
The Design of an Image Converting and
Thresholding Hardware Accelerator

Rafael M. Macieira, Lucas F. S. Cambuim,
Luiz L. Souza, Luiz A. Oliveira, Marcus F. R. Rios, Edna Barros

CIn - Centro de Informatica
UFPE - Universidade Federal de Pernambuco - Brazil

Email: {rmm2,lfsc,lls,laoj2,mfrs,ensb}@cin.ufpe.br

Abstract—The increasing amount of images and videos ac-
cesses by social networks users is demanding devices with more
efficiency on image processing. On the other hand, such devices
cannot be expensive and must have reduced power consumption
due to the need for mobility. To cope with this scenario, this paper
proposes the improvement of an image processing application by
implementing some computation intensive functions in hardware
and the others in software. The platform comprises a ATOM
processor and FPGAs. After a profiling application, the time
critical parts of image processing application are implemented
as hardware modules in FPGAs and, thereby, speeding up the
processing power of the platform. As case study we present the
hardware-software implementation of the RGB converter and
thresholding algorithm, an important function of image segmen-
tation. The function for converting images from RGB format to
YCrCB format is very time consuming. The implementation of
this function in hardware results in speedup of about 13% up to
99% in this image processing approach, with an average error of
0.000410 for the Y component, 0.000293 for the Cr component
and 0.0002333 for the Cb component.

I. INTRODUCTION

Vision is one of the most important senses of some living
beings. For the human beings, this sense is fundamental to per-
form work on a day-to-day such as product quality inspection,
public safety and aircraft control. However, in certain cases,
the amount of visual information and the speed at which this
one should be processed are incompatible with the processing
capacity of the human brain.

Thus, the computational systems are widely used to per-
form the high treatment and processing of images. Image
processing has emerged basically from 2 interests: improve-
ment of visual information for human interpretation and data
processing scenes for perception through automatic machines
[1].

The use of image processing in general-purpose processor
systems is typically performed using the OpenCV library
[2]. But, using this library could make the desired degree
of processing unreachable, since most of image processing
algorithms are carried out with a great use of calculations in
parallel and their performance in software is slower than the
performance using dedicated hardware. Also, another problem
is the portability of OpenCV for different embedded system
platforms.

The implementation of image processing components in
embedded hardware arises as an alternative to increase the
speed of these kinds of algorithms, once they are built to

a specific purpose and, consequently, have a short response
time. Thus, this approach increases the portability to other
embedded system platform projects in which the image pro-
cessing libraries are currently in software, such as OpenCV,
and, because of this, they are far of achieving the degree of
processing desired.

Two algorithms that have many applications in image
processing and require a high computational processing time
are the color space conversion and the thresholding algorithm.
These two algorithms are widely used in skin detection appli-
cations. Thus, the color space conversion transforms images
from RGB color space to YCrCb color space and the thresh-
olding algorithm highlights the skin colors.

This paper proposes the implementation of color space
conversion and thresholding algorithms using a Terasic DE2i-
150 Board, that has the Intel Atom processor connected to a
Altera’s Cyclone IV FPGA through PCI express bus.

Compared to the implementation of these two algorithm
in software, the solution in hardware provided a speedup
from 13% up to 99%. However, the combined approach of
hardware/software using this respective board resulted in a low
performance boost. This happens due to the low data through-
put between the Atom processor and the FPGA, provided by
the physical implementation of the PCI express.

The paper is organized as follows: section II presents
the related works, section III shows the algorithms’ imple-
mentation in software approach, followed by the hardware
modules implementation, in section IV. Section V shows the
experiments and the obtained results and, finally, the section
VI the conclusion.

II. RELATED WORKS

There are many works in the literature which propose hard-
ware modules for converting RGB images into YCrCb color
spaces with FPGAs [3], [4], [5], [6], [7], [8]. Most of them use
a fixed point notation to represent real numbers. However, the
thresholding operation in YCrCb color space is very sensitive
to any variation in pixels values, and the implementation of
such operations using fixed point representation can reduce
the accuracy of the final result despite its simplicity.

The converter module proposed by [3] was implemented in
VHDL in the FPGA 2v250fg256-6 and synthesized by Xilinx
ISE 10.1i. This module operates over fixed point values and has
a throughput of one pixel per clock cycle with the maximum

frequency of 106.741 MHz. Although it works at a high clock
frequency, the use of fixed point can result in a considerable
error rate.

Faycal Bensaali and Abbes Amira [4] propose an architec-
ture based on Distributed Arithmetic (DA) ROM accumulator;
and has a throughput of one pixel after eight clock cycles with
frequency of 128 MHz. The architecture was implemented
using the FPGA Celoxica RC1000-PP. In spite of having a
high clock frequency, depending on the system architecture,
the throughput of one pixel after 8 clock cycles can be a system
bottleneck.

The work described in [5] proposes a conversion module
that performs operations in fixed point representation with
frequency of 5 MHz, it was implemented using the FPGA
2vp30ff1152-5. As said before, using fixed point can generate
mismatches at the thresholding operation. Besides, the clock
frequency can also be the bottleneck of the whole system.

The approach detailed by [6] developed an integrated
architecture implemented in VHDL. It has been designed to
operate as a 3 stage pipeline which executes the conversion
from RGB to YCrCb and the down sampling; and is used
in JPEG compression. Multiplications were developed through
the use of shift operations. The module was tested in the 10KA
Altera’s FPGA family, in this way the module reached the
frequency of 20.12 MHz and gives one pixel every 7 or 9 clock
ticks depending if the pipeline is empty or not. Again, the low
clock frequency and throughput might be the bottleneck of the
system.

Muhammad Bilal and Shahid Masud at [7] proposed a
hardware based on Distributed Arithmetic (DA) approach,
which works with fixed point and was incorporated as a
functional unit in a RISC processor. The architecture has been
synthesized using Xilinx ISE 5.3i and was implemented in the
FPGA Spartan IIe XC2s300e. Using fixed point data might
generate a high data error rate, which can easily lead to errors
in the thresholding results.

The work described in [8] proposed a converter module
which performs operations in fixed point and with clock
frequency of 55.179MHz and throughput of one pixel per clock
cycle. Despite this approach proposes a high throughput with
a significant clock frequency, it also uses fixed point units, and
has the same issues of high error rate in the conversion results.

Considering the need of a mechanism for color space
conversion and thresholding, with high performance and low
error rate, the proposed approach provides a solution including
a hardware module with a throughput of one pixel per clock
cycle and running at 50 MHz, but that was already synthesized
to a clock frequency of 116.6 MHz.

III. SOFTWARE APPROACH

The focus of this paper is to show the improvement
of performance obtained by the hardware-software co-design
of an image application using one embedded processor and
hardware modules in the prototyping board DE2i-150 from
Terasic.

Image processing applications demand a high computa-
tional effort. However, they can, in most of the cases, take

advantage of the support given by hardware to explore their
great parallelism capacity. In this paper two algorithms, which
are commons in applications for skin color detection, were
optimized. They are the color space conversion from RGB
to YCrCb and the thresholding algorithm. Those algorithms
are often used before other techniques that refine the re-
sult, but, for the purpose of this paper, they are enough to
demonstrate the enhancement of performance obtained when
implemented in hardware. Besides, since YCrCb color system
needs representing pixels intensity by floating point numbers,
the high overhead of operations with this type of numerical
representation was solved by implementing them in hardware.

The algorithm to detect skins used in this paper works as
follows in Figure 1: First of all, an image of resolution of
640x480 is captured from a Terasic’s TRDB-D5M camera.
Since pixels comes out of the camera in RAW format, a
step of conversion from RAW to RGB is necessary. Once
the conversion is done, the converted pixel goes to a RGB to
YCrCb conversor, aiming to explore the smaller space where
the skin tones are confined, thus making the thresholding
process easier. The next step is a thresholding which aims
to detect skin tones in image. Finally the image is shown in a
screen.

Image’s
Capture

From
Camera

RGB to
YCrCb

Conversion

Image’s
Exhibition

RAW to
RGB

Conversion
Thresholding

Fig. 1. Application Flow

The conversion from RGB to YCrCb was implemented by
using the equation in the Figure 2, which has been extracted
from OpenCV’s documentation of the function cvtColor [2].

Y <- 0.299*R + 0.*587*G + 0.114*B
Cr <- (R - Y)*0.713 +
Cb <- (B - Y)*0.564 +

 = 128 , for 8-bits;
 32768 , for 16-bits;
 0.5 , for Floating-point
 Images.

Fig. 2. RGB to YCrCb Conversion Formula [2]

Many research works [9], [10], [11] indicate that the best
color space to represent human skin considering different
human races is YCrCb. In this paper, the threshold has been
applied at images in this color space using a different threshold
for each channel. The used values were obtained experimen-
tally and allow identifying the human skin in an efficient way.
The threshold used in this paper is defined by the expression
below, where g(x, y) represents an image pixel in the position
(x, y) in the image matrix. The elements y, cr, cb represent the
components of the color space of the pixel g(x, y).

• g(x, y) = 1, if (803 < y < 2890) ∧ (2007 < cr <
2569) ∧ (1365 < cb < 2168)

• g(x, y) = 0, if (803 ≥ y ≥ 2890) ∨ (2007 ≥ cr ≥
2569) ∨ (1365 ≥ cb ≥ 2168)

IV. THE HARDWARE IMPLEMENTATION OF CONVERTER
AND THRESHOLDING TECHNIQUE

The GrecoRGB-CT is the proposed hardware module for
accelerating image processing functions. It has two main

features: (i) to convert images from the RGB color space to the
YCrCb color space and (ii) to apply the thresholding technique
for segmenting elements into the image.

Figure 3 shows, the GrecoRGB-CT subsystem that is
composed by two main modules: PixelConverterYCrCb and
PixelThresholding. The converter comprises four instances of
PixelConverter modules for exploring parallelism. The first
module, called PixelConverterYCrCb, converts a pixel from
the RGB color system, represented by three 12-bits word, to
the YCrCb color system, represented by three single precision
floating point numbers, each one is 32 bits length. The sec-
ond module, called PixelThresholding, is responsible for the
pixel thresholding. This module performs five floating point
comparisons at one time. These two modules will be better
explained further.

PixelConverting
YCrCb #2

PixelConverting
YCrCb #3

PixelConverting
YCrCb #4Avalon

Bus
Interface

Port

DIspatcher

PixelThresholding
#2

PixelThresholding
#3

PixelThresholding
#4

Interrupt
Controller

PixelConverting
YCrCb #1

PixelThresholding
#1

32 Bits Buffer #1

32 Bits Buffer #N

. . .

32 Bits Buffer #2Buffers
Controller

External
Port

Fig. 3. The Architecture of the GrecoRGB-CT Module

As it can be seen in Figure 3, the GrecoRGB-CT module
also contains infrastructure modules as the Avalon [12] bus
interface controller port, the external port, the pixel dispatcher,
the buffer bank with its controller and the interrupt controller.

The Avalon bus interface is responsible for the communi-
cation between the module and the CPU. In the Intel Atom
based prototyping platform there is a PCI express controller
attached to the Avalon bus (explained in Section V). The pixel
dispatcher receives from the Avalon bus interface a pixel in the
RGB color system, represented by three 12-bits words (the red,
green and blue color), and returns the pixel to the next idle
PixelConverterYCrCb module.

The external port permits attaching directly to the
GrecoRGB-CT module an external image source, such as a
digital camera. This port uses an external clock to define the
color input frequency. It also support RGB format up to 12-
bits. This port also has as output the result of the thresholding.
The pixel dispatcher also receives data from this port.

The dispatcher module contains an index register that
points to the last conversion unit. Thus, it informs to a
multiplex which converting unit must receive the input signals.
The pixel processing is done in a sequential and cyclic way,
what means that the next converting unit will always be
available.

The buffer bank and buffers controller units are responsible
for selecting the next free buffer for storing the thresholding

result, represented by one bit, and informing the interrupt
controller when a result set was stored and a full buffer is ready
to be read. Then, the interrupt controller triggers an interrupt to
the CPU through the Avalon interface. As well as the resulting
pixel from the converting unit, the thresholding units send their
result to the next free buffer in a sequential and cyclic way. If
all buffers are full, the whole unit stops working and receiving
more pixels from the CPU until it read a result set, making
available one buffer at least.

The PixelConverterYCrCb module is a pixel converter that
works in pipeline with 6 stages and each stage has a latency of
four clock cycles. As it can be seen in Figure 4, the converting
unit is composed by several floating point adders, floating point
subtraction units and floating point multipliers units. Except
for the second and third stage, all the stages perform parallel
floating point arithmetic for calculating each component of the
YCrCb color system.

As can be seen in Figure 4, the inputs of the conversion unit
are three 12-bits words representing the red color, green color
and blue color of the RGB color system. However, the floating
point units inside the converter require floating point numbers
as inputs. Thus, a combinational module called Int2FP was
developed for converting the integer number to a floating point
number at the input.

fpmul

fpadd

fpadd

fpadd
(sub)

fpadd
(sub)

fpmul

fpmul

fpadd

fpadd

fpmul

fpmul

Const. 0.299

Const. 0.587

Const. 0.114

Const
0.713

Const
0.564

Const
128

Const
128

<12bits>
R

<12bits>
G

<12bits>
B

4 cycles
Stage 1

4 cycles
Stage 2

4 cycles
Stage 4

4 cycles
Stage 5

4 cycles
Stage 6

<FP>
Cr

<FP>
Cb

Int2FP

Int2FP

Int2FP

4 cycles
Stage 3

<FP> Y

Fig. 4. The Architecture of the ConversorYCRCB Module

Once the pipeline is full, the converter module produces a
YCrCb color system pixel every 4 clock cycle. Considering
the four instances of the PixelConverterYCrCb, the entire
GrecoRGB-CT module works with a throughput of 1 pixel per
clock cycle. Because a conversion unit will be used again at in
a period of at least four clock cycles, the pixel dispatcher can
guarantee that the converter will be available when needed.

Each pipeline stage signalizes when it ends a pixel conver-
sion, notifying the next stage informing when there is a new
input pixel. Thus, the converting unit is ready, even in the case
of some input delay, introducing gaps between the pixels into
the pipeline.

The adders and multipliers modules operate on normalized
single precision floating point numbers specified by IEEE-754
floating point standard [13]. These modules are able to process
a pixel in three clock cycles. For reducing the error of each
operation, it has been developed a rounding module which
rounds the result to the nearest representable value according
to IEEE-754 specification. The rounding algorithm needs three
bits called guard, round and sticky (GRS). It is needed that both
adders and multipliers result correct GRS bits to the rounding
module.

The adder module performs the addition and subtraction
operation according the algorithm described on [14]. For the
multiplier module was used the version of the traditional
shift-and-add algorithm to multiply the operands mantissa as
described on [14]. To guarantee that the multiplier operation
finishes after three clocks cycles, eight partial sums of multi-
plicand shifted based on the multiplier value were calculated
in each clock cycle .

The underflow and overflow exceptions are treated without
interrupting the pipeline. If an underflow takes place, i.e. the
negative exponent is too large to be represented in the exponent
field of the normalized single precision floating point number,
a zero value is resulted. Similarly, in the case of an overflow,
i.e. the positive exponent is too large to be represented in the
exponent field of the normalized single precision floating point
number, then the largest representable number is resulted. For
this application it was noticed that and invalid exception will
never take place because the data provided is always in the
normalized floating point format.

It is important to know that all the modules are synchro-
nized. Therefore when a module is in the data processing
phase, the forward module is also running the same phase
and it is not ready to receive any data. Thus, we put in each
pipeline stage a delay adding one more cycle, totaling four
cycles per stage. This mechanism ensures that the forward
module is always going to be ready to receive the data coming
from previous module.

Every time the conversion unit finishes a pixel, it signalizes
to the forward thresholding unit that there is a new converted
pixel, which is ready to be used as input for the PixelThresh-
olding module.

Despite the overhead associated to the multiplication op-
eration, the normalization operation inside the adder and
multiplier module, the sticky-bit computation and the control
delay, the Synplify tool has obtained the frequency of 116.6
MHz for the YCrCb converter module.

To guarantee the correct operation of the entire system
with the PCI Express and Atom processor, some test vectors
were created. Some of these test vectors were specified in
SystemVerilog using Modelsim to validate the converter mod-
ule, the thresholding module and the global modules. In the
converter test vector, the R,G and B components of each pixel
from many images was stored in a .txt file.

The test vector source reads a pixel from the .txt file and
send its values to the converter. Then, the test vector source
waits for the converter to raise the output ready signal, and
when it does, the resulting YCrCb values is written in a .txt
file in hexadecimal format.

The test vector for the global module is very similar to
the converter’s test vector. However, it has to simulate the
signals sent through the Avalon bus and write in the output
file the pixel values of the binaries image. The test vector
of the thresholding module is also similar to the converter
test vector. Besides, since the module is combinational, when
the input data is ready and sent to the module, the result can
already be written in the output file.

In order to implement data transfers between the processor
and the converter module, a driver was developed. This driver

performs the communication between the module PixelCon-
verterYCrCb and the operating system through the prototyping
platform used in this paper. A driver for the hardware module
was specified in C, and it has 5 functions that are transparent to
user program. The driver implemented runs over another driver,
for the PCI Express, that Terasic releases with the prototyping
board.

The PCI Express driver has some limitations. For example,
although the PCI allows 256 bits for data transfer, the Terasic’s
driver supports the reading and writing of only 32 bits in the
bus for each call. Besides, the driver from Terasic only works
in Yocto [15] and Windows Operating Systems and it is not
open-source. So, it was not possible to use PCI Express with
its full capacity.

The driver’s functions implemented in this paper are:
initPCIE, WriteRGB, ReadRGB, processImage and freePCIE.

The initPCIE is used to load in memory a dynamic library
for the PCI express and to grant access to the bus. The
WriteRGB is used to write the R, G and B component words
in the converter module, through a DMA module.

On the other hand, the ReadRGB function performs the
reading of 32 bits from the GrecoRGB-CT module, also
through a DMA module. Each bit represents the result from
the thresholding of a pixel.

The processImage function uses the functions WriteRGB
and ReadRGB to send and receive, respectively, from the
module all the pixels of the image. Finally freePCIE closes
the dynamic library and releases PCI Express bus.

V. EXPERIMENTS AND RESULTS

As mentioned before, one of the goals of this work is
to analyze the performance and quality of the conversion,
comparing an implementation only in software and a hardware-
software mixed implementation.

Before running any comparison experiments, the time
consumed by critical functions implemented in software was
measured with the purpose of defining the functions, for
which a hardware implementation could leads to a perfor-
mance improvement. For this, 1000 images were converted
and thresholded and the GNU gprof tool were used to measure
how much time each function spent during the execution of
the application.

The measurement showed that the function called convert-
eYCRCB, responsible for the color space converting, and the
function called limiarizacaoYCRCB, responsible for the pixel
thresholding, spent respectively 42.43% and 25.61% of the
application runtime. Thus, these two functions were selected
to be implemented in hardware, in order to speed up the
performance.

The first experiment performed was the converting and
thresholding of several images with low resolution (640x480)
and high resolution (1280x720). For each image, it was mea-
sured the time to perform the functions using the time.h library
of Yocto kernel, which counts the clock cycles for executing
a piece of code. On average, the Atom processor took 131 ms
to convert and threshold each low resolution images and 395
ms for each high resolution image.

The second experiment was done using the implemented
hardware module. For this experiment we performed the
measurement using the GrecoRGB-CT module isolated. The
module was running on a clock frequency of 50 MHz and the
image input was directly delivered to it at the same rate. Every
32 written pixels, one reading was done to get the result stored
into the module buffers.

This experiment shows that the GrecoRGB-CT module,
executing on that clock frequency, can perform the converting
and thresholding of a low resolution image in 7 ms and a high
resolution image in 20 ms. The real time of converting and
thresholding of a low and high resolution image at this clock
frequency is respectively 6,144 ms and 18.432 ms, however,
some readings to recover the converting and thresholding result
must be performed.

That experiment also shows that the average error rate for
each YCrCb color space is of 0.000410 for the Y component,
0.000293 for the Cr component and 0.0002333 for the Cb
component. Notice that this error is negligible and it does not
have any influence for the thresholding result, once all values
as compared with integer thresholds.

The third experiment was made using the DE2i-150 Tera-
sic prototyping board environment, running the Windows 7
operating system into an Intel N2600 Atom Processor. A
digital camera Altera D5M was connected to the GPIO port
of the board and the GrecoRGB-CT hardware module was
downloaded into the FPGA. The D5M camera was connected
to the GrecoRGB-CT through the external port (Figure 3),
providing one 12-bits RGB pixel in a frequency of 25 MHz.

As mentioned before, the DE2i-150 board uses PCI express
bus to connect the Atom processor and the FPGA chip.
Internally in the FPGA, the PCI express controller is connected
to an Avalon bus and so the hardware IPs are connect to this
Avalon bus.

The PCI express runs in a clock frequency of 100 MHz
or 125 MHz and provides to the Avalon peripheral a clock
frequency of 50 Mhz. Thus, through the GrecoRGB-CT’s
Avalon interface (Figure 3), the GrecoRGB-CT IP is connected
to the Avalon bus, transferring 32-bits packages using the 50
Mhz clock. Due to the implementation of the PCI express in
the DE2i-150, only low resolution images were used in the
third experiment.

N2600
Intel Atom
Processor

DDR3
Memory GrecoRGB-CT

PCI Express Bus

 Avalon Bus

D5m
Camera

Controller

Data Flow

Fig. 5. A Simple Diagram of the Platform Architecture of DE2i-250 Board
without using the DMA. The Dash Line Shows the Writing’s Data Flow

This last experiment was performed using two different
approaches. The first approach does not use the DMA. As
it can be seen through the dashed line in Figure 5, the
Atom processor must execute each reading and writing request
directly to the GrecoRGB-CT device. The second approach

uses the DMA to perform the burst data transfers, represented
by the dashed line in Figure 6.

N2600
Intel Atom
Processor

Atom
Local

Memory

DMA

GrecoRGB-CT

PCI Express Bus Avalon Bus

D5m
Camera

Controller

Data Flow

Fig. 6. A Simple Diagram of the Platform Architecture of DE2i-250 Board
using the DMA. The Dash Line Shows the Writing’s Data Flow

The Figures 5 and 6 also show a simple schematic of the
DE2i-150 board architecture with the GrecoRGB-CT module.
The released PCIe’s device driver and hardware IP available
only implements the access to the FPGA devices through an
Avalon interface.

For the both approaches of the third experiment, four
scenarios were mounted and performed to extract the results.
The Scenario I (S-I) represents an application running into the
Atom processor and executing the conversion and thresholding
of images coming from the D5m Camera linked to the FPGA.
In this scenario the GrecoRGB-CT module is bypassed, thus
the Atom receives the raw 12-bits RGB image from the camera
through the PCI express. So, for each low resolution image,
this scenario needs to request 307200 pixels of 36-bits each.
For this it must to perform 345600 reading requests of 32-bits
bus word each.

The Scenario II (S-II) also represents an application run-
ning into the Atom, however the GrecoRGB-CT is not by-
passed and, because of this, the conversion and thresholding
step is fulfilled by the hardware layer. Because the result of a
thresholding is represented as a single bit, the GrecoRGB-CT
compact the result of 32 pixels for each bus word. Every 32-
bits word read performed by the software represents 32 thresh-
olded pixels. Thereby, the software application only needs to
fulfill 9600 reading requests. In this scenario, the software
layer needs to remount the image, reading the compressed bits
and writing the complete pixel format into the Atom memory.

The last two scenarios (S-III, S-IV) are similar. They
also represent an application running into the Atom using
the GrecoRGB-CT to execute the conversion and thresholding,
however they use a different compression of the thresholding
result data. For each sequence of the same consecutive bits, the
GrecoRGB-CT mounts a 32-bits bus word, in which the thirty-
second bit represents the color of the pixel sequence (black or
white) and the rest of the bus word represents the number of
pixels in the sequence. So, when a sequence of the same color
is broken or when the end of the frame is reached, the module
closes the sequence and mount the 32-bits word, as specified.
For these scenarios the software layer also must remount the
image. For each bus word read from the hardware module, the
software must write a sequence of complete pixel format into
the Atom memory, depending on the color and length of the
same pixels sequence.

The S-III represents the best case of this data compres-
sion. This means a thresholded image completely black or
completely white. In this case, there is only one reading per
frame; however the module mounts the 32-bits word only in

the end of the frame, which means that it only must wait the
conversion and thresholding of the 307200 pixels of the image,
in a clock frequency of 25 MHz. This takes approximately 12,3
ms.

The S-IV represents the worst case. In this case, every
threshold pixel sequence only contains only one pixel. Thus,
it needs to transfer 307200 32-bits word, once there is 307200
sequences of pixels.

The Tables I and II show the results of the third experiment
for both approaches, without and with the DMA respectively,
including all scenarios. They also show the speed up of the
S-II, S-III and S-IV compared to the S-I.

Metrics S-I S-II S-III S-IV
Transferred Bus words 345600 9600 1 307200
Bus words Transf. time (ms) 4810.752 133.632 12.301 4276.224
SW Layer time (ms) 131 7.6 1.02 1.8
Total time (ms) 4941.752 141.232 13.321 4278.024
Speed Up - 97.14% 99.73% 13.43%

TABLE I. EXECUTION TIME OF THE SCENARIO OF THE THIRD
EXPERIMENT, WITHOUT DMA, COMPARED TO THE FIRST EXPERIMENT

Metrics S-I S-II S-III S-IV
Transferred Bus words 345600 9600 1 307200
Bus words Transf. time (ms) 4147.2 115.2 12.28 3686.4
SW Layer time (ms) 131 7.6 1.02 1.8
Total time (ms) 4278.2 122.8 13.30 3688.2
Speed Up - 97.13% 99.69% 13.79%

TABLE II. EXECUTION TIME OF THE SCENARIO OF THE THIRD
EXPERIMENT, WITH DMA, COMPARED TO THE FIRST EXPERIMENT

Mainly due to the reduction of the data transference, the
S-II, III and IV are always better than the S-I. Even if the
amount of transferred data is the same, the conversion and
thresholding performed in hardware speed up the application
time in at least 2.5%.

Comparing the two approaches, the Tables I and II show the
reduction of the data traffic delay. This happens because, using
the DMA, the overhead due to reading and writing function
call and operating system syscall for each bus word is reduced,
once the DMA execute blocks of readings and writings calls.

It is also important to notice that the DMA approach
provides a better speed up only in scenarios where exists high
data traffic.

VI. CONCLUSION

This work proposes an approach for speedup the converting
and thresholding of images using a dedicated hardware mod-
ule. To achieve this goal, it was necessary firstly to identify
the most expensive functions of this application.

Thus, after identifying the time consuming functions, the
hardware module was developed, tested and used in some
experiments to validate and analyze the performance improve-
ment.

The first conclusion was that, with dedicated data transfer,
this image processing hardware accelerator can speed up the

images’ converting and thresholding in about 13% to 99%,
compared to the application fully implemented in software.
It is important to know that, as said before, after these
experiments another version of the module was synthesized
for a clock frequency of 116.6 MHz, what should speedup
even more the performance of the image processing hardware
accelerator. Besides, some improvements can be done in the
multiply module, e.g. the implementation using carry-save
adders [16], booth encoded [17] and so, what shall increases
the clock frequency of the hardware module.

Another conclusion extracted from this work was the
feasibility of using floating point units in dedicated hardware
with a high performance and, consequently, a low associated
average error.

Analyzing the whole platform, it becomes clear that, for
a burst data processing at the FPGA, this architecture should
be improved, once the delay in the data transfer between the
system memory and the FPGA modules can be prohibitive.

REFERENCES

[1] R. T. Chin and C. A. Harlow, “Automated visual inspection: A survey,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, no. 6,
pp. 557–573, 1982.

[2] Opencv documentation. [Online]. Available: http://docs.opencv.org/
[3] E. Prathibha, S. Yellampalli, and P. A. Manjunath, “Design and Im-

plementation of Color Conversion Module RGB to YCbCr and Vice
Versa,” vol. 1, no. 1, pp. 13–18, 2011.

[4] F. Bensaali and A. Amira, “Design and Efficient FPGA Implementa-
tion of an RGB to YCrCb Color Space Converter Using Distributed
Arithmetic,” 2004.

[5] B. Ahirwal, M. Khadtare, R. Mehta, and A. F. Implementation, “FPGA
based system for Color Space Transformation RGB to YIQ and YCbCr,”
no. I, pp. 1345–1349, 2007.

[6] L. Agostini and S. Bampi, “Arquitetura Integrada para Conversor de
Espaço de Cores e Downsampler para a Compressão de Imagens JPEG,”
2002.

[7] M. Bilal and S. Masud, “Efficient color space conversion using custom
instruction in a risc processor,” in Circuits and Systems, 2007. ISCAS
2007. IEEE International Symposium on, May 2007, pp. 1109–1112.

[8] A. Sapkal, M. Munot, and M. Joshi, “R’g’b’ to y’cbcr color space
conversion using fpga,” in Wireless, Mobile and Multimedia Networks,
2008. IET International Conference on, Jan 2008, pp. 255–258.

[9] D. Chai and K. N. Ngan, “Face segmentation using skin-color map in
videophone applications,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 9, no. 4, pp. 551–564, 1999.

[10] T. M. Mahmoud, “A new fast skin color detection technique.” Proceed-
ings of World Academy of Science: Engineering & Technology, vol. 45,
2008.

[11] S. K. Singh, D. Chauhan, M. Vatsa, and R. Singh, “A robust skin
color based face detection algorithm,” Tamkang Journal of Science and
Engineering, vol. 6, no. 4, pp. 227–234, 2003.

[12] Altera, Development and Education Board - User Manual, 2006.
[13] I. C. Society, IEEE Standard for Floating-Point Arithmetic, August

2008, sponsored by the Microprocessor Standards Committee.
[14] D. A. Patterson and J. L. Hennessy, Computer Organization and

Design: The Hardware/Software interace, 3rd ed. Morgan Kaufmann
Publishers, 2005.

[15] Yocto project. [Online]. Available: https://www.yoctoproject.org/
documentation

[16] M. Ortiz, F. Quiles, J. Hormigo, F. Jaime, J. Villalba, and E. Zapata,
“Efficient implementation of carry-save adders in fpgas,” in Application-
specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th
IEEE International Conference on, July 2009, pp. 207–210.

[17] D. Chandel, G. Kumawat, P. Lahoty, V. V. Chandrodaya, and S. Sharma,
“Booth multiplier: Ease of multiplication,” 2013.

