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Abstract—  Reconfigurable  architectures  are  an  alternative
for  classic  superscalar  organizations  to  the  exploration  of
instruction  level  parallelism  (ILP),  while  the  multicore
organizations  are  the  most  commonly  used  strategy  to  exploit
thread level parallelism (TLP). This work extends a dynamic and
transparent  homogeneous  multicore  reconfigurable  system
(CReAMS)  that  explores  both  TLP  and  ILP,  by  making  it
heterogeneous,  featuring  cores  with distinct  resources.  We will
show  that,  for  applications  with  low  TLP,  a  heterogeneous
configuration  of  CReAMS  outperforms  its  homogeneous
counterpart with the same chip area. The performed simulations
prove  the  potential  of  using  heterogeneous  reconfigurable
systems, showing speedups of up to 90%.
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I.  INTRODUCTION

For many years,  the majority of embedded systems were
designed to execute specific and specialized tasks. However,
with  the  advancement  of  technologies  for  the  design  of
integrated  circuits,  embedded  processors  are  now  able  to
perform  many  kinds  of  operations.  Moreover,  users  now
demand to be able to execute their daily routine tasks using as
few  devices  as  possible.  Thus,  each  new  generation  of
embedded  hardware  is  expected  to  provide  more
functionalities, be faster and be more energetically efficient.

There  are  many  ways  which  can  be  used  to  improve  a
processor’s  performance.  Parallel  execution  is  a  common
strategy used to accelerate a program and to efficiently use the
resources  of  a  processor.  If  a  sequence  of  independent
instructions  (that  do  not  operate  over  the  same  data  set)  is
dispatched,  the  processor  can  allocate  them  to  different
functional units and process them concurrently. This provides
performance  gains  due  to  the  exploitation  of  the  instruction
level parallelism (ILP). 

The superscalar approach is widely used to exploit ILP in
both general  purpose  – as  the  Intel  x86 architectures  – and
embedded processors – like the ARM architecture.  However, it
is  expensive in terms of power consumption, since for each
incoming  instruction,  the  superscalar  processor  has  to
repeatedly evaluate data dependencies to exploit the instruction
level  parallelism. Another  possible strategy to exploit  ILP is
dynamic  reconfigurable  architectures.  They  are  projected  to

adapt  themselves  according  to  the  application  at  hand,
reconfiguring their datapath so that the stream of data through
the functional units is optimized. The great advantage of these
architectures  is  that  they  can  also  optimize  data  dependent
instructions,  besides  executing  the  non-dependent  ones
concurrently.

On  the  other  hand,  the  employment  of  multicore
organizations, supported by the scheduler of operating systems,
enables  the  simultaneous  execution  of  application  threads
through many  processor  cores,  thus  thread  level  parallelism
(TLP)  is  explored.  Therefore,  it  is  also  possible  to  increase
performance  on  reconfigurable  organizations  through  the
exploitation of TLP, by the replication of cores that have their
own  reconfigurable  datapath  each.  CReAMS  (Custom
Reconfigurable  Arrays  for  Multiprocessor  Systems)  is  an
example of such a system. 

However,  CReAMS  is  homogeneous:  all  cores  are  the
same,  which  means  that  the  reconfigurable  array  is  also
identical  on every  core.  That  leads  to  inefficiency  problems
when  running  applications  with  varied  workload.  When  the
cores are not under full usage, many of the functional units on
the reconfigurable array are not used, wasting resources  and
power.  With  that  being  said,  it  is  possible  to  build  a
heterogeneous  CReAMS  configuration  –  whose  cores  are
different  –  which  is  the  proposal  of  this  work.  On
heterogeneous systems, threads that highly explore the ILP can
be allocated to cores with bigger reconfigurable datapaths (that
have more functional units), while threads with lower ILP can
be dispatched to smaller ones. 

In  this  work  we  will  simulate  a  set  of  heterogeneous
CReAMS  configurations  and  compare  them  with  other
homogeneous configurations of same area. For this, we will use
five different benchmarks – selected to cover a wide range of
applications  –  to  measure  CReAMS  performance  on  the
configurations  built.  We  will  show  that,  depending  on  the
application, a heterogeneous CReAMS better uses the chip area
as the functional units are better allocated.

This  paper  is  organized  as  follows.  Section  2  shows  a
review of existing work on adaptable organizations. Section 3
demonstrates the CReAMS organization. Section 4 discusses
about  the  differences  between  homogeneous  and
heterogeneous configurations of CReAMS. Section 5 presents



the simulation environment  and the results.  Finally,  the last
section draws conclusions and introduces future work.

II. RELATED WORK

The architectures  that  can adapt  themselves to provide a
hardware  expertize  for  a  specific  application  are  known  as
reconfigurable  systems.  Because  of  this  specialization,  these
architectures are expected to provide performance and energy
saving  improvements  over  General  Purpose  Processors.
However,  these  systems  are  still  built  aiming  flexibility  to
execute  many  kinds  of  tasks,  which  means  that  they  have
smaller  gains  if  compared  to  dedicated  circuits,  like
Application-Specific Integrated Circuits (ASICs) [1].

The reconfigurable logic can be loosely connected to the
processor as an I/O peripheral (communication is done through
the main memory), attached as a coprocessor (communication
is done by coprocessor-like protocols) or tightly coupled as a
functional unit (reconfigurable logic is inside the processor and
share  its  resources,  like  its  registers).  Furthermore,  the
granularity of the reconfigurable logic determines its level of
data manipulation. A fine-grained logic is implemented at bit
level  (like FPGAs) while  a  coarse-grained  logic implements
word level circuits (like ALUs that execute the same operation
in parallel over many bits).

There  are  many proposed  reconfigurable  architectures  in
the literature, as listed in [1]. One can find different single- and
multi-  processing  environments  which  applies  some kind  of
adaptability to improve the performance of applications [8][9].
They  can  be  either  homogeneous  or  heterogeneous,
considering their architecture (i.e. what ISA is implemented)
and organization (i.e. if the processors that comprise the system
are the same or not).  

Watkins [2] presents a procedure for mapping functions in
the ReMAPP system, which is composed of a pair of coarse-
grained  reconfigurable  arrays  that  is  shared  among  several
cores.  As  an  example  of  a  system  with  homogeneous
architecture  and  heterogeneous  organization,  one  can  find
Thread Warping [3]. It extends the Warp Processing [4] system
to  support  multiple-thread  execution.  In  this  case,  one
processor is totally dedicated to execute the operating system
tasks  needed  to  synchronize  threads  and  to  schedule  their
kernels in the accelerators. KAHRISMA [5] is another example
of  a  totally  heterogeneous  architecture.  It  supports  multiple
instruction sets (RISC, 2- 4- and 6-issue VLIW, and EPIC) and
fine  and  coarse-grained  reconfigurable  arrays.  Software
compilation,  ISA partitioning,  custom  instructions  selection
and  thread  scheduling  are  made  by  a  design  time  tool  that
decides, for each part of the application code, which assembly
code  will  be  generated,  considering  its  dominant  type  of
parallelism  and resources  availability.  A run  time  system is
responsible  for  code  binding  and  for  avoiding  execution
collisions  in  the  available  resources. Both  ReMAPP  and
KAHRISMA are able to optimize  multiple threads,  but they
break the binary compatibility.

Therefore, the advantages of using CReAMS [13] over the
architectures reviewed above include:

 Unlike KAHRISMA and Thread Warping, CReAMS is
physically  homogeneous  in  both  architecture  and
organization.  Heterogeneity  is  achieved  on  the  fly,
without any human intervention, by employing a binary

translation. It eases  the software development process
since a well-known tool chain (i.e. gcc) is used for any
of its versions. Neither source code modifications nor
additional  libraries  are  necessary  if  new  processing
elements are inserted.

 KAHRISMA, Thread  Warping  and  ReMAPP rely  in
special and particular tool chains to extract thread-level
parallelism and to prepare the platform for execution.
CReAMS  does  not  change  the  current  development
flow,  so  well-known  application  programming
interfaces  (e.g.  OpenMP) can  be  used.  This  way,  the
programmer  can  extract  TLP in  a  friendly  interface,
since such APIs are already coupled to a great number
of  compilers  (e.g.  gcc  and  icc),  which  makes  the
software development and the binary generation process
easier than the aforementioned approaches.

 In contrast to ReMAPP and Thread Warping, CReAMS
employs a coarse-grained reconfigurable fabric instead
of  a  fine-grained  one.  Fine-grained  architectures
provide  higher  acceleration  levels,  but  their  scope  is
narrowed  to  applications  that  have  few  kernels
responsible  for  a  large  part  of  the  execution  time.
Coarse-grained reconfigurable architectures reduce the
reconfiguration time and memory footprint due to the
small  context  size,  which  increases  its  field  of
applications,  because  they are capable of  accelerating
the entire application.

III. CREAMS ORGANIZATION

A general overview of  CReAMS[15]  is  given  in  Figure
1(a). The thread level parallelism is explored by replicating the
number  of  Dynamic  Adaptive  Processors  (DAPs)  (in  the
example  of  the  Figure  1(a),  by  eight  DAPs).  In  this  way,
CReAMS  extends  the  single-thread  based  reconfigurable
architecture  presented  in  [6]  to  handle  multithreaded
applications.  A  DAP  is  a  transparent  coarse-grained
reconfigurable architecture coupled to the processor, and will
be explained in details later. The communication among DAPs
is  done  through  a  2D-mesh  Network  on  Chip  using  a  XY
routing strategy. CReAMS also includes an on-chip unified 512
KB 8-way set associative L2 shared memory, illustrated as SM
in the Figure 1(a).  We divided DAP in four blocks to better
explain  it,  as  illustrated  in  Figure  1(b).  These  blocks  are
discussed in the following sections.

A  SparcV8-based  architecture  is  used  as  the  baseline
processor to work together with the reconfigurable system. Its
five  stage  pipeline  reflects  a  traditional  RISC  design
(instruction fetch, decode, execution, data fetch and writeback)
and it is similar to other RISC processors used in well-known
embedded platforms (e.g. MIPS, ARM).



A. Reconfigurable Data Path Structure (Block 1)

Block  1  shows  the  structure  for  the  reconfigurable  data
path. It is coarse-grained and tightly coupled to the processor's
pipeline (there is no shared bus between both of them), which
avoids external access to the memory and, consequently, saves
power and reduces the reconfiguration time. As we can see in
Figure 1(b), the data path is organized in a matrix structure,
where  the  number  of  rows  is  the  maximum  number  of
instructions  that  can  be  executed  in  parallel  –  independent
instructions can be allocated on the same column –, while the
number  of  columns  dictates  the  maximum  number  of
dependent instructions that can be executed in sequence in a
configuration – the columns in a level are executed in sequence
as a big combinational block. For example, the configuration
on  Figure  1  is  able  to  perform  four  arithmetic  and  logic
operations,  two  memory  accesses  on  cache  and  one
multiplication at the same time if all the data instructions are
independent.  As the critical path (the piece of combinational
circuit  that  takes  longer  to  produce  a  correct  result)  is  the
multiplier, it is possible to have other faster units on the same
level. In the example, three arithmetic and logic units (ALUs)
compose a level, while the multiplier and the memory access
take  the  equivalent  to  one  cycle  on  the  processor.  In  other
words,  this  configuration  can  execute  twelve  arithmetic  and
logic operations, two memory accesses and one multiplication
on each level at the very best case of data dependency.

The  entire  structure  of  the  reconfigurable  data  path  is
combinational, meaning that no temporal barrier (registers) are
added  between  the  functional  units.  The  only  registers  are
present on the entry point – the input context – and the exit
point – the storage of the results. Feeding of the input context
with the necessary data is the first step to configure the data
path before starting the execution. The results are sent to the
processor's register file on demand. It means that if any value is
produced at any data path level (a cycle of the processor) and if
it  will  not  be changed  in the next  levels,  this  value  can  be
written  back  on  the  next  cycle.  If  the  number  of  writes
produced be the array is greater than the number of available
write ports in the register file, than the excess instructions are

forwarded to the next level – in the example shown in Figure
1(b), the maximum number of ports available is two.

The interconnection structure of the reconfigurable datapath
is built using multiplexers to determine the dataflow into the
functional units. More details are available in [14].

B. Processor pipeline (Block 2)

Block 2 is the basic processor to be used coupled with the
array. It is also the reference point to determine the simulation
performance  of  the  tested  configurations.  In  this  work,  the
baseline processor is a SparcV8-based architecture. 

C. Storage Components (Block 3)

There  are  two  memory  units  specialized  for  the
reconfiguration  system:  the  address  cache  and  the
reconfiguration memory. The first holds the memory address of
the first instruction of every configuration built by the dynamic
detection  hardware  (explained  later).  This  cache  is
implemented  as  a  4-way  set  associative  table  containing 64
entries  (which  means  that  the  system  can  hold  up  to  64
configurations).  An  address  cache  hit  indicates  that  a
configuration was found, therefore this cache is used to verify
the existence of a configuration on the reconfiguration memory
– where the configuration bits are kept.

D. Dynamic Detection Hardware (DDH) (Block 4)

This  block  is  responsible  for  instruction  detection  and
allocation in  the data  path and is  implemented as  a  4-stage
pipelined  circuit.  The  Dynamic  Detection  Hardware  (DDH)
does not increase the critical path of the processor and it is a
binary  translation  mechanism  that  translates  the  instructions
from SparcV8 ISA to data path configurations. The stages of
the circuit are divided in Instruction Decode (ID), Dependence
Verification  (DP),  Resource  Allocation  (RA)  and  Update
Tables  (UT).  The  translation  process  is  performed  as  the
processor  executes  the  instruction  (at  the  same  time  and
independently), so there is no extra performance overhead.

For each column on the reconfiguration data path (Figure
1(b)),  there  is  a  bitmap responsible  for  storing in  the  target

Figure 1: (a) CReAMS (b) DAP blocks (c) Assembly of a loop (d) Allocation inside of the reconfigurable data path



operands of the already allocated instructions in the respective
column, named as Write Bitmap (Figure 1(d)). Thus, for each
incoming instruction, its source operands will be compared to
the target operands in this bitmap to decide in which column
this  instruction  will  be  allocated,  according  to  data
dependencies.

Figure 1(c) has an assembly code as an example. On Figure
1(d), the allocation of this code on the reconfigurable data path
is shown. The first incoming instruction, a memory access, is
allocated  on the highest  functional  unit  of  the leftmost  data
path column. However, as on this process this type of operation
takes an entire level (a processor cycle), the fourth bit of the
write bitmap (representing the r4 register) of the columns 1, 2
and 3 are set to maintain the allocation consistency.

The  dependency  detection  starts  from  the  second
instruction. In the example, the instruction number two reads
the r4 register.  As it  is written by the previous instruction, a
read after write (RAW) dependence is found. The DDH detects
it  (through  the  write  bitmap)  and  allocates  the  instruction
number two at the later column of instruction number one. The
second bit of the fourth column of the write bitmap is set since
this instruction has the register r2 as the target operand. The
dependency analysis keeps these steps until instruction number
five, where a loop is found.

The  DDH  supports  speculation,  so  when  the  branch
instruction  is  found,  a  speculation  flag  is  set  and  the
configuration  continues  the  allocation  of  the  following
iterations.  In  other  words,  it  is  possible  (if  there  is  enough
space  on  the  array  and  reconfigurable  memory)  to  keep
multiple iterations of a basic block on the same configuration.
The  instructions  in  black  in  Figure  1(d)  represents  the
instructions allocated for the second iteration of the loop code
of Figure 1(c).

This hardware is capable of performing register renaming – for
false dependency treatment – as well.  In instruction number
ten, the register r1 could be read by the incoming instruction in
the second column, but could not write in this same register at
this  column.  It  is  detected  by  the  DDH and  the  register  is
renamed to r5 (the next empty register of the input context). All
subsequent  instructions  that  contain  a  reference  to  r1  are
modified accordingly.

IV. HOMOGENEOUS AND HETEROGENEOUS CREAMS 

A. Homogeneous CReAMS 

As  already  discussed,  the  homogeneous  version  of
CReAMS is a configuration where all the DAPs are exactly the
same. They all have the same size in area, the same memory
size (L1 cache size, reconfiguration memory , number of input
and output context, etc) and the same functional units. Figure
2(a) illustrates this concept. This configuration represents the
traditional approach used in current multicore systems – in this
case,  DAPs would  be  generic  cores  instead.  It  is  simple  to
implement, as no special scheduling is necessary (a thread is
simply allocated to the next free DAP). However, this is not the
most efficient  approach,  whereas a thread with low ILP will
execute on the same environment as a thread with a high ILP.

B. Heterogeneous CReAMS 

A heterogeneous  version  of  CReAMS is  a  configuration
where each DAP has a different  number of functional  units,

input and output context length and memory size. This allows
for some cores to be bigger than others, or in other words, more
efficient  to execute threads that  can explore higher levels of
instruction level parallelism. Similarly, smaller DAPs would be
allocated  to  run  threads  with low ILP.  Figure  2(b)  shows a
heterogeneous CReAMS of four cores where two of them are
smaller than the others, one is of medium size and the last is
bigger.

Scheduling threads accordingly to their necessities leads to
a greater energy efficiency. If a DAP is too big and is scheduled
to execute a thread with low ILP, many functional units would
be wasted for not being used. On the other hand, if a DAP is
too small and is allocated for a thread with high ILP, the system
would  need  many  more  cycles  to  execute  the  thread  as  no
sufficient functional units would be available – wasting time
and energy.

It is  also expected for a heterogeneous system to have a
smaller communication overhead. Considering the same chip
area a homogeneous CReAMS composed of only small DAPs
could have much more cores than a heterogeneous CReAMS
with  small,  medium  and  big  sized  DAP.  Therefore,  if  the
heterogeneous  configuration  performs  better  than  the
homogeneous,  it  will  do  so  using  fewer  cores  with  less
communication between them. 

V. RESULTS

We  have  created  a  configuration  of  heterogeneous
CReAMS and compared  it  with other  two configurations of
homogeneous CReAMS in terms of the total cycles taken to
execute  an  application.  The  objective  is  to  measure  the
potential  gains  of  the  heterogeneous  configurations.  In  the
homogeneous  versions,  a  configuration  with a  smaller  array
(called  SmallHomo)  and  one  with  a  bigger  array  (called
BigHomo) were created. Their resources are shown in Table 1.
The heterogeneous configuration is composed of three sizes of
arrays:  a big,  a medium and a small  version (also shown in
Table 1). These three sizes are distributed in 50% big arrays,
25% medium arrays  and  25% small  arrays.  For example,  a
4Hetero configuration would have 4 cores on which 2 of them
have big arrays, 1 has a medium array and 1 has a small array,
while an 8Hetero would have 4 cores with big arrays, 2 with
medium and 2 with small.

The communication overhead is modeled as shown in [7].
In  this  model,  the  best  and  worst  overhead  cases  are
considered. The best case is when the data traffic is uniformly
distributed  among  the  NoC  nodes,  while  the  worst  case
happens  when  the  traffic  of  data  is  concentrated  from/to  a
specific node. Moreover, the scheduler of threads used in this

Figure 2: (a) homogeneous CReAMS composed of 8 small cores (b)
heterogeneous CReAMS composed of 2 small cores, 1 medium and 1 large



experiment  is  static,  meaning  that  once  a  thread  starts
executing on a certain DAP it will keep executing on that DAP.
This scheduler also does not try to allocate the thread to the
best fitting core. 

This work uses the Simics simulator [10] to generate the
instruction trace from a set of applications. These instructions
will then be split according to their threads and each of these
threads will be allocated to a DAP simulator. Benchmarks of
different  suits  were  chosen  to  cover  a  wide  range  of
applications in terms of parallelism exploitation (i.e. TLP and
ILP).  From  parallel  suits  [11],  we  have  selected  the
applications lu and fft. From SPEC OMPM2001 suit, we have
selected  equake,  which  was  originally  a  single-threaded
application that was ported to take advantage of multi-threaded
environments. Finally, susan_c and susan_e were selected from
the MiBench suit [12] and they represent a typical embedded
scenario.  susan_c  and  fft are  benchmarks  with  great  load
balancing between the threads,  making them good examples
for TLP exploitation.  lu  has good load balancing for up to 8
threads.  For  more  than  that,  however,  the  instructions  are
poorly distributed. Additionally,  susan_e, susan_c and lu have
big mean basic block sizes,  which means that they can take
advantage  of  ILP exploitation on bigger  arrays,  as  they  can
occupy  more  resources  on  bigger  configurations.  Finally,
equake has  neither  good load balancing  nor big mean basic
blocks,  so  it  will  not  be  much  influenced  by  any  kind  of
parallelism.

Figure  3  shows  the  results. We  have  simulated  the
homogeneous versions with up to 64 cores. Our goal here is to
compare  configurations  of  same  area.  As  the  SmallHomo
configuration is about 4 times smaller than the Hetero, we have
compared  three  multicore  versions  of  them,  whilst  the
BigHomo is only half the size of the Hetero configuration, so
we  have  compared  four  multicore  versions.  This  way,  we
guarantee that all the compared heterogeneous versions have
the  same  area  than  their  counterpart  homogeneous
configuration.  Figure  3  shows  the  speedup  of  the
heterogeneous  configuration  over  the  homogeneous  in
percentage.  If  the  percentage  is  positive,  the  heterogeneous
version is superior, while if it is negative, the homogeneous has
better performance.

The  results  illustrate  that,  for  some  of  the  simulated
applications,  the  Hetero  configuration  shows  performance
improvements  over  the  homogeneous,  especially  in  lu and
equake. These benchmarks are not very influenced by the extra
number of cores of the homogeneous configurations, but take
advantage  of  the  bigger  arrays  of  the  Hetero  version.
Considering the worst  case  communication scenario and the
16Hetero vs 64Homo, lu reaches performance gains up to 90%,
while equake has gains of 66%. In the same situation, although
susan_c and  fft show loses, they are only of 0.5% and 2.6%
respectively.  susan_c and fft, are very parallel applications, as
already mentioned, so the homogeneous versions – which have
more  cores  –  are  superior  on  almost  every  case.  However,
when the worst case communication scenario is considered, the
extra  number  of  cores  in  the  BigHomo  version  is  actually
harmful to the system and the 32Hetero configuration performs
23% and 21% (respectively) better than the 64BigHomo.

It is noticeable that in all scenarios where the homogeneous
configuration performs better, this advantage decreases as the
number  of  cores  increases.  This  effect  is  also  due  to  the

communication overhead that is inserted in the system, as the
data will need more hops on the NoC to reach the allocated
core.  Another  reason  for  this  performance  loss  is  the  load
balancing of the applications. The TLP exploitation has limits
for  all  the benchmarks tested and it  is  expected that,  for  an
even higher number of cores, at some point the heterogeneous
configurations are going to outperform the homogenous ones
in every tested application. 

TABLE I. CONFIGURATIONS

Config Lines Multipliers
Load/
Store

ALU
Cache

L1
Input

Context
Homogeneous

Small
Homo

9 2 1 3 32Kb 8

Big
Homo

15 2 4 4 128Kb 16

Heterogeneous
Small 9 1 2 3 32Kb 8

Medium 15 1 3 4 64Kb 12
Big 24 1 3 4 128Kb 24

VI. CONCLUSIONS AND FUTURE WORK

In  this  work  we  have  shown  the  potential  of  using  a
heterogeneous CReAMS, as for some of the benchmarks, this
configuration  has  shown  performance  improvements.
However, we still have not reached the desired gains on most
of the applications. For the next steps of this work, we will
keep  testing  new  combinations  of  heterogeneous
configurations. There are many parameters that can be varied
to  reach  better  performance,  for  instance  the  number  of
functional units, the cache size and the input context size.

Furthermore,  other  actions  can  be  taken  to  increase  the
heterogeneous  performance.  As  discussed  previously,  a
dynamic scheduler can be used to allocate threads with low ILP
on smaller  cores  and threads with high ILP on bigger ones.
Also, as the heterogeneous  systems use the resources  of  the
array more efficiently, it is expected that the power usage on
this  systems  is  lowered.  In  the  next  simulations  we  will
consider a power budget as comparison scenario as well.



Figure 3: Performance gain in percentage of the heterogeneous configuration
over the homogeneous.
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