to-1)

Components (1-to-n)

Generalization - Components for concrete classes;
functions, attributes and/or meth-
ods from parent class(es)

Attributes
Public Entity Ports -
Private Signals Ports, Signals or Constants
Read-Only - Constants

Data Types Enumeration - Enumerations within packages
Composite - Vectors

Method/
Operation

Behavior Process Process or inline code
Message
Occurrence
Specification

Entity Ports Signals assignment or process ac-
tivation

TimedEvent
stereotype

- “Active” Process

models. The high-level semantics of DERAF allow its aspects
to be implemented in distinct target platforms, including those
that do not support AOSD concepts [5]. Due to space con-
straints, this section provides only an overview of the VHDL
implementation of three DERAF aspects used in the case study.
Details on how aspects adaptations are implemented in VHDL
have been discussed in [22].

1) PeriodicTiming: PeriodicTiming aspect [16] deals with
the periodic execution of one or more active objects4 behav-
iors. A similar behavior is achieved triggering periodically a
process within VHDL entities. Therefore, the proposed VHDL
implementation of PeriodicTiming considers VHDL entities as
active objects, and each of periodic behavior as a process. The
execution frequency of periodic processes is controlled via a
clock divider component associated to the entity. Therefore, in
summary, PeriodicTiming aspect adapts the generated code by
including a clock divider for each affected entity, as well as
creates the interconnection logic between this component and
the affected processes.

The clock divider is included as a FPGA platform com-
ponent through mapping rules of platform configuration. Such
a component is included in the generated VHDL files when
PeriodicTiming aspect is used in the UML model. In fact, Peri-
odicTiming mapping rules scripts do not define a clock divider
component; they only use its services. The target platform
library should provide resources for aspect implementation
related to the non-functional requirements handling [5]. Such
an approach makes PeriodicTiming aspect portable to other
platforms, which have their own mechanisms to control the
execution frequency of active objects. According to AMoDE-
RT approach, embedded system specifications (i.e. models)
must be platform independent, in order to allow the reuse of
model elements in distinct projects and with different target
platforms. Therefore, when GenERTiCA identifies that aspects
have been specified in the UML/MARTE model, it includes
the necessary platform services used in their implementation,
i.e. mapping rules scripts. In this case, the clock divider
component is included as a FPGA platform component by
means of platform configuration mapping rules, but only when
PeriodicTiming aspect is used in the model.

2) DataFreshness: Data freshness [23] can be understood
as the temporal validity of real-time data. Such kind of

4An active object executes autonomously its behaviors in parallel with other
active objects. A passive object only executes its behaviors in response to
method calls from other objects either active or passive.



non-functional requirement is important for some classes of
embedded system applications, such as control systems. In
such systems, data can only be used whether it is temporally
valid. For instance, before using data coming from other
components (e.g. sensors), it is necessary to check whether
these data are updated. To address such a non-functional
requirement, Datafreshness aspect [16] associates timestamps
with controlled data, checking them before using such data.

VHDL implementation of DataFreshness creates constants
representing the temporal validity of affected object attributes.
An additional process is created within the entity that repre-
sents the affected object. This process controls whether values
are updated by using a one-bit signal, which, in turn, is checked
before any reading access of the controlled attribute.

However, it is worth mentioning that this approach is
one possible implementation of Datafreshness aspect. Other
engineers may handle data freshness non-functional require-
ments in a different way. This VHDL implementation has been
proposed as proof-of-concept for AMoDE-RT aspect-oriented
MDE approach, and hence, more efficient implementations are
indeed feasible.

3) COPMonitoring: Computer Operating Properly Moni-
toring (COPMonitoring) aspect deals with the identification
of faults in system components (hardware and software). This
aspect adds a mechanism to monitor system components,
checking whether they are executing correctly. For that, mon-
itored components must periodically communicate with such
a mechanism to inform they are executing without problems.
When any component fails to accomplish such a communica-
tion, it is considered faulty and the system is warned on such
an issue. Thus, the system may take any measure to overcome
the problems caused by such a faulty component.

The proposed VHDL implementation of COPMonitoring
aspect consists in a watchdog timer, an interrupt mechanism,
and all glue logic that implements the mentioned behavior.
One watchdog timer component instance is created for each
affected entity, which, in turn, must handle the watchdog
timeout interruption, i.e. it must handle the faults identified by
the watchdog timer. In this implementation, when a watchdog
timeout occurs, the system is reset. On the other hand, the
behavior of the affected entity is modified to include the logic
that will reset the watchdog timer.

Watchdog components shall be provided by the component
library of the chosen target FPGA platform. As it happened
with the clock divider component in the PeriodicTiming aspect,
when GenERTiCA identifies that COPMonitoring aspect is
specified in the UML model, all required services are included
into the generated VHDL description. Morover, it is important
to highlight that COPMonitoring the first aspect that deal
with faults within DERAF framework. It is an additional
contribution of this work.

IV. CASE STUDY AND RESULTS

This work has already been validated through some case
studies. This paper presents a line-following robot which has
been designed using AMoDE-RT approach and implemented
as an ASIP on a Xilinx Spartan-6 FPGA development kit.
The robot is composed of two infrared sensors: one detects
the left-hand side of the line, while the other one detects the
right-hand side. An Arduino Uno board was used as a Analog-
to-Digital Converter. It converts sensors analog signals into

<<component>>

FPGA

<<ConcurrencyResource>>

movementControl

<<ConcurrencyResource>>

velocityControl

<<hwResource(HwLog)>>
<<ConcurrencyResource>>

motor

back

walk
turn

<<enumeration>>

moves

none
right
left

<<enumeration>>

directions

<<component>>

Arduino

DigitalOutputSensor

AnalogInputSensorLeft

AnalogInputSensorRight

OutputSensorSignal

<<component>>

Motors
PWMInputSignal

EnableInputSignal

SetupInputSignal

-motorLeft 1

1

-motorRight 1

1

+velocityMotor 11

Fig. 1. Composite Structure Diagram of Robot Control Systems

digital signals, which, in turn, are sent to FPGA board input
ports. The robot has two servomotors to spin left/right wheels.
The movement control system commands the robot to turn
left/right based on sensors input.

System requirements have been specified in the UML/-
MARTE model following AMoDE-RT modeling guidelines
[16]. Thereafter, a VHDL description has been generated by
GenERTiCA, using the created UML/MARTE model and the
proposed set of VHDL mapping rules as input. Figure 1 shows
the composite structure diagram of this robot control system.
As one can see, three active objects are implemented on FPGA,
which is connected to the Arduino and wheels servomotors.
MovementControl is responsible for controlling the robot di-
rection. Motor generates a PWM signal to control the rotation
speed of left/right wheels, and VelocityControl implements a
speed ramp in order to smooth the robot movement.

This project presents three non-functional requirements: (i)
active objects must be periodically activated according to the
execution frequency specified in TimedEvent stereotype; (ii)
servomotor faults must be handled within the robot control
system; (iii) sensor and motor data have temporal validity.
These requirements has been handled through PeriodicTiming,
COPMonitoring and DataFreshness aspects. Figure 2 presents
the Aspects Crosscutting Overview Diagram (ACOD) showing
these DERAF aspect.

In this evaluation, the line-following robot has been de-
signed in two versions. The first one does not use DERAF
aspects in UML/MARTE model. Non-functional requirements
handling has been implemented manually, i.e. the generated
VHDL description was manually modified in order to include
these requirements handling. This implementation was done
by the same designer that made the implementation of aspects,
used in second version. On the other hand, in the second ver-
sion, DERAF aspects have been used, and the complete VHDL
description has been automatically generated. There was no
manual modification in the generated VHDL description. It is
worth pointing out that both versions have implemented the
same set of functional and non-functional requirements.

Thereafter, ISE WebPack5 tool was used to compile and
synthesize the two VHDL descriptions into a Spartan 6 FPGA
(XC6LX16-CS324). Synthesis results are presented in Table

5www.xilinx.com



<<ConcurrencyResource>>

velocityControl

<<hwResource(HwLog)>>
<<ConcurrencyResource>>

motor

<<ConcurrencyResource>>

movementControl

<<Aspect>>

DataFreshness

<<Aspect>>

PeriodicTiming

<<Aspect>>

COPMonitoring

<<Crosscut>>

{Period = "1ms" }

<<Crosscut>>

{Validity = "5ms" }

<<Crosscut>>

{Period = "1ms" }

<<Crosscut>>

{Deadline = "1ms" }

<<Crosscut>>

{Period = "1ms" }

Fig. 2. ACOD diagram of line-following robot

II. First column shows analyzed metrics. Column “FPGA
resources” presents the total amount of resources available in
FPGA. Third and fourth columns depict metrics for, respec-
tively, “object-oriented” version (V1) and the aspect-oriented
version (V2). VHDL description of both version were gener-
ated by GenERTiCA. However, as mentioned, V1 was modi-
fied manually in order to include non-functional requirements
handling; and V2 was fully generated automatically due to
the use of DERAF aspects and the proposed VHDL mapping
rules. Finally, last column presents variation (percentage) in
presented metrics of the two versions.

As one can see, Lines of Code (LOC) increased ca. 16%
in V2. However, the amount of utilized FPGA hardware has
doubled, since used FPGA resources increases ca 184% on
average6. Such a result indicates that, for VHDL descriptions,
an increase in LOC cannot be related to a proportional increase
in FPGA resources utilization. In software, on the other hand,
this relation can be established, since the binary code size
usually increases proportionally to LOC.

Furthermore, even though the generated system ASIP in
V2 has a large increase in FPGA resources utilization, its per-
formance is better: it presents a shorter critical path (6.22% de-
crease in minimum period in comparison with V1), leading to
a greater operation frequency (6.65% increase). This improve-
ment may had been achieved due to a better modularization
of system elements achieved by using DERAF aspects, since
concerns are better separated among components as indicated
in TR metric presented in Table III. Such a modularization
improvement has also impacted positively on utilization ratio
of FFs and LUTs per slice: 2.02 FF/slice and 3.16 LUT/slice
in V1; and 2.65 FF/slice and 3.62 LUT/slice. In other words,
it could indicate that the place and routing algorithms of the
synthesis tool use more efficiently the available slices in V2,
since the increase in FF/LUT is not proportional to the increase
of slices. However, it is necessary to perform a more detailed
analysis to confirm such hypotheses. In larger systems, this
difference in utilization ratio may impact strongly on system
performance, i.e. the higher the FF/LUT utilization ratio, the
lesser the amount of used slices and better the system overall
performance. Moreover, these results are different from those
presented in [15], where aspects had a lesser impact on area
usage (3%) but did not affect system performance. Finally, it is
worth pointing out that the trade-off between performance and

6300% increase in IOB metric in V2 was included in this average amount

TABLE II. SYNTHESIZED SYSTEM METRICS

FPGA
resources

V1
Manual

V2
DERAF

Metrics Available Used Used Variation
Slices 2.278 123 262 113%
Flip-Flops (FF) 18.224 248 693 179.43%
Look-Up Table (LUT) 9.112 389 949 143.95%
Input/Output Blocks (IOBs) 232 20 80 300%
Lines of Code (LOC) 416 482 15.86%
Minimum period (ns) 4.64 4.35 -6.22%
Maximum Frequency (Mhz) 215.50 229.85 6.65%

TABLE III. IMPACT OF DERAF ON LINE-FOLLOWING ROBOT DESIGN

Aspect LOC LOWC LOAC CDLOC TR AB
Periodic Timing 206 277 34 44 15.88% 2.08
COPMonitoring 206 299 98 50 16.72% 0.94
DataFreshness 206 319 84 28 8.77% 1.34
Note: LOC - Lines of Code; LOWC - Lines of Woven Code; LOAC - Lines of Adaptation
Code; CDLOC - Concern Diffusion over LOC; TR - Tangling Ratio; AB - Aspectual Bloat

FPGA area depends on system requirements and constraints.
Hence, engineers shall chose a design approach that meets the
projects requirements and constraints.

Table III shows reusability analysis of DERAF aspects
and also their impact on the system design in V2. The first
three columns indicate the number of code lines of: (i) the
whole description without any aspect (LOC), (ii) the whole
description with aspects (LOWC), and (iii) all aspect adapta-
tion (LOAC). The remaining columns indicate AOSD-specific
metrics. CDLOC [24] indicates the number of context switches
between functional- and non-functional requirements handling
code. CDLOC is used to calculate the Tangling Ratio (TR)
[25]. According to [25], TR indicates how much functional and
non-functional concerns are intermixed. The obtained average
value of 13.79% is a good indication in comparison with results
presented in [25]. AB column [24] shows the increase in the
number of aspect-related code lines into the final system imple-
mentation after performing the aspects weaving process. AB
indicates also the impact of aspects on reusability as well as on
the final system. In this sense, COPMonitoring shows a lower
AB, meaning a low impact on the system and on its reuse, since
it affects fewer elements. However, COPMonitoring presents
the highest TR. Intuitively, AB metric may be improved in
larger systems, specially when COPMonitoring affects a larger
amount of elements.

V. FINAL REMARKS

This paper discussed an approach that allows the auto-
matic generation of fully synthesizable VHDL descriptions
from high-level UML/MARTE models. By applying MDE and
AOSD, the proposed approach deals with functional and non-
functional requirements in a platform independent way, open-
ing room for hardware and software co-design of embedded
systems. One of the main contributions of this work is the
definition of UML-to-VHDL mapping rules, which have been
implemented as code generation scripts for the GenERTiCA
tool. These mapping rules include the support for key object-
oriented features supported in UML, namely, encapsulation,
inheritance, and 1-to-n associations, as well as the support
for synchronous and asynchronous method calls (from se-
quence diagrams). In addition, a VHDL implementation of
some DERAF aspect have been created, in order to handle
with crosscutting concerns related to system non-functional
requirements. Such a handling code is woven into functional



requirements code. Hence, it is important to highlight that, in
comparison with [10], a greater amount of VHDL statements is
generated, resulting in complete and fully synthesizable VHDL
descriptions. Engineers do not need to modify manually the
generated VHDL files, since our experiments demonstrated
that the generated VHDL description was synthesized without
any error into a FPGA device.

In order to assess the proposed work, this papers pre-
sented the design of the control systems of a line-following
robot, which has been implemented as an ASIP on a FPGA
development kit. AMoDE-RT has been successfully applied,
impacting positively in system implementation, for instance,
in components modularization (TR metric is lower than 20%)
and system performance (circuit frequency increased 6.65%).
It is worth mentioning that occupied FPGA resources increased
in the aspect-oriented version of this system. However, slices
are used more efficiently; this may lead to a better FPGA
resources usage in larger systems without penalizing system
performance. On the other hand, as DERAF aspects led to
a better modularization of crosscutting concerns, their usage
opens room for a good reutilization rate. As AMoDE-RT
advocates for using platform independent specifications, e.g.
UML models and DERAF aspects, design complexity man-
agement may be improved due to an enhanced opportunity for
hardware/software co-design, as well as reuse of artifacts [5].

Despite the proposed work has been successfully applied
int design of a FPGA-based embedded system, the proposed
VHDL implementation of DERAF aspects has presented some
issues. Some aspects adaptation implementation have inter-
fered in the project specification, e.g. DataFreshness reads
signal value associated to an OUT port, but such a situation
is forbidden in VHDL. To overcome this problem, this port
type had to be changed to INOUT, so that this signal could
be read internally within the entity. Other issue is related to
the interfere among aspect adaptations. For instance, a signal
created in COPMonitoring had interfered the implementation
created for DataFreshness, and hence, COPMonitoring imple-
mentation, i.e. its mapping rule scripts, had to be modified.

As future work, more case studies are already being
performed. A similar analysis is going to be executed, in
order to demonstrate the suitability and feasibility of using
platform independent aspects to design FPGA-based embedded
real-time systems. New rules for UML elements which are
not yet covered must be defined, e.g. state machine diagrams
and their relationship with sequence diagrams. In addition,
other DERAF aspects are going to be implemented in VHDL.
However, for that, it is important to obtain or create a set of
reusable soft IP components, in order to implement aspects
adaptations using their services.

REFERENCES
[1] E. Monmasson and M. Cirstea, “FPGA Design Methodology for In-

dustrial Control Systems - A Review,” Industrial Electronics, IEEE
Transactions on, vol. 54, no. 4, pp. 1824 –1842, aug. 2007.

[2] F. Salewski and A. Taylor, “Systematic considerations for the appli-
cation of FPGAs in industrial applications,” in IEEE International
Symposium on Industrial Electronics, 2008, pp. 2009–2015.

[3] D. Hästbacka et al., “Model-driven development of industrial process
control applications,” Journal of Systems and Software, vol. 84, no. 7,
pp. 1100–1113, 2011.

[4] P. Mohagheghi et al., “An empirical study of the state of the practice
and acceptance of model-driven engineering in four industrial cases,”
Empirical Software Engineering, vol. 18, no. 1, pp. 89–116, 2013.

[5] M. A. Wehrmeister, C. E. Pereira, and F. Rammig, “Aspect-oriented
model-driven engineering for embedded systems applied to automation
systems,” IEEE Transactions on Industrial Informatics., vol. 9, no. 4,
pp. 2373–2386, Nov 2013, doi:10.1109/TII.2013.2240308.

[6] W. McUmber and B. H. C. Cheng, “Uml-based analysis of embedded
systems using a mapping to vhdl,” in IEEE International Symposium
on High-Assurance Systems Engineering, 1999, pp. 56–63.

[7] J. Vidal et al., “A co-design approach for embedded system modeling
and code generation with uml and marte,” in Design, Automation Test
in Europe Conference Exhibition (DATE), April 2009, pp. 226–231.

[8] M. Elhaji et al., “System level modeling methodology of noc design
from uml-marte to vhdl,” Design Automation for Embedded Systems,
vol. 16, no. 4, pp. 161–187, 2012.

[9] S. Wood et al., “A model-driven development approach to mapping uml
state diagrams to synthesizable vhdl,” IEEE Transactions on Computers,
vol. 57, no. 10, pp. 1357–1371, Oct 2008.

[10] T. Moreira et al., “Automatic code generation for embedded systems:
From UML specifications to VHDL code,” in Proc. of 8th IEEE
International Conference on Industrial Informatics (INDIN), July 2010,
pp. 1085–1090, doi:10.1109/INDIN.2010.5549590.

[11] G. Kiczales et al., “Aspect-oriented programming,” in Proc. of European
Conference on Object-Oriented Programming. Berlin: Springer-Verlag,
1997, pp. 220–242.

[12] Elrad et al., “Discussing aspects of AOP,” Communications of the ACM,
vol. 44, no. 10, pp. 33–38, Oct. 2001.

[13] M. Engel and O. Spinczyk, “Aspects in hardware: what do they
look like?” in Proceedings of the 2008 AOSD workshop on Aspects,
components, and patterns for infrastructure software, ser. ACP4IS ’08.
New York, NY, USA: ACM, 2008, pp. 5:1–5:6.

[14] M. Meier, S. Hanenberg, and O. Spinczyk, “AspectVHDL Stage 1:
The prototype of an aspect-oriented hardware description language,” in
Proceedings of the 2012 workshop on Modularity in Systems Software,
ser. MISS ’12. New York, NY, USA: ACM, 2012, pp. 3–8.

[15] T. Muck, M. Gernoth, W. Schroder-Preikschat, and A. Frohlich, “A
Case Study of AOP and OOP Applied to Digital Hardware Design,” in
Brazilian Symposium on Computing System Engineering (SBESC), nov.
2011, pp. 66 –71, doi: 10.1109/SBESC.2011.23.

[16] M. A. Wehrmeister, E. P. de Freitas, A. P. D. Binotto, and C. E. Pereira,
“Combining aspects and object-orientation in model-driven engineering
for distributed industrial mechatronics systems,” Mechatronics, 2014, to
appear. doi:10.1016/j.mechatronics.2013.12.008.

[17] I. Quadri et al., “MARTE based modeling approach for Partial Dynamic
Reconfigurable FPGAs,” in Proc.of Embedded Systems for Real-Time
Multimedia, 2008, pp. 47–52.

[18] Z. Wang et al., “A model driven development approach for implement-
ing reactive systems in hardware,” in Proc.of Specification, Verification
and Design Languages (FDL), 2008, pp. 197 –202.

[19] E. Ebeid, D. Quaglia, and F. Fummi, “Generation of vhdl code from um-
l/marte sequence diagrams for verification and synthesis,” in Euromicro
Conference on Digital System Design, 2012, pp. 708–714.

[20] M. Wehrmeister, E. Freitas, C. Pereira, and F. Rammig, “Genertica: A
tool for code generation and aspects weaving,” in Intl. Symp. Object-
Oriented Real-Time Distributed Computing (ISORC). IEEE Computer
Society, 2008, pp. 234–238, doi:10.1109/ISORC.2008.67.

[21] M. Leite, C. V. Damiani, and M. A. Wehrmeister, “Enhancing automatic
generation of VHDL descriptions from UML/MARTE models,” in
Proc. of International Conference on Industrial Informatics (INDIN’14).
Piscataway, NY, USA: IEEE Eletronics Society, 2014, pp. 1–5.

[22] M. Leite and M. A. Wehrmeister, “Aspect-oriented model-driven engi-
neering for FPGA/VHDL based embedded real-time systems,” in Intl.
Symp. Object-Oriented Real-Time Distr. Computing (ISORC). IEEE
Computer Society, 2014, pp. 261–268, DOI: 10.1109/ISORC.2014.45.

[23] Burns and Wellings, “HRT-HOOD: A structured design method for hard
real-time systems,” Real-Time Systems, vol. 6, no. 1, pp. 73–114, 1994.

[24] E. Figueiredo et al., “On the maintainability of aspect-oriented software:
A concern-oriented measurement framework,” in 12th European Confer-
ence on Software Maintenance and Reengineering, 2008, pp. 183–192.

[25] J. a. M. Cardoso et al., “LARA: an aspect-oriented programming
language for embedded systems,” in Proceedings of the 11th annual
international conference on Aspect-oriented Software Development, ser.
AOSD ’12. New York, NY, USA: ACM, 2012, pp. 179–190.


