
Towards a Dynamic and Reconfigurable Multicore
Heterogeneous System

Jeckson Dellagostin Souza, Luigi Carro, Antonio
Carlos Schneider Beck

Universidade Federal do Rio Grande do Sul
Instituto de Informática

Porto Alegre, Brasil
{jeckson.souza, carro, caco }@inf.ufrgs.br

Mateus Beck Rutzig
Universidade Federal de Santa Maria

Departamento de Eletrônica e Computação
Santa Maria, Brasil
mateus@inf.ufsm.br

Abstract— Reconfigurable architectures are an alternative
for classic superscalar organizations to the exploration of
instruction level parallelism (ILP), while the multicore
organizations are the most commonly used strategy to exploit
thread level parallelism (TLP). This work extends a dynamic and
transparent homogeneous multicore reconfigurable system
(CReAMS) that explores both TLP and ILP, by making it
heterogeneous, featuring cores with distinct resources. We will
show that, for applications with low TLP, a heterogeneous
configuration of CReAMS outperforms its homogeneous
counterpart with the same chip area. The performed simulations
prove the potential of using heterogeneous reconfigurable
systems, showing speedups of up to 90%.

Keywords—reconfigurable system, multiprocessor, embedded
systems, heterogeneous systems

I. INTRODUCTION

For many years, the majority of embedded systems were
designed to execute specific and specialized tasks. However,
with the advancement of technologies for the design of
integrated circuits, embedded processors are now able to
perform many kinds of operations. Moreover, users now
demand to be able to execute their daily routine tasks using as
few devices as possible. Thus, each new generation of
embedded hardware is expected to provide more
functionalities, be faster and be more energetically efficient.

There are many ways which can be used to improve a
processor’s performance. Parallel execution is a common
strategy used to accelerate a program and to efficiently use the
resources of a processor. If a sequence of independent
instructions (that do not operate over the same data set) is
dispatched, the processor can allocate them to different
functional units and process them concurrently. This provides
performance gains due to the exploitation of the instruction
level parallelism (ILP).

The superscalar approach is widely used to exploit ILP in
both general purpose – as the Intel x86 architectures – and
embedded processors – like the ARM architecture. However, it
is expensive in terms of power consumption, since for each
incoming instruction, the superscalar processor has to
repeatedly evaluate data dependencies to exploit the instruction
level parallelism. Another possible strategy to exploit ILP is
dynamic reconfigurable architectures. They are projected to

adapt themselves according to the application at hand,
reconfiguring their datapath so that the stream of data through
the functional units is optimized. The great advantage of these
architectures is that they can also optimize data dependent
instructions, besides executing the non-dependent ones
concurrently.

On the other hand, the employment of multicore
organizations, supported by the scheduler of operating systems,
enables the simultaneous execution of application threads
through many processor cores, thus thread level parallelism
(TLP) is explored. Therefore, it is also possible to increase
performance on reconfigurable organizations through the
exploitation of TLP, by the replication of cores that have their
own reconfigurable datapath each. CReAMS (Custom
Reconfigurable Arrays for Multiprocessor Systems) is an
example of such a system.

However, CReAMS is homogeneous: all cores are the
same, which means that the reconfigurable array is also
identical on every core. That leads to inefficiency problems
when running applications with varied workload. When the
cores are not under full usage, many of the functional units on
the reconfigurable array are not used, wasting resources and
power. With that being said, it is possible to build a
heterogeneous CReAMS configuration – whose cores are
different – which is the proposal of this work. On
heterogeneous systems, threads that highly explore the ILP can
be allocated to cores with bigger reconfigurable datapaths (that
have more functional units), while threads with lower ILP can
be dispatched to smaller ones.

In this work we will simulate a set of heterogeneous
CReAMS configurations and compare them with other
homogeneous configurations of same area. For this, we will use
five different benchmarks – selected to cover a wide range of
applications – to measure CReAMS performance on the
configurations built. We will show that, depending on the
application, a heterogeneous CReAMS better uses the chip area
as the functional units are better allocated.

This paper is organized as follows. Section 2 shows a
review of existing work on adaptable organizations. Section 3
demonstrates the CReAMS organization. Section 4 discusses
about the differences between homogeneous and
heterogeneous configurations of CReAMS. Section 5 presents

the simulation environment and the results. Finally, the last
section draws conclusions and introduces future work.

II. RELATED WORK

The architectures that can adapt themselves to provide a
hardware expertize for a specific application are known as
reconfigurable systems. Because of this specialization, these
architectures are expected to provide performance and energy
saving improvements over General Purpose Processors.
However, these systems are still built aiming flexibility to
execute many kinds of tasks, which means that they have
smaller gains if compared to dedicated circuits, like
Application-Specific Integrated Circuits (ASICs) [1].

The reconfigurable logic can be loosely connected to the
processor as an I/O peripheral (communication is done through
the main memory), attached as a coprocessor (communication
is done by coprocessor-like protocols) or tightly coupled as a
functional unit (reconfigurable logic is inside the processor and
share its resources, like its registers). Furthermore, the
granularity of the reconfigurable logic determines its level of
data manipulation. A fine-grained logic is implemented at bit
level (like FPGAs) while a coarse-grained logic implements
word level circuits (like ALUs that execute the same operation
in parallel over many bits).

There are many proposed reconfigurable architectures in
the literature, as listed in [1]. One can find different single- and
multi- processing environments which applies some kind of
adaptability to improve the performance of applications [8][9].
They can be either homogeneous or heterogeneous,
considering their architecture (i.e. what ISA is implemented)
and organization (i.e. if the processors that comprise the system
are the same or not).

Watkins [2] presents a procedure for mapping functions in
the ReMAPP system, which is composed of a pair of coarse-
grained reconfigurable arrays that is shared among several
cores. As an example of a system with homogeneous
architecture and heterogeneous organization, one can find
Thread Warping [3]. It extends the Warp Processing [4] system
to support multiple-thread execution. In this case, one
processor is totally dedicated to execute the operating system
tasks needed to synchronize threads and to schedule their
kernels in the accelerators. KAHRISMA [5] is another example
of a totally heterogeneous architecture. It supports multiple
instruction sets (RISC, 2- 4- and 6-issue VLIW, and EPIC) and
fine and coarse-grained reconfigurable arrays. Software
compilation, ISA partitioning, custom instructions selection
and thread scheduling are made by a design time tool that
decides, for each part of the application code, which assembly
code will be generated, considering its dominant type of
parallelism and resources availability. A run time system is
responsible for code binding and for avoiding execution
collisions in the available resources. Both ReMAPP and
KAHRISMA are able to optimize multiple threads, but they
break the binary compatibility.

Therefore, the advantages of using CReAMS [13] over the
architectures reviewed above include:

 Unlike KAHRISMA and Thread Warping, CReAMS is
physically homogeneous in both architecture and
organization. Heterogeneity is achieved on the fly,
without any human intervention, by employing a binary

translation. It eases the software development process
since a well-known tool chain (i.e. gcc) is used for any
of its versions. Neither source code modifications nor
additional libraries are necessary if new processing
elements are inserted.

 KAHRISMA, Thread Warping and ReMAPP rely in
special and particular tool chains to extract thread-level
parallelism and to prepare the platform for execution.
CReAMS does not change the current development
flow, so well-known application programming
interfaces (e.g. OpenMP) can be used. This way, the
programmer can extract TLP in a friendly interface,
since such APIs are already coupled to a great number
of compilers (e.g. gcc and icc), which makes the
software development and the binary generation process
easier than the aforementioned approaches.

 In contrast to ReMAPP and Thread Warping, CReAMS
employs a coarse-grained reconfigurable fabric instead
of a fine-grained one. Fine-grained architectures
provide higher acceleration levels, but their scope is
narrowed to applications that have few kernels
responsible for a large part of the execution time.
Coarse-grained reconfigurable architectures reduce the
reconfiguration time and memory footprint due to the
small context size, which increases its field of
applications, because they are capable of accelerating
the entire application.

III. CREAMS ORGANIZATION

A general overview of CReAMS[15] is given in Figure
1(a). The thread level parallelism is explored by replicating the
number of Dynamic Adaptive Processors (DAPs) (in the
example of the Figure 1(a), by eight DAPs). In this way,
CReAMS extends the single-thread based reconfigurable
architecture presented in [6] to handle multithreaded
applications. A DAP is a transparent coarse-grained
reconfigurable architecture coupled to the processor, and will
be explained in details later. The communication among DAPs
is done through a 2D-mesh Network on Chip using a XY
routing strategy. CReAMS also includes an on-chip unified 512
KB 8-way set associative L2 shared memory, illustrated as SM
in the Figure 1(a). We divided DAP in four blocks to better
explain it, as illustrated in Figure 1(b). These blocks are
discussed in the following sections.

A SparcV8-based architecture is used as the baseline
processor to work together with the reconfigurable system. Its
five stage pipeline reflects a traditional RISC design
(instruction fetch, decode, execution, data fetch and writeback)
and it is similar to other RISC processors used in well-known
embedded platforms (e.g. MIPS, ARM).

A. Reconfigurable Data Path Structure (Block 1)

Block 1 shows the structure for the reconfigurable data
path. It is coarse-grained and tightly coupled to the processor's
pipeline (there is no shared bus between both of them), which
avoids external access to the memory and, consequently, saves
power and reduces the reconfiguration time. As we can see in
Figure 1(b), the data path is organized in a matrix structure,
where the number of rows is the maximum number of
instructions that can be executed in parallel – independent
instructions can be allocated on the same column –, while the
number of columns dictates the maximum number of
dependent instructions that can be executed in sequence in a
configuration – the columns in a level are executed in sequence
as a big combinational block. For example, the configuration
on Figure 1 is able to perform four arithmetic and logic
operations, two memory accesses on cache and one
multiplication at the same time if all the data instructions are
independent. As the critical path (the piece of combinational
circuit that takes longer to produce a correct result) is the
multiplier, it is possible to have other faster units on the same
level. In the example, three arithmetic and logic units (ALUs)
compose a level, while the multiplier and the memory access
take the equivalent to one cycle on the processor. In other
words, this configuration can execute twelve arithmetic and
logic operations, two memory accesses and one multiplication
on each level at the very best case of data dependency.

The entire structure of the reconfigurable data path is
combinational, meaning that no temporal barrier (registers) are
added between the functional units. The only registers are
present on the entry point – the input context – and the exit
point – the storage of the results. Feeding of the input context
with the necessary data is the first step to configure the data
path before starting the execution. The results are sent to the
processor's register file on demand. It means that if any value is
produced at any data path level (a cycle of the processor) and if
it will not be changed in the next levels, this value can be
written back on the next cycle. If the number of writes
produced be the array is greater than the number of available
write ports in the register file, than the excess instructions are

forwarded to the next level – in the example shown in Figure
1(b), the maximum number of ports available is two.

The interconnection structure of the reconfigurable datapath
is built using multiplexers to determine the dataflow into the
functional units. More details are available in [14].

B. Processor pipeline (Block 2)

Block 2 is the basic processor to be used coupled with the
array. It is also the reference point to determine the simulation
performance of the tested configurations. In this work, the
baseline processor is a SparcV8-based architecture.

C. Storage Components (Block 3)

There are two memory units specialized for the
reconfiguration system: the address cache and the
reconfiguration memory. The first holds the memory address of
the first instruction of every configuration built by the dynamic
detection hardware (explained later). This cache is
implemented as a 4-way set associative table containing 64
entries (which means that the system can hold up to 64
configurations). An address cache hit indicates that a
configuration was found, therefore this cache is used to verify
the existence of a configuration on the reconfiguration memory
– where the configuration bits are kept.

D. Dynamic Detection Hardware (DDH) (Block 4)

This block is responsible for instruction detection and
allocation in the data path and is implemented as a 4-stage
pipelined circuit. The Dynamic Detection Hardware (DDH)
does not increase the critical path of the processor and it is a
binary translation mechanism that translates the instructions
from SparcV8 ISA to data path configurations. The stages of
the circuit are divided in Instruction Decode (ID), Dependence
Verification (DP), Resource Allocation (RA) and Update
Tables (UT). The translation process is performed as the
processor executes the instruction (at the same time and
independently), so there is no extra performance overhead.

For each column on the reconfiguration data path (Figure
1(b)), there is a bitmap responsible for storing in the target

Figure 1: (a) CReAMS (b) DAP blocks (c) Assembly of a loop (d) Allocation inside of the reconfigurable data path

operands of the already allocated instructions in the respective
column, named as Write Bitmap (Figure 1(d)). Thus, for each
incoming instruction, its source operands will be compared to
the target operands in this bitmap to decide in which column
this instruction will be allocated, according to data
dependencies.

Figure 1(c) has an assembly code as an example. On Figure
1(d), the allocation of this code on the reconfigurable data path
is shown. The first incoming instruction, a memory access, is
allocated on the highest functional unit of the leftmost data
path column. However, as on this process this type of operation
takes an entire level (a processor cycle), the fourth bit of the
write bitmap (representing the r4 register) of the columns 1, 2
and 3 are set to maintain the allocation consistency.

The dependency detection starts from the second
instruction. In the example, the instruction number two reads
the r4 register. As it is written by the previous instruction, a
read after write (RAW) dependence is found. The DDH detects
it (through the write bitmap) and allocates the instruction
number two at the later column of instruction number one. The
second bit of the fourth column of the write bitmap is set since
this instruction has the register r2 as the target operand. The
dependency analysis keeps these steps until instruction number
five, where a loop is found.

The DDH supports speculation, so when the branch
instruction is found, a speculation flag is set and the
configuration continues the allocation of the following
iterations. In other words, it is possible (if there is enough
space on the array and reconfigurable memory) to keep
multiple iterations of a basic block on the same configuration.
The instructions in black in Figure 1(d) represents the
instructions allocated for the second iteration of the loop code
of Figure 1(c).

This hardware is capable of performing register renaming – for
false dependency treatment – as well. In instruction number
ten, the register r1 could be read by the incoming instruction in
the second column, but could not write in this same register at
this column. It is detected by the DDH and the register is
renamed to r5 (the next empty register of the input context). All
subsequent instructions that contain a reference to r1 are
modified accordingly.

IV. HOMOGENEOUS AND HETEROGENEOUS CREAMS

A. Homogeneous CReAMS

As already discussed, the homogeneous version of
CReAMS is a configuration where all the DAPs are exactly the
same. They all have the same size in area, the same memory
size (L1 cache size, reconfiguration memory , number of input
and output context, etc) and the same functional units. Figure
2(a) illustrates this concept. This configuration represents the
traditional approach used in current multicore systems – in this
case, DAPs would be generic cores instead. It is simple to
implement, as no special scheduling is necessary (a thread is
simply allocated to the next free DAP). However, this is not the
most efficient approach, whereas a thread with low ILP will
execute on the same environment as a thread with a high ILP.

B. Heterogeneous CReAMS

A heterogeneous version of CReAMS is a configuration
where each DAP has a different number of functional units,

input and output context length and memory size. This allows
for some cores to be bigger than others, or in other words, more
efficient to execute threads that can explore higher levels of
instruction level parallelism. Similarly, smaller DAPs would be
allocated to run threads with low ILP. Figure 2(b) shows a
heterogeneous CReAMS of four cores where two of them are
smaller than the others, one is of medium size and the last is
bigger.

Scheduling threads accordingly to their necessities leads to
a greater energy efficiency. If a DAP is too big and is scheduled
to execute a thread with low ILP, many functional units would
be wasted for not being used. On the other hand, if a DAP is
too small and is allocated for a thread with high ILP, the system
would need many more cycles to execute the thread as no
sufficient functional units would be available – wasting time
and energy.

It is also expected for a heterogeneous system to have a
smaller communication overhead. Considering the same chip
area a homogeneous CReAMS composed of only small DAPs
could have much more cores than a heterogeneous CReAMS
with small, medium and big sized DAP. Therefore, if the
heterogeneous configuration performs better than the
homogeneous, it will do so using fewer cores with less
communication between them.

V. RESULTS

We have created a configuration of heterogeneous
CReAMS and compared it with other two configurations of
homogeneous CReAMS in terms of the total cycles taken to
execute an application. The objective is to measure the
potential gains of the heterogeneous configurations. In the
homogeneous versions, a configuration with a smaller array
(called SmallHomo) and one with a bigger array (called
BigHomo) were created. Their resources are shown in Table 1.
The heterogeneous configuration is composed of three sizes of
arrays: a big, a medium and a small version (also shown in
Table 1). These three sizes are distributed in 50% big arrays,
25% medium arrays and 25% small arrays. For example, a
4Hetero configuration would have 4 cores on which 2 of them
have big arrays, 1 has a medium array and 1 has a small array,
while an 8Hetero would have 4 cores with big arrays, 2 with
medium and 2 with small.

The communication overhead is modeled as shown in [7].
In this model, the best and worst overhead cases are
considered. The best case is when the data traffic is uniformly
distributed among the NoC nodes, while the worst case
happens when the traffic of data is concentrated from/to a
specific node. Moreover, the scheduler of threads used in this

Figure 2: (a) homogeneous CReAMS composed of 8 small cores (b)
heterogeneous CReAMS composed of 2 small cores, 1 medium and 1 large

experiment is static, meaning that once a thread starts
executing on a certain DAP it will keep executing on that DAP.
This scheduler also does not try to allocate the thread to the
best fitting core.

This work uses the Simics simulator [10] to generate the
instruction trace from a set of applications. These instructions
will then be split according to their threads and each of these
threads will be allocated to a DAP simulator. Benchmarks of
different suits were chosen to cover a wide range of
applications in terms of parallelism exploitation (i.e. TLP and
ILP). From parallel suits [11], we have selected the
applications lu and fft. From SPEC OMPM2001 suit, we have
selected equake, which was originally a single-threaded
application that was ported to take advantage of multi-threaded
environments. Finally, susan_c and susan_e were selected from
the MiBench suit [12] and they represent a typical embedded
scenario. susan_c and fft are benchmarks with great load
balancing between the threads, making them good examples
for TLP exploitation. lu has good load balancing for up to 8
threads. For more than that, however, the instructions are
poorly distributed. Additionally, susan_e, susan_c and lu have
big mean basic block sizes, which means that they can take
advantage of ILP exploitation on bigger arrays, as they can
occupy more resources on bigger configurations. Finally,
equake has neither good load balancing nor big mean basic
blocks, so it will not be much influenced by any kind of
parallelism.

Figure 3 shows the results. We have simulated the
homogeneous versions with up to 64 cores. Our goal here is to
compare configurations of same area. As the SmallHomo
configuration is about 4 times smaller than the Hetero, we have
compared three multicore versions of them, whilst the
BigHomo is only half the size of the Hetero configuration, so
we have compared four multicore versions. This way, we
guarantee that all the compared heterogeneous versions have
the same area than their counterpart homogeneous
configuration. Figure 3 shows the speedup of the
heterogeneous configuration over the homogeneous in
percentage. If the percentage is positive, the heterogeneous
version is superior, while if it is negative, the homogeneous has
better performance.

The results illustrate that, for some of the simulated
applications, the Hetero configuration shows performance
improvements over the homogeneous, especially in lu and
equake. These benchmarks are not very influenced by the extra
number of cores of the homogeneous configurations, but take
advantage of the bigger arrays of the Hetero version.
Considering the worst case communication scenario and the
16Hetero vs 64Homo, lu reaches performance gains up to 90%,
while equake has gains of 66%. In the same situation, although
susan_c and fft show loses, they are only of 0.5% and 2.6%
respectively. susan_c and fft, are very parallel applications, as
already mentioned, so the homogeneous versions – which have
more cores – are superior on almost every case. However,
when the worst case communication scenario is considered, the
extra number of cores in the BigHomo version is actually
harmful to the system and the 32Hetero configuration performs
23% and 21% (respectively) better than the 64BigHomo.

It is noticeable that in all scenarios where the homogeneous
configuration performs better, this advantage decreases as the
number of cores increases. This effect is also due to the

communication overhead that is inserted in the system, as the
data will need more hops on the NoC to reach the allocated
core. Another reason for this performance loss is the load
balancing of the applications. The TLP exploitation has limits
for all the benchmarks tested and it is expected that, for an
even higher number of cores, at some point the heterogeneous
configurations are going to outperform the homogenous ones
in every tested application.

TABLE I. CONFIGURATIONS

Config Lines Multipliers
Load/
Store

ALU
Cache

L1
Input

Context
Homogeneous

Small
Homo

9 2 1 3 32Kb 8

Big
Homo

15 2 4 4 128Kb 16

Heterogeneous
Small 9 1 2 3 32Kb 8

Medium 15 1 3 4 64Kb 12
Big 24 1 3 4 128Kb 24

VI. CONCLUSIONS AND FUTURE WORK

In this work we have shown the potential of using a
heterogeneous CReAMS, as for some of the benchmarks, this
configuration has shown performance improvements.
However, we still have not reached the desired gains on most
of the applications. For the next steps of this work, we will
keep testing new combinations of heterogeneous
configurations. There are many parameters that can be varied
to reach better performance, for instance the number of
functional units, the cache size and the input context size.

Furthermore, other actions can be taken to increase the
heterogeneous performance. As discussed previously, a
dynamic scheduler can be used to allocate threads with low ILP
on smaller cores and threads with high ILP on bigger ones.
Also, as the heterogeneous systems use the resources of the
array more efficiently, it is expected that the power usage on
this systems is lowered. In the next simulations we will
consider a power budget as comparison scenario as well.

Figure 3: Performance gain in percentage of the heterogeneous configuration
over the homogeneous.

REFERENCES

[1] Beck A.C.S., Lisbôa C.A.L., Carro L., Adaptable Embedded Systems,
New York, Springer, 2013

[2] Watkins, M.A.; Albonesi, D.H., “Enabling Parallelization via a Recon-
figurable Chip Multiprocessor,” Workshop on Parallel Execution of Se-
quential Programs on Multi-core Architectures, 2010. 37th International
Symposium on Computer Architecture, June 2010.

[3] Lee, J., Wu, H., Ravichandran, M., and Clark, N. 2010. “Thread tailor:
dynamically weaving threads together for efficient, adaptive parallel
applications,” ISCA '10. pp. 270-279.

[4] Roman Lysecky, Greg Stitt, and Frank Vahid. 2004. “Warp Processors,”
In Proceedings of the 41st annual Design Automation Conference (DAC
'04). ACM, New York, NY, USA, 659-681.

[5] Koenig, R.; Bauer, L.; Stripf, T.; Shafique, M.; Ahmed, W.; Becker, J.;
Henkel, J.; “KAHRISMA: A Novel Hypermorphic Reconfigurable-In-
struction-SetMulti-grained-Array Architecture,” Design, Automation &
Test in Europe Conference, pp.819-824, 2010.

[6] Beck, A.C.S, Rutzig,M.B., Gaydadjiev,G., and Carro,L.. “Transparent
reconfigurable acceleration for heterogeneous embedded applications,”
In Proceedings of the conference on Design, automation and test in Eu-
rope (DATE '08). ACM, New York, NY, USA, 1208-1213.

[7] Rutzig, M.B.. “A Transparent and Energy Aware Reconfigurable Multi-
processor Platform for Efficient ILP and TLP Exploitation,” Ph.D disser-
tation of Computer Science. Universidade Federal do Rio Grande do Sul
(UFRGS) Porto Alegre, RS, Brazil 2012.

[8] Beck, A.C.S and Carro, L. “Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques”, Springer-Verlag, 2010.

[9] Beck, A.C.S, Rutzig,M.B., Gaydadjiev,G., and Carro,L..”Run-Time
Adaptable Architectures for Heterogeneous Behavior Embedded Sys-
tems,” In Proceedings of the 4th international workshop on Reconfig-
urable Computing: Architectures, Tools and Applications (ARC '08).

[10] P S Magnusson, M Christensson, J Eskilson, D Forsgren, G Hllberg, J
Hgberg, F Larsson, A Moestedt, B Werner. “Simics: A full system simu-
lation platform,” (2002).

[11] A J Dorta, C Rodriguez, F de Sande, A GonzalezEscribano. “The
OpenMP source code repository (2005),” In Proceedings of the 13th Eu-
romicro conference on Parallel, Distributed and Network Based Process-
ing (PDP).

[12] M R Guthaus, J S Ringenberg, D Ernst, T M Austin, T Mudge, R B
Brown. “MiBench: A free, commercially representative embedded
benchmark suite (2001),” In Proceedings of the IEEE 4th Annual Work-
shop on Workload Characterization (WWC).

[13] Rutzig,M.B., Beck, A.C.S and Carro,L.. “A Transparent and Energy
Aware Reconfigurable Multiprocessor Platform for Simultaneous ILP
and TLP Exploitation,” In Proceedings of the conference on Design, Au-
tomation and Test in Europe (DATE’13). Grenoble, France. 1530-1591.

[14] Beck, A.C.S, Rutzig,M.B., and Carro L.. 2014. “A transparent and adap-
tive reconfigurable system,” Microprocess. Microsyst. 38, 5 (July 2014),
509-524.

[15] Rutzig, M.B., Beck A.C.S., Carro L. “Creams: An embedded multipro-
cessor platform,” in Reconfigurable Computing: Architectures, Tools
and Applications, New York, Springer, 2011 pp. 118-124.

	I. Introduction
	II. Related Work
	III. CReAMS Organization
	A. Reconfigurable Data Path Structure (Block 1)
	B. Processor pipeline (Block 2)
	C. Storage Components (Block 3)
	D. Dynamic Detection Hardware (DDH) (Block 4)

	IV. Homogeneous and Heterogeneous CReAMS
	A. Homogeneous CReAMS
	B. Heterogeneous CReAMS

	V. Results
	VI. Conclusions and Future Work

