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Abstract— Upcoming interlinked embedded systems will be 
confronted with unexpectedly changing environments, which 
makes online adaptation without manual interference necessary. 
There is a need for appropriate system architectures and novel 
design approaches. In this paper, we discuss general concepts of 
self-adaptive real-time systems. Furthermore, specific system 
engineering techniques solving two important aspects of such a 
paradigm are presented. We discuss how the necessity for 
adaptation can be identified using Online Model Checking and 
how self-adapting safety guards can be designed by means of 
Artificial Immune  Systems. Finally, we present an approach to 
integrating these techniques into an underlying platform 
architecture based on mixed-criticality virtualization.  
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I.  INTRODUCTION  

Currently a dramatic shift in the nature of embedded 
software can be observed. For many years, embedded software 
was characterized by more or less fixed sets of applications, 
managed by a real-time operating system (RTOS) which is 
carefully tailored in such a way that it exactly serves the needs 
of the applications, avoiding as much as possible any redundant 
service. In the beginning, even changing environments have 
been neglected. The user did serve as a kind of intelligent filter 
being responsible to adapt the modified environment to the 
fixed embedded system. Even when embedded systems were 
designed in a more adaptive manner, this adaptation took place 
off-line under control by human experts. However, embedded 
systems are reactive by nature. This becomes even more 
evident in the case of Cyber Physical Systems [1], which are 
closely linked to both, the physical environment and the 
cyberspace. Such systems are embedded into environments, 
which are predictable only to a certain degree. To deal with this 
not fully predicable behavior of the environment, one solution 
might be to include adequate reactions to each imaginable 
behavior of the environment into the applications and the 
operating system. This, of course, may result in an immense 
waste of resources. If the vast majority of imaginable situations 
will never occur, all the reactions coded-in to handle these 
situations are overhead, which cannot be avoided because it is 
unknown beforehand which situations are those to be handled 
in reality. The situation becomes even more complicated when 
the embedded systems are directly interlinked without human 
interference (i.e. without intelligent interface).  

Upcoming systems of systems can be seen as a fabric of 
embedded systems that are interwoven either statically or 
dynamically. The situation of dynamically creating or deleting 
communication links further complicates the situation. The 
German “Industry 4.0” research program may be used as an 
example. In this vision, the entire fabrication process is treated 
as an interlinked system of various production sites, controlled 
at various levels of abstraction, influenced by numerous 
dynamic parameters (prices, availabilities, regulations, 
environmental conditions, … etc.), dynamically making and 
cancelling contracts with suppliers and customers, being 
influenced by sophisticated logistics systems. This means that 
even the detailed control of some local machinery may be 
influenced by some unexpected parameters originating from 
some remote location, which never have been expected when 
this piece of software has been designed. Consequently, we 
have to deal with embedded systems that must be able to 
continuously adapt to changing environments, which leads to 
self-evolving   software. From this point of view, self-adapting 
embedded systems are not some academic theory but a 
necessity for upcoming highly interlinked systems.  

When such self-evolving components form a fabric of self-
evolving structure, some emergence of the total system of 
systems may be the consequence. This implies that engineering 
techniques have to be developed that allow for carefully 
designing such systems, for efficiently implementing them, and 
for continuously supervising them. In this paper, we will 
concentrate on the aspects of detecting the need for change and 
on continuously supervising self-adapting systems. We will 
argue from an operating system point of view. In both of the 
two discussed aspects, sequences of system calls seem to be the 
adequate granularity of monitoring system behaviors. In 
addition, we will present our solution to use system 
virtualization via a real-time-capable hypervisor as a unified 
platform for self-adapting embedded real-time software. 

      The rest of the paper is structured as follows: In Section II 
some basic principles of self-adapting systems are discussed. 
In Section III it is described how our Online Model Checking 
technique can be applied to proactively identify needs to adapt 
the currently running software system. An AIS-based 
approach for continuous system supervision is presented in 
Section IV. Section V deals with real-time-capable 
virtualization concepts. In Section VI a summary and an 
outlook are given. 



II. SELF-ADAPTING SYSTEMS 

A. General Concepts of Self-adapting Software 

     Adaptability means that such a software system may evolve 
at run-time, coping with changing requirements and 
information provided by the respective environment. Self-
adaptive systems are becoming of increasing interest in 
research. It seems to be natural to use closed-loop control as 
the basic paradigm to address the aspect of self-adaptation. A 
well-known model for applying closed-loop control to software 
is the MAPE architecture [2]. Here “M”  stands for “Monitor” 
(the current behavior), “A”  for “Analyze” (the monitored 
behavior), “P”  for “Plan” (updates), and “E”  for “Execute” 
(the planned updates). A couple of researchers concentrated on 
this closed-loop point of view for self-adapting software. For 
an excellent overview about the relevant literature, see [3]. 
Dealing with real-time systems, however makes it necessary to 
refine these concepts, see subsection II.B.  

    We are restricting ourselves to software systems where the 
entire software environment is composed of well-defined 
components with highly standardized interfaces. We assume 
that the considered embedded systems are permanently 
connected to the Internet, which serves as provider of 
information and services, including a worldwide market of 
such components. The adaptation process then means either 
replacing currently running components or adding components 
to existing software solutions by components that in both cases 
are extracted from this virtual market place.  

In [4] we have identified four prerequisites for solutions where 
a fully automatic environment is the intent:  

(1) First of all, a continuously and automatically accessible 
market of software components, which follow some strict 
standards, must exist. Within the scope of this paper, we will 
not discuss this aspect; we just assume that such a market 
together with the appropriate access mechanisms exists. Work 
into this direction is being done, e.g. in the Collaborative 
Research Center On-the-Fly Computing at the University  of 
Paderborn [5], funded by the German Science Foundation. 

(2) Obviously, a technique is needed that allows for identifying 
the necessity of adaptation. In [6], Carlo Ghezzi and his 
coauthors argue that online verification might be a good 
approach for this purpose. If a model of the respective 
environment is part of the entire model of the considered 
system, online verification can identify situations where the 
observed real environment no longer matches its model. In 
Section III we will discuss how we are using our own Online 
Model Checking mechanism based on Bounded Model 
Checking with sliding initial states [7] for this purpose.  

(3) Whenever the necessity of an adaptation has been identified 
it has to be carried out. We are coping with real-time systems. 
Therefore, we are working on a fully automatic adaptation 
approach being integrated into   a real-time operating system as 
underlying engine.  

Assuming a strict component-oriented software environment, 
any adaptation means deletion, insertion, or replacement of 
components. Furthermore, we assume that for components 
there may exist various profiles. All profiles of a component 
share the same principal functionality, however under different 
demands of resources and providing different quality levels of 
the principal functionality. Usually less resource-demanding 
profiles provide some lower quality. In a real-time system, any 
modification of the set of applications to be executed means to 
perform an acceptance test. If this acceptance test fails, the 
entire set of components has to be re-arranged in such a 
manner that the resulting task set will become feasible. In our 
approach, we make use of the various profiles of the 
components to find a feasible configuration, which provides 
maximal overall quality. Algorithmically this is equivalent to 
solving a Knapsack problem. 

(4) In the case of dynamically adapting systems, any kind of 
change may result in malign operation. Biological organisms 
therefore feature highly sophisticated protection mechanisms, 
especially the immune system. Higher organisms like 
mammals have an immune system, which is adaptable by its 
own. Comparable concepts are needed for self-adapting 
software systems as well. Besides using our Online Model 
Checker not only for triggering adaptations but also for 
verifying the resulting system [8], we are applying special 
Artificial Immune Systems (AIS) as adaptive safety guard. We 
selected a special kind of AIS [9] based on the so-called 
Danger Theory [10].  This aspect will be discussed in Section 
IV.  

Finally, an adequate architecture for a system platform is 
needed. We have to deal with primary services, namely the 
intended behavior of the embedded system and secondary ones. 
Those include all the services needed for adaptation and 
supervision. Making use of mixed criticality virtualization 
seems to be an adequate solution. In Section V we will shortly 
describe our approach for such a platform. 

B. Real-time-aware System Engineering 

 

 

 

 

 

 

 

 

 

Fig. 1. Global Architecture of Interwoven Self-adapting Systems 

We are dealing with highly distributed systems, linked over 
networks, which are not real time capable (the internet). On the 
other hand, we are dealing with real-time-critical applications. 
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As a means to overcome these contradicting properties, we 
follow a layered approach. We consider a system to be a 
network of agents, being clustered into distributed computing 
nodes (see Fig. 1). Such an agent locally acts as an embedded 
real-time system, providing real time capable services like 
closed loop applications. For this purpose, it is directly 
connected to its local sensors and actuators and accesses a set 
of local variables. Global variables can be accessed only via 
channels, which are not real time capable by nature. Therefore, 
each local agent must include some intelligence to deal with 
assumptions about these global variables to be valid and up-to-
date. In addition, an agent must be able to revise its 
assumptions. Whenever an agent observes a mismatch between 
its assumptions and the actual data received via the network 
some adaptation has to take place.  

We follow a model-based approach. To enable an 
adaptation control loop, the respective model also has to 
include a model of the environment (compare [3]). This 
consists of the local environment, which is sensed by the local 
sensors and influenced by the local actuators under real-time 
constraints (local parameters), but also the entire network to 
which the local agent is connected (global parameters). When 
these parameters describing the environment are running out of 
some predefined constraints, the respective model of the 
environment is no longer valid and therefore the model of the 
application may no longer satisfy predefined requirements. If 
so, some adaptation is needed. Thus, in our system engineering 
approach, we are following a concept where the construction of 
software is becoming a highly dynamic on-line process. Instead 
of creating a fixed release of a software system as the result of 
an off-line engineering process, a continuously evolving flow 
of releases is generated. In this sense, we interpret self-adapting 
systems as self-agile systems. Providing fully automatic on-line 
agile programming requires to dramatically restricting the 
supported area of systems and the methods to be applied. In our 
case, we restrict ourselves to software systems that follow a 
strict component-based approach: we assume the entire 
software system to be composed of well-defined components 
with well-defined and highly standardized interfaces. Any kind 
of adaptation then means removing, adding, or exchanging 
such components. Such a coarse-grained granularity results in a 
substantially reduced scope of potential alternatives. Per 
computing node, the entire process (primary applications and 
adaptation process) can be implemented using a mixed-
criticality, real-time-capable virtualization system.  The 
primary (hard real-time) applications can be grouped to be 
executed by a high criticality virtual machine (VM), while the 
adaptation services run on a lower criticality VM.  

At our university, we have extended the adaptation control 
loop to a two-level one [11]. The lower level, called 
“Reflective Operator” executes the adaption itself. In our 
system architecture, it runs on a dedicated (real-time) VM. The 
upper level, called “Cognitive Operator” takes care of long 
term strategic planning of adaptions (somehow comparable to 
the “Plan” activity in the MAPE architecture). It runs under no 
or soft real-time constraints and may be executed on an even 
lower criticality VM. In Section V we will discuss especially 
how to integrate online model checking and AIS-based self-
diagnosis into such a virtualized system architecture. 

III.  IDENTIFICATION OF NEED FOR ADAPTATION 

Online Model Checking is in the context of this work not 
used as a means of verification but to identify situations where 
the present model of the environment is no longer consistent 
with the currently sensed values. That is, we assume that the 
behavior of the component would be still correct with respect 
to the previous environment, which implies that it is the 
changing environment, which leads to the violation. In case of 
a violation, the online model checking mechanism can inform 
the underlying operating system. The generated 
counterexample then can be converted into a web query for a 
problem solving alternative component. 

A. Online Model Checking 

To apply online model checking, we need to have the 
model of the component including a model of the environment 
as well as the property to be checked at hand. The properties of 
interest in our context are inconsistencies between the 
modelled environment and the values sensed from the 
environment that cannot be handled correctly by the actual 
version of the component. Such a property can be any invariant 
or non-trivial linear temporal logic formula (i.e., safety or even 
liveness property). Both the safety checking and liveness-
checking problem can be transformed into forward reachability 
analysis [12] [13]. Online model checking is in essence a type 
of simplified Bounded Model Checking (BMC) [14] with 
sliding initial states, applied at runtime.  

We require that the current state si of the component under 
test is monitored and stored in a (ring) buffer from time to time 
during the system execution. The left hand part of Fig. 2 
illustrates the basic idea [7] of our online model checking 
mechanism. Whenever the online model checker is triggered, it 
tries to take a new (concrete) state, say si, from the buffer 
periodically. It then goes to search for a potential error state in 
a partial state space of the system model starting from the 
corresponding abstract state ŝi = σ(si), where the function σ(si) 
maps each concrete state si at the implementation level to the 
corresponding abstract state ŝi at the model level. In each 
checking cycle only finite (transition) steps, say the next k 
steps, starting from the observed state are scanned. In this way, 
the state space to be explored is reduced dramatically and the 
state space explosion problem is avoided. Our goal is to figure 
out whether there exists an error path starting from some 
observed state to the unsafe region, i.e. a set of error states. If 
the property being checked is violated, it implies that the actual 
reality might not conform to the modelled environment any 
more, recall that we assume the behavior of the component 
being correct.  

There are many ways to improve the performance of online 
mode checking (see [15]). Among them, we can speed up 
online model checking algorithm by reducing the workload of 
the online model checker. For this purpose, we need to extend 
the original set F0 of error states to become F’ = F0 ˅ F1 ˅…˅ 
Fn by offline backward reachability computation up to n time 
steps as shown on the right hand part of Fig. 2. 

The offline computed unsafe region might also serve to 
characterize a component in the repository of candidate 
components. For this purpose, the counterexample generated 



by the online model checker in case of a property violation is 
converted into a query for a component, which does not 
contain the respective unsafe region. 

 

 

 

 

 

 

 

 

Fig. 2. Online and Offline Process of Online Model Checking 

For a more detailed description of our online model checker 
mechanism, please refer to [8]. 

B. Observation Granularity 

A failure can be malign according to Kopetz [16] only when 
being passed to the outside. This can happen in an OS-based 
system only under control of the OS, via a system call. All 
other failures are benign. As we are considering only OS-based 
systems, any implementation of an application has to contain a 
sequence of system calls. Whenever a system call is invoked, 
we can monitor the state information of the implementation 
and its actual environment. Therefore, the sequence of system 
calls of an application is the appropriate level of granularity. As 
system calls happen anyhow during the system execution, 
online verification can be integrated as part of the system call 
handler of an RTOS, by this causing no additional context 
switch overhead and the necessary information being available 
without crossing address space borders. In this sense online 
model checking becomes an RTOS service as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

Fig. 3. Online Model Checking and Safety Guarding as OS Services via 
System Calls 

IV.  SELF-ADAPTING SAFETY GUARDS 

A. Online Model Checking 

In the context of this paper, Online Model Checking is used 
primarily as means to identify the need for online adaptation 
of application programs. In addition, it is perfectly applicable 
for checking the correctness of the resulting software after an 
adaptation. As this approach is covered in previous papers, 
e.g. [8], it will not be further discussed here. 
 

B. Artificial Immune Systems 

To realize self-adapting safety guards, the operating system 
requires mechanisms to cope with dynamic behavior and to 
monitor system behavior at run-time. Safety guards are then 
responsible for identifying of potentially malicious system 
states caused by autonomous adaptation. Our safety guards 
depend on a knowledge base of normal system behavior, 
which has to be generated at run-time without any predefined 
design-time system model. Incorporated directly into the 
operating system, again via the system call interface (see Fig. 
3), the safety guards continuously update this knowledge base 
of system behavior.  
We use the principle of the Artificial Immune System’s 
Danger Theory to implement these safety guards into the 
operating system. So-called Dendritic Cells build up the core 
of this population-based approach used to monitor and 
evaluate the system behavior. One DC is responsible for 
profiling the behavior of one task or a specific OS kernel 
property by the sequence of its system calls. It concurrently a) 
builds up a local knowledge base of normal behavior of the 
component it is monitoring and b) performs local behavior 
evaluation, using a Suffix Tree-based pattern-matching 
algorithm. In accordance to Danger Theory, on top of this 
pattern matching, system-wide input signals support the DCs’ 
local evaluation. These signals are provided by an RTOS 
health monitor. The following input signals are defined: 
(1) Safe signal: indicates that no threat has been identified in 
the system. 
(2) PAMP (“pathogen associated molecular pattern”) signal: 
indicator that a known threat has been localized. 
(3) Danger signal: indicates a potential danger due to local 
behavior deviations. 
(4) Inflammation signal: general alarm signal.  
The evaluation of a DC is combining the result of its local 
analyzing method with these system-wide signals. 
Each DC continuously receives the values of these system-
wide signals indicating either safe, suspicious or dangerous 
system state based on specific thresholds assigned to the input 
signals and thereby classifies the local behavior. The general 
alarm signal can be raised to inform the DCs about potential 
risk situations. Such a risk situation may be triggered either 
due to inconsistencies between the model and the reality, 
identified by online model checking, or because of adaptation.  
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V. V IRTUALIZATION  

A. Concepts for Real-time-capable Virtualization 

As an evolutionary approach, we propose to follow system 
virtualization, as for example realized by our real-time 
multicore hypervisor Proteus [17]. A hypervisor (also known 
as virtual machine monitor) allows the sharing of the 
underlying hardware among multiple isolated virtual machines 
(VM). Multiple existing software stacks of operating system 
(OS) and application tasks are combined to a system of 
systems. Proteus can act as a basic OS itself in order to host 
tasks directly in a bare-metal manner. Virtualization is a well-
suited architecture for CPSs, primarily due to capabilities such 
as integration of legacy code, scalability, and transparent use 
of multi-core processors, cross-platform portability, and 
isolation of applications, especially for open systems, in which 
subsystems may be added or removed at runtime. System 
virtualization provides a natural way to support mixed 
criticality by consolidating systems of different criticality 
levels into separated VMs. The coexistence of mixed 
criticality levels (e.g. safety-critical, mission-critical and 
subsystems of minor importance) has been identified as one of 
the core foundational concepts for CPSs [18]. CPSs adjust 
their goals and behavior at runtime according to changes of 
the environment or corrections received from a higher level. 
This results in varying resource usage patterns and the need 
for a dynamic resource management. Proteus combines safe 
resource partitioning and dynamic reallocation of resources. 
In previous work, the Flexible Resource Manager (FRM) has 
been developed in our group [19] and was recently adapted to 
system virtualization [20]. The FRM approach assumes that 
components are available in various profiles, which are 
functionally equivalent, but differ substantially regarding 
nonfunctional properties, especially resource requirements. 
Such implementation alternatives exist for example in case of 
optimization applications (relax optimality for lower resource 
consumption) or control applications (variable frequency). 
Profiles define minimum and maximum resource requirements 
for tasks and VMs: resource allocation is only possible within 
this range. 
System virtualization implies resource management decisions 
on two levels and a FRM component is added to both the 
hypervisor and the OS. The hypervisor assigns resources to 
the VMs and the OSs assign the obtained resources to their 
tasks. The OS-FRMs inform the Hypervisor-FRM about the 
dynamic resource requirements and utilizations. The 
Hypervisor-FRM's resource allocation among the VMs is 
based on this information. The Hypervisor-FRM informs the 
OS-FRMs about the assigned resources, which facilitates each 
OS-FRM to manage its resource share. The dynamic switching 
by the FRMs between profiles on task level and on VM level 
implements the dynamic resource management. In particular, 
reserved but temporarily unused resources can be passed to 
other tasks/VMs. If resources were reallocated from one entity 
to another one and the lending entity later needs more 
resources than left, a resource conflict occurs and has to be 
solved in real-time. To achieve this, an acceptance test 

precedes each profile switch. Such a switch is accepted if and 
only if a feasible reconfiguration to a fallback configuration is 
identified, which fulfills the worst-case requirements of all 
entities, and if the time required performing this 
reconfiguration does not lead to a deadline miss. 
So far, our work focused on the management of the resource 
computation time and showed that the actual distribution of 
bandwidth follows closely the desired bandwidths, even in 
case of varying execution times and mode changes, 
underlining the effectiveness of our approach in implementing 
an adaptive resource allocation [21]. 

 

B. Resulting implementation architecture 

The above-mentioned virtualization concepts serve as a 
unified platform to implement self-adaptive systems. The 
basic idea is to run the primary hard real-time tasks grouped 
into one VM under highest criticality. This includes any 
access to primary (hard real-time) parameters and the 
monitoring of system calls needed to link online model 
checking and safety guarding. Access to secondary 
parameters, i.e. accessing global information via a network, 
can be assigned to a lower criticality virtual machine. As the 
tasks on this machine highly depend on the availability of 
messages from remote nodes, we make use of the dynamic 
bandwidth assignment feature of our virtualization concept; 
i.e. this virtual machine becomes scheduled with a certain 
fraction of the available processor bandwidth only when 
needed. The online model checker and the safety guarding run 
on an additional VM. Communication in between the 
respective application and these services is controlled by the 
cross-VM communication service of the hypervisor. An 
additional VM is reserved for strategic activities, including 
replacing/modification components when a necessity of 
adaptation has been identified. Again, by making use of the 
dynamic bandwidth assignment capabilities of our 
virtualization concept, whenever necessary we can assign as 
much bandwidth as possible to this VM after having set all 
other tasks running on all other VMs of the system to their 
least resource-hungry profile. 

C. Results 

The approach is currently integrated into our real-time multi-
core hypervisor Proteus and our real-time operating system 
ORCOS for 32-bit multi-core PowerPC 405 architectures. A 
low memory footprint and a high configurability characterize 
Proteus. A configuration with the base functionality requires 
11 kilobytes and a configuration with all functional features 
requires 15 kilobytes. The interrupt latencies and the execution 
times for synchronization primitives, hypercall handlers, 
emulation routines, and virtual machine context switch are all 
in the range of hundreds of processor cycles. Executed with a 
clock speed of 300 MHz, a virtual machine context switch 
takes 1.3 μs. Virtualization increases the interrupt latency. The 
additional latency is 0.5 μs for a programmable timer interrupt 
and 0.3 μs for a system call interrupt. 
Proteus supports both, full virtualization and para-
virtualization without relying on special hardware support. 



The implementation of the FRM requires para-virtualization, 
since the OS-FRMs have to pass information to the 
hypervisor. The requirement to modify the guest OS is 
outweighed by the advantages in terms of efficiency, run-time 
flexibility, and cooperation of hypervisor. A specific 
advantage of para-virtualization for real-time systems is the 
possibility to apply dynamic real-time scheduling algorithms. 
Moreover, para-virtualization’s replacement of privileged 
instructions by hypercalls speeds up the execution in average 
by 39%. 
We tested the integration of online model checking in a rather 
abstracted emulation framework, just to enable some first 
rough analysis (see [22]). In this experiment, ORCOS with the 
application to be online checked runs on a QEMU-emulated 
Power PC405 on top of Ubuntu 12.4 LTS LINUX (which did 
replace the hypervisor in this experiment). The model checker 
became just an application running on Linux, while a special 
communication helper modeled the cross-VM communication 
service of the hypervisor. This experiment showed linear 
communication overhead with respect to the size of the 
transferred state information. The absolute value on a 3 GHz 
Intel P4 was in the low millisecond range, a value that will 
dramatically be lower in case of a real hypervisor-based 
implementation. 

VI.  SUMMARY AND OUTLOOK 

In this paper, we are addressing some system-engineering 
aspects of upcoming highly adaptable and self-modifying 
embedded real-time software. We are concentrating on 
platform aspects and two activities needed for self-adaptation: 
how Online Model Checking may be applied as a means to 
identify necessary module replacements/additions and how 
Artificial Immune Systems can be used for online safety 
guarding. Both activities are carried out at the granularity of 
system calls. 
There are numerous open questions to be answered until such 
visionary self-adapting real-time systems can become reality, 
e.g.: (1) How to organize a market for components that can be 
handled in a fully automatic manner? (2) How to organize a 
repository of available components such that it can be queried 
automatically? (3) How to fully automatically convert a model 
checker’s counterexample into a query for a problem-solving 
component? (4) How to implement a self-adaptation 
environment such that it can run under real-time constraints? 
Currently we are working on some of these questions.  
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