
Designing Self-Adaptive Embedded Real-time Software -
Towards System Engineering of Self-Adaptation

Franz Josef Rammig, Stefan Grösbrink, Katharina Stahl, and Yuhong Zhao
University of Paderborn
Heinz Nixdorf Institute
Paderborn, Germany

{franz, s.groesbrink, katharina.stahl, zhao}@upb.de

Abstract— Upcoming interlinked embedded systems will be
confronted with unexpectedly changing environments, which
makes online adaptation without manual interference necessary.
There is a need for appropriate system architectures and novel
design approaches. In this paper, we discuss general concepts of
self-adaptive real-time systems. Furthermore, specific system
engineering techniques solving two important aspects of such a
paradigm are presented. We discuss how the necessity for
adaptation can be identified using Online Model Checking and
how self-adapting safety guards can be designed by means of
Artificial Immune Systems. Finally, we present an approach to
integrating these techniques into an underlying platform
architecture based on mixed-criticality virtualization.

Keywords— Cyber Physical Systems, Self-adapting Software,
Online Model Checking, Artificial Immune Systems, Danger
Theory, System Virtualization, Mixed-criticality Systems

I. INTRODUCTION

Currently a dramatic shift in the nature of embedded
software can be observed. For many years, embedded software
was characterized by more or less fixed sets of applications,
managed by a real-time operating system (RTOS) which is
carefully tailored in such a way that it exactly serves the needs
of the applications, avoiding as much as possible any redundant
service. In the beginning, even changing environments have
been neglected. The user did serve as a kind of intelligent filter
being responsible to adapt the modified environment to the
fixed embedded system. Even when embedded systems were
designed in a more adaptive manner, this adaptation took place
off-line under control by human experts. However, embedded
systems are reactive by nature. This becomes even more
evident in the case of Cyber Physical Systems [1], which are
closely linked to both, the physical environment and the
cyberspace. Such systems are embedded into environments,
which are predictable only to a certain degree. To deal with this
not fully predicable behavior of the environment, one solution
might be to include adequate reactions to each imaginable
behavior of the environment into the applications and the
operating system. This, of course, may result in an immense
waste of resources. If the vast majority of imaginable situations
will never occur, all the reactions coded-in to handle these
situations are overhead, which cannot be avoided because it is
unknown beforehand which situations are those to be handled
in reality. The situation becomes even more complicated when
the embedded systems are directly interlinked without human
interference (i.e. without intelligent interface).

Upcoming systems of systems can be seen as a fabric of
embedded systems that are interwoven either statically or
dynamically. The situation of dynamically creating or deleting
communication links further complicates the situation. The
German “Industry 4.0” research program may be used as an
example. In this vision, the entire fabrication process is treated
as an interlinked system of various production sites, controlled
at various levels of abstraction, influenced by numerous
dynamic parameters (prices, availabilities, regulations,
environmental conditions, … etc.), dynamically making and
cancelling contracts with suppliers and customers, being
influenced by sophisticated logistics systems. This means that
even the detailed control of some local machinery may be
influenced by some unexpected parameters originating from
some remote location, which never have been expected when
this piece of software has been designed. Consequently, we
have to deal with embedded systems that must be able to
continuously adapt to changing environments, which leads to
self-evolving software. From this point of view, self-adapting
embedded systems are not some academic theory but a
necessity for upcoming highly interlinked systems.

When such self-evolving components form a fabric of self-
evolving structure, some emergence of the total system of
systems may be the consequence. This implies that engineering
techniques have to be developed that allow for carefully
designing such systems, for efficiently implementing them, and
for continuously supervising them. In this paper, we will
concentrate on the aspects of detecting the need for change and
on continuously supervising self-adapting systems. We will
argue from an operating system point of view. In both of the
two discussed aspects, sequences of system calls seem to be the
adequate granularity of monitoring system behaviors. In
addition, we will present our solution to use system
virtualization via a real-time-capable hypervisor as a unified
platform for self-adapting embedded real-time software.

 The rest of the paper is structured as follows: In Section II
some basic principles of self-adapting systems are discussed.
In Section III it is described how our Online Model Checking
technique can be applied to proactively identify needs to adapt
the currently running software system. An AIS-based
approach for continuous system supervision is presented in
Section IV. Section V deals with real-time-capable
virtualization concepts. In Section VI a summary and an
outlook are given.

II. SELF-ADAPTING SYSTEMS

A. General Concepts of Self-adapting Software

 Adaptability means that such a software system may evolve
at run-time, coping with changing requirements and
information provided by the respective environment. Self-
adaptive systems are becoming of increasing interest in
research. It seems to be natural to use closed-loop control as
the basic paradigm to address the aspect of self-adaptation. A
well-known model for applying closed-loop control to software
is the MAPE architecture [2]. Here “M” stands for “Monitor”
(the current behavior), “A” for “Analyze” (the monitored
behavior), “P” for “Plan” (updates), and “E” for “Execute”
(the planned updates). A couple of researchers concentrated on
this closed-loop point of view for self-adapting software. For
an excellent overview about the relevant literature, see [3].
Dealing with real-time systems, however makes it necessary to
refine these concepts, see subsection II.B.

 We are restricting ourselves to software systems where the
entire software environment is composed of well-defined
components with highly standardized interfaces. We assume
that the considered embedded systems are permanently
connected to the Internet, which serves as provider of
information and services, including a worldwide market of
such components. The adaptation process then means either
replacing currently running components or adding components
to existing software solutions by components that in both cases
are extracted from this virtual market place.

In [4] we have identified four prerequisites for solutions where
a fully automatic environment is the intent:

(1) First of all, a continuously and automatically accessible
market of software components, which follow some strict
standards, must exist. Within the scope of this paper, we will
not discuss this aspect; we just assume that such a market
together with the appropriate access mechanisms exists. Work
into this direction is being done, e.g. in the Collaborative
Research Center On-the-Fly Computing at the University of
Paderborn [5], funded by the German Science Foundation.

(2) Obviously, a technique is needed that allows for identifying
the necessity of adaptation. In [6], Carlo Ghezzi and his
coauthors argue that online verification might be a good
approach for this purpose. If a model of the respective
environment is part of the entire model of the considered
system, online verification can identify situations where the
observed real environment no longer matches its model. In
Section III we will discuss how we are using our own Online
Model Checking mechanism based on Bounded Model
Checking with sliding initial states [7] for this purpose.

(3) Whenever the necessity of an adaptation has been identified
it has to be carried out. We are coping with real-time systems.
Therefore, we are working on a fully automatic adaptation
approach being integrated into a real-time operating system as
underlying engine.

Assuming a strict component-oriented software environment,
any adaptation means deletion, insertion, or replacement of
components. Furthermore, we assume that for components
there may exist various profiles. All profiles of a component
share the same principal functionality, however under different
demands of resources and providing different quality levels of
the principal functionality. Usually less resource-demanding
profiles provide some lower quality. In a real-time system, any
modification of the set of applications to be executed means to
perform an acceptance test. If this acceptance test fails, the
entire set of components has to be re-arranged in such a
manner that the resulting task set will become feasible. In our
approach, we make use of the various profiles of the
components to find a feasible configuration, which provides
maximal overall quality. Algorithmically this is equivalent to
solving a Knapsack problem.

(4) In the case of dynamically adapting systems, any kind of
change may result in malign operation. Biological organisms
therefore feature highly sophisticated protection mechanisms,
especially the immune system. Higher organisms like
mammals have an immune system, which is adaptable by its
own. Comparable concepts are needed for self-adapting
software systems as well. Besides using our Online Model
Checker not only for triggering adaptations but also for
verifying the resulting system [8], we are applying special
Artificial Immune Systems (AIS) as adaptive safety guard. We
selected a special kind of AIS [9] based on the so-called
Danger Theory [10]. This aspect will be discussed in Section
IV.

Finally, an adequate architecture for a system platform is
needed. We have to deal with primary services, namely the
intended behavior of the embedded system and secondary ones.
Those include all the services needed for adaptation and
supervision. Making use of mixed criticality virtualization
seems to be an adequate solution. In Section V we will shortly
describe our approach for such a platform.

B. Real-time-aware System Engineering

Fig. 1. Global Architecture of Interwoven Self-adapting Systems

We are dealing with highly distributed systems, linked over
networks, which are not real time capable (the internet). On the
other hand, we are dealing with real-time-critical applications.

…

Autonomous Agents

Adaptation Agent

local

data

local

CPU

secondary primary

parameters

network Unpredictable

delay

Parameters used for

hard real-time local

actions

Parameters used for cognitive

local prediction-making

actions

Parameters used as

assumptions about

global facts and

objectives

Parameter exchange

with remote nodes

(facts and objectives)

As a means to overcome these contradicting properties, we
follow a layered approach. We consider a system to be a
network of agents, being clustered into distributed computing
nodes (see Fig. 1). Such an agent locally acts as an embedded
real-time system, providing real time capable services like
closed loop applications. For this purpose, it is directly
connected to its local sensors and actuators and accesses a set
of local variables. Global variables can be accessed only via
channels, which are not real time capable by nature. Therefore,
each local agent must include some intelligence to deal with
assumptions about these global variables to be valid and up-to-
date. In addition, an agent must be able to revise its
assumptions. Whenever an agent observes a mismatch between
its assumptions and the actual data received via the network
some adaptation has to take place.

We follow a model-based approach. To enable an
adaptation control loop, the respective model also has to
include a model of the environment (compare [3]). This
consists of the local environment, which is sensed by the local
sensors and influenced by the local actuators under real-time
constraints (local parameters), but also the entire network to
which the local agent is connected (global parameters). When
these parameters describing the environment are running out of
some predefined constraints, the respective model of the
environment is no longer valid and therefore the model of the
application may no longer satisfy predefined requirements. If
so, some adaptation is needed. Thus, in our system engineering
approach, we are following a concept where the construction of
software is becoming a highly dynamic on-line process. Instead
of creating a fixed release of a software system as the result of
an off-line engineering process, a continuously evolving flow
of releases is generated. In this sense, we interpret self-adapting
systems as self-agile systems. Providing fully automatic on-line
agile programming requires to dramatically restricting the
supported area of systems and the methods to be applied. In our
case, we restrict ourselves to software systems that follow a
strict component-based approach: we assume the entire
software system to be composed of well-defined components
with well-defined and highly standardized interfaces. Any kind
of adaptation then means removing, adding, or exchanging
such components. Such a coarse-grained granularity results in a
substantially reduced scope of potential alternatives. Per
computing node, the entire process (primary applications and
adaptation process) can be implemented using a mixed-
criticality, real-time-capable virtualization system. The
primary (hard real-time) applications can be grouped to be
executed by a high criticality virtual machine (VM), while the
adaptation services run on a lower criticality VM.

At our university, we have extended the adaptation control
loop to a two-level one [11]. The lower level, called
“Reflective Operator” executes the adaption itself. In our
system architecture, it runs on a dedicated (real-time) VM. The
upper level, called “Cognitive Operator” takes care of long
term strategic planning of adaptions (somehow comparable to
the “Plan” activity in the MAPE architecture). It runs under no
or soft real-time constraints and may be executed on an even
lower criticality VM. In Section V we will discuss especially
how to integrate online model checking and AIS-based self-
diagnosis into such a virtualized system architecture.

III. IDENTIFICATION OF NEED FOR ADAPTATION

Online Model Checking is in the context of this work not
used as a means of verification but to identify situations where
the present model of the environment is no longer consistent
with the currently sensed values. That is, we assume that the
behavior of the component would be still correct with respect
to the previous environment, which implies that it is the
changing environment, which leads to the violation. In case of
a violation, the online model checking mechanism can inform
the underlying operating system. The generated
counterexample then can be converted into a web query for a
problem solving alternative component.

A. Online Model Checking

To apply online model checking, we need to have the
model of the component including a model of the environment
as well as the property to be checked at hand. The properties of
interest in our context are inconsistencies between the
modelled environment and the values sensed from the
environment that cannot be handled correctly by the actual
version of the component. Such a property can be any invariant
or non-trivial linear temporal logic formula (i.e., safety or even
liveness property). Both the safety checking and liveness-
checking problem can be transformed into forward reachability
analysis [12] [13]. Online model checking is in essence a type
of simplified Bounded Model Checking (BMC) [14] with
sliding initial states, applied at runtime.

We require that the current state si of the component under
test is monitored and stored in a (ring) buffer from time to time
during the system execution. The left hand part of Fig. 2
illustrates the basic idea [7] of our online model checking
mechanism. Whenever the online model checker is triggered, it
tries to take a new (concrete) state, say si, from the buffer
periodically. It then goes to search for a potential error state in
a partial state space of the system model starting from the
corresponding abstract state ŝi = σ(si), where the function σ(si)
maps each concrete state si at the implementation level to the
corresponding abstract state ŝi at the model level. In each
checking cycle only finite (transition) steps, say the next k
steps, starting from the observed state are scanned. In this way,
the state space to be explored is reduced dramatically and the
state space explosion problem is avoided. Our goal is to figure
out whether there exists an error path starting from some
observed state to the unsafe region, i.e. a set of error states. If
the property being checked is violated, it implies that the actual
reality might not conform to the modelled environment any
more, recall that we assume the behavior of the component
being correct.

There are many ways to improve the performance of online
mode checking (see [15]). Among them, we can speed up
online model checking algorithm by reducing the workload of
the online model checker. For this purpose, we need to extend
the original set F0 of error states to become F’ = F0 ˅ F1 ˅…˅
Fn by offline backward reachability computation up to n time
steps as shown on the right hand part of Fig. 2.

The offline computed unsafe region might also serve to
characterize a component in the repository of candidate
components. For this purpose, the counterexample generated

by the online model checker in case of a property violation is
converted into a query for a component, which does not
contain the respective unsafe region.

Fig. 2. Online and Offline Process of Online Model Checking

For a more detailed description of our online model checker
mechanism, please refer to [8].

B. Observation Granularity

A failure can be malign according to Kopetz [16] only when
being passed to the outside. This can happen in an OS-based
system only under control of the OS, via a system call. All
other failures are benign. As we are considering only OS-based
systems, any implementation of an application has to contain a
sequence of system calls. Whenever a system call is invoked,
we can monitor the state information of the implementation
and its actual environment. Therefore, the sequence of system
calls of an application is the appropriate level of granularity. As
system calls happen anyhow during the system execution,
online verification can be integrated as part of the system call
handler of an RTOS, by this causing no additional context
switch overhead and the necessary information being available
without crossing address space borders. In this sense online
model checking becomes an RTOS service as shown in Fig. 3.

Fig. 3. Online Model Checking and Safety Guarding as OS Services via
System Calls

IV. SELF-ADAPTING SAFETY GUARDS

A. Online Model Checking

In the context of this paper, Online Model Checking is used
primarily as means to identify the need for online adaptation
of application programs. In addition, it is perfectly applicable
for checking the correctness of the resulting software after an
adaptation. As this approach is covered in previous papers,
e.g. [8], it will not be further discussed here.

B. Artificial Immune Systems

To realize self-adapting safety guards, the operating system
requires mechanisms to cope with dynamic behavior and to
monitor system behavior at run-time. Safety guards are then
responsible for identifying of potentially malicious system
states caused by autonomous adaptation. Our safety guards
depend on a knowledge base of normal system behavior,
which has to be generated at run-time without any predefined
design-time system model. Incorporated directly into the
operating system, again via the system call interface (see Fig.
3), the safety guards continuously update this knowledge base
of system behavior.
We use the principle of the Artificial Immune System’s
Danger Theory to implement these safety guards into the
operating system. So-called Dendritic Cells build up the core
of this population-based approach used to monitor and
evaluate the system behavior. One DC is responsible for
profiling the behavior of one task or a specific OS kernel
property by the sequence of its system calls. It concurrently a)
builds up a local knowledge base of normal behavior of the
component it is monitoring and b) performs local behavior
evaluation, using a Suffix Tree-based pattern-matching
algorithm. In accordance to Danger Theory, on top of this
pattern matching, system-wide input signals support the DCs’
local evaluation. These signals are provided by an RTOS
health monitor. The following input signals are defined:
(1) Safe signal: indicates that no threat has been identified in
the system.
(2) PAMP (“pathogen associated molecular pattern”) signal:
indicator that a known threat has been localized.
(3) Danger signal: indicates a potential danger due to local
behavior deviations.
(4) Inflammation signal: general alarm signal.
The evaluation of a DC is combining the result of its local
analyzing method with these system-wide signals.
Each DC continuously receives the values of these system-
wide signals indicating either safe, suspicious or dangerous
system state based on specific thresholds assigned to the input
signals and thereby classifies the local behavior. The general
alarm signal can be raised to inform the DCs about potential
risk situations. Such a risk situation may be triggered either
due to inconsistencies between the model and the reality,
identified by online model checking, or because of adaptation.

Application

Execution Trace

Online Model

Checker

Online Safety

Guarding

Buffer

S.C.

Handler

S.C.

Handler

S.C.

Handler

put take take

System call

System call

System call

Trigger model

checking

Trigger safety

guarding

Safety guarding response

MC response

VM 1 VM 2 VM 3

V. V IRTUALIZATION

A. Concepts for Real-time-capable Virtualization

As an evolutionary approach, we propose to follow system
virtualization, as for example realized by our real-time
multicore hypervisor Proteus [17]. A hypervisor (also known
as virtual machine monitor) allows the sharing of the
underlying hardware among multiple isolated virtual machines
(VM). Multiple existing software stacks of operating system
(OS) and application tasks are combined to a system of
systems. Proteus can act as a basic OS itself in order to host
tasks directly in a bare-metal manner. Virtualization is a well-
suited architecture for CPSs, primarily due to capabilities such
as integration of legacy code, scalability, and transparent use
of multi-core processors, cross-platform portability, and
isolation of applications, especially for open systems, in which
subsystems may be added or removed at runtime. System
virtualization provides a natural way to support mixed
criticality by consolidating systems of different criticality
levels into separated VMs. The coexistence of mixed
criticality levels (e.g. safety-critical, mission-critical and
subsystems of minor importance) has been identified as one of
the core foundational concepts for CPSs [18]. CPSs adjust
their goals and behavior at runtime according to changes of
the environment or corrections received from a higher level.
This results in varying resource usage patterns and the need
for a dynamic resource management. Proteus combines safe
resource partitioning and dynamic reallocation of resources.
In previous work, the Flexible Resource Manager (FRM) has
been developed in our group [19] and was recently adapted to
system virtualization [20]. The FRM approach assumes that
components are available in various profiles, which are
functionally equivalent, but differ substantially regarding
nonfunctional properties, especially resource requirements.
Such implementation alternatives exist for example in case of
optimization applications (relax optimality for lower resource
consumption) or control applications (variable frequency).
Profiles define minimum and maximum resource requirements
for tasks and VMs: resource allocation is only possible within
this range.
System virtualization implies resource management decisions
on two levels and a FRM component is added to both the
hypervisor and the OS. The hypervisor assigns resources to
the VMs and the OSs assign the obtained resources to their
tasks. The OS-FRMs inform the Hypervisor-FRM about the
dynamic resource requirements and utilizations. The
Hypervisor-FRM's resource allocation among the VMs is
based on this information. The Hypervisor-FRM informs the
OS-FRMs about the assigned resources, which facilitates each
OS-FRM to manage its resource share. The dynamic switching
by the FRMs between profiles on task level and on VM level
implements the dynamic resource management. In particular,
reserved but temporarily unused resources can be passed to
other tasks/VMs. If resources were reallocated from one entity
to another one and the lending entity later needs more
resources than left, a resource conflict occurs and has to be
solved in real-time. To achieve this, an acceptance test

precedes each profile switch. Such a switch is accepted if and
only if a feasible reconfiguration to a fallback configuration is
identified, which fulfills the worst-case requirements of all
entities, and if the time required performing this
reconfiguration does not lead to a deadline miss.
So far, our work focused on the management of the resource
computation time and showed that the actual distribution of
bandwidth follows closely the desired bandwidths, even in
case of varying execution times and mode changes,
underlining the effectiveness of our approach in implementing
an adaptive resource allocation [21].

B. Resulting implementation architecture

The above-mentioned virtualization concepts serve as a
unified platform to implement self-adaptive systems. The
basic idea is to run the primary hard real-time tasks grouped
into one VM under highest criticality. This includes any
access to primary (hard real-time) parameters and the
monitoring of system calls needed to link online model
checking and safety guarding. Access to secondary
parameters, i.e. accessing global information via a network,
can be assigned to a lower criticality virtual machine. As the
tasks on this machine highly depend on the availability of
messages from remote nodes, we make use of the dynamic
bandwidth assignment feature of our virtualization concept;
i.e. this virtual machine becomes scheduled with a certain
fraction of the available processor bandwidth only when
needed. The online model checker and the safety guarding run
on an additional VM. Communication in between the
respective application and these services is controlled by the
cross-VM communication service of the hypervisor. An
additional VM is reserved for strategic activities, including
replacing/modification components when a necessity of
adaptation has been identified. Again, by making use of the
dynamic bandwidth assignment capabilities of our
virtualization concept, whenever necessary we can assign as
much bandwidth as possible to this VM after having set all
other tasks running on all other VMs of the system to their
least resource-hungry profile.

C. Results

The approach is currently integrated into our real-time multi-
core hypervisor Proteus and our real-time operating system
ORCOS for 32-bit multi-core PowerPC 405 architectures. A
low memory footprint and a high configurability characterize
Proteus. A configuration with the base functionality requires
11 kilobytes and a configuration with all functional features
requires 15 kilobytes. The interrupt latencies and the execution
times for synchronization primitives, hypercall handlers,
emulation routines, and virtual machine context switch are all
in the range of hundreds of processor cycles. Executed with a
clock speed of 300 MHz, a virtual machine context switch
takes 1.3 μs. Virtualization increases the interrupt latency. The
additional latency is 0.5 μs for a programmable timer interrupt
and 0.3 μs for a system call interrupt.
Proteus supports both, full virtualization and para-
virtualization without relying on special hardware support.

The implementation of the FRM requires para-virtualization,
since the OS-FRMs have to pass information to the
hypervisor. The requirement to modify the guest OS is
outweighed by the advantages in terms of efficiency, run-time
flexibility, and cooperation of hypervisor. A specific
advantage of para-virtualization for real-time systems is the
possibility to apply dynamic real-time scheduling algorithms.
Moreover, para-virtualization’s replacement of privileged
instructions by hypercalls speeds up the execution in average
by 39%.
We tested the integration of online model checking in a rather
abstracted emulation framework, just to enable some first
rough analysis (see [22]). In this experiment, ORCOS with the
application to be online checked runs on a QEMU-emulated
Power PC405 on top of Ubuntu 12.4 LTS LINUX (which did
replace the hypervisor in this experiment). The model checker
became just an application running on Linux, while a special
communication helper modeled the cross-VM communication
service of the hypervisor. This experiment showed linear
communication overhead with respect to the size of the
transferred state information. The absolute value on a 3 GHz
Intel P4 was in the low millisecond range, a value that will
dramatically be lower in case of a real hypervisor-based
implementation.

VI. SUMMARY AND OUTLOOK

In this paper, we are addressing some system-engineering
aspects of upcoming highly adaptable and self-modifying
embedded real-time software. We are concentrating on
platform aspects and two activities needed for self-adaptation:
how Online Model Checking may be applied as a means to
identify necessary module replacements/additions and how
Artificial Immune Systems can be used for online safety
guarding. Both activities are carried out at the granularity of
system calls.
There are numerous open questions to be answered until such
visionary self-adapting real-time systems can become reality,
e.g.: (1) How to organize a market for components that can be
handled in a fully automatic manner? (2) How to organize a
repository of available components such that it can be queried
automatically? (3) How to fully automatically convert a model
checker’s counterexample into a query for a problem-solving
component? (4) How to implement a self-adaptation
environment such that it can run under real-time constraints?
Currently we are working on some of these questions.

ACKNOWLEDGMENT

Part of the work described in this paper has been carried out
within CRC 614 “Self-Optimization in Mechanical
Engineering” funded by the German Science Foundation, and
project AIS (Autonomous Integrated Systems), funded by
edacentrum, Hannover, Germany.

REFERENCES

[1] M. Broy, A. Schmidt, “Challenges in Engineering Cyber-Physical
Systems”, IEEE Computer Vol. 47 no. 2, Feb. 2014, pp. 70-72

[2] J.O. Kephart, D.M. Chess, “The vision of autonomic computing”, IEEE
Computer 36(1), pp. 41-50, 2003

[3] Y. Brun, et al., “Engineering self-adaptive systems through feedback
loops,” in Proc. of Software Engineering for Self-Adaptive Systems, ser.
LNCS 5525, B. H. C. Cheng and et al., Eds. Springer, 2009, pp. 48–70.

[4] F. Rammig, L. Khaluf, N. Montealegre, K. Stahl, Y. Zhao, “Organic
Real-time Programming – Vision and Approaches towards Self-
Evolving and Adaptive Real-time Software”, in Proc. 9th IEEE SEUS
2013, , 17. - 18. Jun. 2013 IEEE

[5] Z. Huma, C. Gerth, G. Engels, and O. Juwig, “Towards an automatic
service discovery for uml-based rich service descriptions,” in Proc.
ACM/IEEE 15th International Conference on Model Driven Engineering
Languages and Systems (MODELS’12), ser. LNCS. Springer, 2012.

[6] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Commun.
ACM, vol. 55, no. 9, pp. 69–77, Sep. 2012.

[7] F. J. Rammig, Y. Zhao, and S. Samara, “On-line model checking as
operating system service,” in Proceedings of the 7th IFIP WG 10.2
International Workshop on Software Technologies for Embedded and
Ubiquitous Systems, ser. SEUS’09. Springer-Verlag, 2009, pp. 131–143.

[8] Y. Zhao and F.-J. Rammig, “Online model checking for dependable
real-time systems,” in 16th IEEE ISORC, China, IEEE Computer
Society. IEEE Computer Society, April 2012, pp. 154–161.

[9] F. Rammig and K. Stahl, “Online Behavior Classification for Anomaly
Detection in Self-x Real-Time Systems”. in Proc. 5th IEEE SORT,
2014, , 9. Jun. 2014 IEEE.

[10] U. Aickelin and S. Cayzer. “The danger theory and its application to
artificial immune systems”. CoRR, 2008.

[11] L. Gausemeier, F.J. Rammig, W. Schäfer (Eds), “Design Methodology
for Intelligent Technical Systems,” Springer-Verlag, Heidelberg,
Germany, Jan. 2014.

[12] Orna Kupferman and Moshe Y. Vardi, “Model checking of safety
properties,” Form. Methods Syst. Des., 19(3):291–314, October 2001.
ISSN 0925-9856

[13] Viktor Schuppan, “Liveness checking as safety checking to find shortest
counterexamples to linear time properties,” PhD thesis, ETH Zurich,
2006.

[14] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 118–149, 2003.

[15] M. Qanadilo, S. Samara, and Y. Zhao, “Accelerating online model
checking,” 6th Latin-Am. Symp. on Dependable Comp. (LADC), 2013

[16] H. Kopetz, Real-time systems: design principles for distributed
embedded applications, ser. Kluwer interntl. series in engineering and
computer science: Real-time systems. Kluwer Academic Publ., 2011.

[17] D. Baldin, T. Kerstan, “Proteus, a hybrid Virtualization Platform for
Embedded Systems”, in: Analysis, Architectures and Modelling of
Embedded Systems, 14. - 16. Sep. 2009 IFIP WG 10.5, Springer-Verlag

[18] S. Baruah, H. Li, and L. Stougie. “Towards the design of certifiable
mixed-criticality systems”,in Proc. IEEE Real-Time Technology and
Applications Symposium, 2010

[19] S. Oberthür, L. Zaremba, and H. S. Lichte, “Flexible resource
management for self-x systems: An evaluation,” in Proceedings of the
2010 13th IEEE International Symposium on Object, Component,
Service-Oriented Real-Time Distributed Computing Workshops, ser.
ISORCW’10. Washington, DC, USA: IEEE CS, 2010, pp. 1–10.

[20] S. Groesbrink, S. Oberthür, D. Baldin, “Towards Adaptive Resource
Management for Virtualized Real-Time Systems”, in: 4th WS on
Adaptive and Reconfigurable Embedded Systems (CPSWeek 2012),

[21] S. Groesbrink, L. Almeida, M. de Sousa, S.M. Petters, “Towards
Certifiable Adaptive Reservations for Hypervisor-based Virtualization,”
in Proceedings of the 20th IEEE RTAS, April 2014

[22] K. Sudhakar,Y. Zhao, F.J. Rammig, “Efficient Integration of Online
Model Checking into a Small-Footprint Real-time Operating System”. in
Proc. 5th IEEE SORT 2014, , 9. Jun. 2014 IEEE.

