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Abstract — As technology scaling reduces pace and energy 

efficiency becomes a new important design constraint, superscalar 

processor designs seem to be reaching their performance limits 

under the area and power constraints. As a result, new 

architectural paradigms have to be developed. This work proposes a 

new architecture for x86 processors, based on a traditional 

superscalar design coupled to a reconfigurable array. The 

architecture explores the fact that few basic blocks are responsible 

for most of the instructions that execute on the processor, and 

performs a mapping of these basic blocks into a configuration for 

the reconfigurable array. The configuration encodes the 

dependencies between the instructions, so that when a loop is 

executed multiple times, fetch, decode and dependency checks on 

the instructions are bypassed, thus improving instruction 

throughput. Our study of the potential of the architecture shows 

that performance gains of up to 2.5 times with respect to a 

traditional superscalar can be presented. 
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I.  INTRODUCTION 

The growing demand for more performance on computer 
systems has been challenging processor designers to develop 
solutions that reach beyond traditional architectures. Energy 
efficiency is finally becoming a first order design constraint for 
all market segments: embedded systems need to present low 
power to preserve battery life, general-purpose processors are 
designed with strict thermal dissipation power limitations and 
even processors for high-end servers are being optimized for 
energy efficiency to fit in the Green Computing concept. This 
power limitation restricts the use of some architectural 
solutions that optimize performance. Besides, technology 
scaling, which has been one of the major drivers for 
performance improvements over the last 20 years, is reaching 
its limits. Improved performance and energy efficiency must 
come, therefore, from technological advances in processor 
microarchitecture [1] [2] [3]. 

The key to achieving more performance is to efficiently 
exploit on chip the parallelism available from software. One 
fundamental form of parallelism is Instruction Level 
Parallelism (ILP), which reflects how often processor 
instructions can be executed concurrently. Even though there is 
an upper bound to the amount of ILP available from 

applications, given by data dependencies which are a natural 
part of any computation [4], this bound can hardly be reached 
by modern processor designs, as it comes to a point at which 
the marginal increases in area and power do not make up for 
the gains in performance. As some studies suggest, 
performance of single-threaded applications will increase very 
little in the following decades, due to the aforementioned 
discussion [3]. 

In order to improve performance and reduce energy 
consumption, most modern processors employ methods to 
reuse parts of computation that were previously performed. 
Recent generations of Intel processors, for instance, have been 
employing a method to exploit recurring loops in code. The 
Loop Stream Detector (LSD) [5][6] is an instruction cache for 
loops, located inside the processor pipeline. On the first loop 
execution, the cache is filled with the instructions; on the 
subsequent executions, the instructions are streamed directly 
from this cache. By skipping the first pipeline stages, 
performance gains are achieved. Figure 1 illustrates this 
concept. In the Core2 microarchitecture, the LSD was placed 
after the fetch stage; in the Core i (Nehalem) microarchitecture, 
it was placed after the decode stage. Our system aims to take 
this approach one step further and caches the entire dynamic 
scheduling of the instructions in the loops, i.e. its dependencies, 
register allocations and order of execution within the basic 
block. 

 

 

Figure 1. Loop Stream Detector in the (a) Core2 

architecture and the (b) Core i architectures, and (c) the 

approach proposed in this work. 

 

 



To exploit this concept, we consider the use of 
reconfigurable systems, because they have already been shown 
to be a promising approach to improving both performance and 
energy efficiency for a variety of applications [7]. A 
reconfigurable system employs, along the processor, a circuit 
whose function can be dynamically modified, such as a Field 
Programmable Gate Array (FPGA) or an array of functional 
units. This circuit implements the hotspots in code (i.e. code 
that is frequently executed, such as loops) using combinatorial 
logic. These code sequences can then be executed on the 
circuit, providing energy savings by eliminating intermediate 
registers and dependency-checking between instructions. 

In this work, we present a new microarchitecture for x86 
processors that uses the ideas of the Loop Stream Detector and 
reconfigurable computing, targeted towards improved 
performance as well as energy savings. We use the micro-ops 
generated by the x86 instruction decoder as input to a binary 
translation mechanism, which performs the mapping of the 
micro-ops into a configuration for a reconfigurable array. By 
caching decoded instructions ahead on the pipeline, the need to 
fetch and decode instructions for the same code sequence is 
eliminated, providing performance gains and energy savings. 
The proposed mechanism excels over the LSD because cached 
configurations also store the dependencies between 
instructions, avoiding the need to repeatedly check for them 
when a loop executes. 

This paper proceeds as follows. In section 2, a review of 
work regarding instruction level parallelism and reconfigurable 
computing, as well as characteristics of x86 processors is 
presented. In section 3, we present the proposed organization 
for the system, providing a brief overview of the reconfigurable 
system. Section 4 presents results on its potential for 
performance improvements, comparing the results achieved 
with the performance of a traditional superscalar architecture. 
Section 5 discusses further work to be done on the architecture 
and concludes this paper.  

II. RELATED WORK 

Early studies on instruction level parallelism have 
determined there are upper bounds on the amount of 
parallelism available from applications. Wall [4] presents a 
study on these limits for a given set of applications and an 
architecture. It is shown that the limits of ILP could be as high 
as 50 instructions per cycle; on a real processor, however, this 
bound is much stricter than that. We conduct later on this paper 
an experiment similar to the one of Wall, but considering also 
the possibility to execute multiple dependent ALU instructions 
in one cycle. This is made possible by replacing traditional, 
sequential code execution with combinatorial logic. 

With respect to reconfigurable computing, vast literature 
has been produced [8]. It is a concept that fills a gap in 
computation: it is typically unfeasible to achieve high 
performance and simultaneously provide flexibility. Hardwired 
solutions, such as application-specific integrated circuits 
(ASICs), provide high performance but need to be totally 
redesigned for each different application. Microprocessors, on 
the other hand, serve a wide variety of applications but lack the 
performance provided by an ASIC. Reconfigurable systems 

can be configured at runtime to better suit the application to be 
run; better performance is achieved than with microprocessors, 
while still providing a higher flexibility than with ASICs. A 
simple example of a reconfigurable system is one composed of 
a microprocessor coupled to an FPGA, which the processor can 
program and use for execution. A survey on aspects of 
reconfigurable computing is presented by Compton and Hauck 
in [9]. System classification with respect to processor coupling, 
reconfiguration times and granularity of the execution units are 
discussed in their work, but no experimentation is performed. 

Most studies on reconfigurable computing express the need 
to determine critical parts of computation that are to be mapped 
into hardware during the application development phase. This 
approach is named static discovery, and requires the use of 
special compilers. Using methods such as binary translation 
[10] [11], it is possible to perform this mapping dynamically at 
runtime. This way, backwards binary compatibility can be 
achieved, which is a key design issue when further developing 
an architectural family, and one of the reasons behind the 
success of the x86 architecture. 

Our interest lies within systems that allow the dynamic 
discovery of instructions, because they maintain binary 
compatibility with code already deployed. Lysecki, Stitt and 
Vahid [12] present one of the first works in the field, defining a 
new design named warp processor, in which an application 
binary's critical regions are dynamically determined at runtime 
and mapped into a custom hardware circuit in an FPGA. The 
hardware must include a special processor that runs a 
simplified CAD algorithm to perform the mapping of critical 
regions to the FPGA. Clark et al. [13] present the use of the 
Configurable Compute Accelerator (CCA), a specialized unit 
that optimizes the execution of critical computation sections 
determined from an application's dataflow graph. The CCA is 
organized as a matrix of functional units, since this is a natural 
way of exploring both instruction level parallelism and the 
propagation of data between functional units. The paper 
discusses ways to integrate the reconfigurable fabric into the 
processor and presents performance results when using static or 
dynamic subgraph discovery.  

Beck et al. [7] [14] present the use of a coarse-grained 
reconfigurable array tightly coupled to a MIPS processor. 
Performance improvements of up to 2.5 times were achieved, 
while presenting energy reductions and maintaining backwards 
compatibility with respect to the MIPS code. This approach 
requires the underlying ISA to provide simple instructions, 
such as the one provided by MIPS. For the proposed system to 
work with other architectures, extensions have to be made. On 
Fajardo et. al. [15], a two-level binary translation system is 
used to transform x86 code into MIPS code and then optimize 
it for execution on the reconfigurable array. The goal of that 
system is to provide support for multiple architectures with 
binary compatibility, and therefore presents no performance or 
energy gains. 

As for the x86 architecture, we address three of its 
characteristics that are explored by our system.  X86 is a CISC 
architecture (Complex Instruction Set Computing), meaning 
that multiple low level operations, such as memory accesses 
followed by arithmetic operations, can be encoded within a 



single instruction. In contrast with RISC instructions (Reduced 
ISC), CISC instructions are hard to pipeline, because they are 
usually variable length, each of them performs a different 
number of operations and operands can reside in memory. To 
cope with it, x86 processors use a scheme in which CISC 
instructions are decoded into multiple RISC-like instructions, 
named micro-ops [16]. Because each micro-op represents a 
single operation, these are not only simpler to pipeline, but also 
simpler to map into a reconfigurable array.  

One characteristic feature of some families of x86 
processors is the presence of a trace cache. A trace cache works 
similarly to an instruction cache, but rather than caching 
instructions that are sequential in memory, a trace cache stores 
entire sequences of basic blocks that appeared sequentially 
during program execution. When a branch terminating a basic 
block is biased towards an address, the basic block 
corresponding to that address is cached on the subsequent 
block of the trace cache. This way, higher instruction 
throughput to the decode stage is provided [17]. On the 
Pentium 4, this concept was further extended such that the trace 
cache stored micro-ops rather than regular instructions [18]; 
this way, it alleviates work of the decode unit when executing 
the same basic block multiple times.  

On the latest editions of x86 processors, another 
characteristic feature has been added. The Loop Stream 
Detector (LSD) [5] [6] is a mechanism that detects small, 
recurring loops in code. In case of the Nehalem (Core i) 
microarchitecture, this mechanism stores the micro-ops that 
correspond to a loop in a small memory inside the processor 
pipeline, after the decode stage. When a loop is detected by this 
mechanism, the fetch and decode pipeline stages are disabled 
and the instructions are fetched from this new memory, saving 
time and providing energy savings.  

III. PROPOSED ARCHITECTURE 

Our architecture exploits the fact that short, recurring loops 
are very common in software. As  shown in [7], there are 
applications in which a few dozen basic blocks cover more 
than 90% of the instructions that execute on the processor. 
When executing these basic blocks, data dependencies are 
continuously checked between the instructions, even though 
the same instructions are executed over and over again. In [19], 
it is shown that these dependency checks are responsible for an 
average 25% of the energy consumed in processor cores. 

Figure 2 presents an overview of the behavior of the system 
proposed in this work. The blocks on the upper part of each 
figure represent the typical stages that compose the pipeline for 
superscalar processors, namely fetch, decode, dispatch, issue, 
execution and commit. When a basic block is executed for the 
first time (Figure 2a), after it is fetched from memory its 
instructions are decoded and executed as usual on the processor 
pipeline. At the same time, the decoded instructions are fed 
into a binary translation (BT) mechanism that performs the 
mapping of the micro-ops into a configuration for the 
reconfigurable array. This configuration is stored in the 
configuration cache. When the same basic block is executed 
again (Figure 2b), the configuration is read from the 

configuration cache and the basic block is executed on the 
reconfigurable array. This way, all the logic required to access 
memory, decode instructions, execute register renaming and 
dependency checking can be disabled. Instructions continue to 
stream from the reconfigurable array until a branch instruction 
with target address outside that basic block is executed. As 
shown in Figure 1, this mechanism replaces the Loop Stream 
Detector. 

In the next section, we describe in details how the 
reconfigurable array works, and next we give details of the 
microarchitecture of the system. 

A. Reconfigurable Array (RA) 

A general overview of the array organization, as proposed 
in [7], is presented in Figure 4. The array consists of a matrix 
of functional units, in which each instruction is allocated to one 
cell. In this matrix, columns represent parallel execution 
whereas lines represent sequential execution, or the flow of 
time. Each level represents one processor cycle; the latencies of 
the functional units are implementation-dependent. In the 
figure shown, up to three sequential ALU operations may be 
performed in one cycle, and up to four ALU operations can be 
scheduled to each line. Similarly, up to two loads or stores may 
be performed per cycle and one multiplication operation. An 
instruction depending on a value produced previously can only 
be allocated on a row above that of the instruction producing 
the value. 

The input context of the array consists of buses connecting 
every register to the inputs of the functional units on the first 
level. Multiplexers are responsible for choosing the appropriate 
input to each functional unit. Inside each level, multiplexers are 
also present, and may select as input to each functional unit any 
of the results on the line below. On the output context, 
multiplexers select the correct values produced on the last level 
of the array to be written back to the register bank. 

 

Figure 2. Execution on the system when a) a basic block is 

executed for the first time and b) when the basic block is 

already stored in the configuration cache. 



The array has the potential to speed up applications, when 
compared with a traditional superscalar architecture. Two are 
the reasons. First, it potentially eliminates functional unit 
contention, because the operation of each functional unit and 
the data propagation between them can be modified for each 
basic block executed. Second, multiple dependent ALU 
operations can be performed in the same processor cycle, 
unlike traditional architectures. Because of the flexibility 
provided, the use of a RA on general purpose systems can 
increase the average performance for every application, unlike 
the use of an ASIC. 

B. Coupling the RA to the x86 processor 

The microarchitecture of our system is composed of the 
x86 processor, with the RA tightly coupled to the pipeline as 
another functional unit. Our model of the superscalar pipeline 
is based on the architectural simulator we used in our 
performance evaluations, Multi2Sim [20]. The 
microarchitecture is shown in Figure 3. This model for the x86 
pipeline is composed of 6 stages: instruction fetch, decode, 
dispatch, issue, write-back and commit. On the fetch stage, x86 
instructions are read from the instruction cache and passed on 
to the decode stage. On the decode stage, complex x86 
instructions are decoded into micro-ops and put in a queue for 
the dispatch stage. At the same time, these instructions are fed 
into a binary translation mechanism, which performs a 
mapping of the micro-ops into a configuration for the RA. 
Once a branch instruction is found, the translation is terminated 
and the configuration is saved in the configuration cache, 
which replaces the trace cache. With this replacement, we 
expect the area overhead due to the addition of the 

configuration cache to be minimal. The configurations are 
indexed by the memory address of the first instruction in the 
basic block. 

Execution of the micro-ops generated in the decode stage 
proceeds normally through the dispatch, issue, writeback and 
commit stages. On the dispatch stage, false dependencies 
between micro-ops are eliminated and the micro-ops are fed 
into the reorder buffer, as well as onto two queues: one for 
micro-ops performing memory accesses and one for all other 
operations. On the issue stage, a certain number of operations 
are executed on the functional units, considering the true data 
dependencies and the availability of the functional units. On 
the writeback stage, results are written to the register file or 
data cache. Finally, on the commit stage, the instructions are 
removed from the reorder buffer as soon as they are confirmed 
to be non-speculative.  

When a branch instruction is executed and its target address 
is a basic block which is already in the configuration cache, 
then the fetch, decode and dispatch stages are disabled and the 
configuration is loaded to the array. The input operands are 
fetched from the register file or data cache, the instructions are 
placed in the reorder buffer and executed. When the 
instructions are confirmed to be non-speculative, they are ready 
to commit and are removed from the reorder buffer. 

IV. SPEEDUP POTENTIAL 

We present a study on potential of the proposed system for 
performance improvements. The goal is to compare the 
performance of the microarchitecture proposed in this work 
with  that of a typical x86 processor. To achieve this goal, we 
chose a set of benchmarks and estimated the average number of 
instructions executed per clock cycle (IPC) for each application 
in the suite for both architectures.  

As our benchmark suite, we chose MiBench [21] because it 
covers a variety of applications, both control- and data-
oriented. Each of the benchmarks was compiled on a Linux 
operating system using gcc v4.4 with -static, -O3 and -m32 
flags. The benchmarks were executed on two simulators: one 
modeling the x86 processor (Multi2Sim [20]) and the second 
modeling our system. 

 
Figure 4. Overview of the reconfigurable array. 

 
Figure 3. Overview of the microarchitecture. 

 



Table 1. Different setups considered for the RA. 

Parameters 
Setups 

1 2 3 4 5 6 

ALU op. latency 

(cycles) 
1 1/2 1/3 1/3 1/3 1/3 

Mem. ops. per 

cycle 
Unlim. Unlim. Unlim. 4 2 1 

 
To evaluate the potentials of our architecture, we developed 

a  simulator for the architecture which extended the Multi2Sim 
simulator. The extended simulator implements an instruction 
scheduler for the RA. We executed the applications on 
Multi2Sim, which generated an execution trace of micro-ops 
for each application. This trace is fed into our simulator which 
reads entire basic blocks from the trace and schedules them for 
execution. The simulator assumes there is an infinite amount of 
functional units available, and that every instruction can be 
executed on the RA; this way, instructions are scheduled based 
on true data-dependencies only, and we can get an upper bound 
on the potential of using the array for performance 
improvements. We considered multiple setups, in which two 
parameters were varied: the latency of each ALU instruction 
(i.e.: how many dependent ALU instructions can be executed 
in one cycle), and the number of memory operations that can 
be executed per cycle. These setups are presented in Table 1.  

In Table 2, the average IPC observed for each benchmark 
executing on the RA is presented, under the six setups. In this 
experiment, only one basic block can be executed at a time on 
the RA, thus ignoring speculative execution. For setups 1 to 3, 
one can notice the increase in IPC that is obtained when 
allowing multiple ALU operations to be executed per cycle. An 
average of 10% increase in IPC is observed when allowing up 
to three ALU instructions to be executed per cycle. Little 
benefit should be expected from expanding this value further. 
As for setups 4 to 6, one can notice the huge impact of 
allowing only a small number of memory operations to execute 
within the same clock cycle. When comparing setup 5 with 3, 
average IPC goes down 15% and when comparing setup 6 with 
3, the average decrease is of 30%. This table provides a good 
insight into the memory behavior of each application, as well 
as into the amount of computation they perform. However, it is 
not suitable for comparison with a superscalar architecture, 
since we model in this experiment only the execution unit, 
rather than the entire processor pipeline. Also, the assumptions 
made for each system are different. 

To compare our results with execution on the superscalar 
processor, we change a few assumptions about both systems in 
order to put them on the same baseline for comparison. First, 
since our simulator does not consider memory access latency, 
we configured Multi2Sim such that every memory results in a 
cache hit. Second, Multi2Sim, as most superscalar processors, 
performs speculative execution. On the previous experiment, 
only one basic block could execute at a time, therefore ignoring 
speculative execution. We must consider additional setups in 
the RA on which multiple basic blocks may be executed 
simultaneously. Because we ignore reconfiguration times on 
the RA and work with execution traces, we also configured the 
branch prediction scheme on Multi2Sim to always hit. 
Multi2Sim was configured to issue up to 4 memory 

instructions and 4 non-memory instructions per cycle; to match 
this, the RA setup taken as base for this comparison was setup 
4, with 4 memory instructions per cycle and up to three 
dependent ALU operations per cycle. 

Figure 5 presents a comparison of the results on the RA and 
on the superscalar simulators, considering the aforementioned 
discussion. The average IPC values obtained for execution on 
the RA were normalized with respect to IPC from execution on 
Multi2Sim (superscalar); values higher than one indicate, 
therefore, performance gains over the superscalar model. As 
can be seen, for most applications no gain is provided when 
only one basic block is allowed to execute at a time. This is 
expected, because the superscalar processor is executing 
multiple basic blocks simultaneously. As we increase the 
amount of speculation performed on the array, by increasing 
the amount of basic blocks executed at a time, performance 
gains start to show up. When speculating up to two basic 
blocks, 8 out of 20 applications already present performance 
gains, with an average normalized IPC value for the entire 
benchmark set of 1.07. As we further increase the amount of 
BBs speculated from 3 till up to 5, the average normalized IPC 
values are of 1.32, 1.53 and 1.68. When speculating up to 5 
BBs, all applications present performance gains, with some 
applications, such as susan and jpeg decoder, performing twice 
as fast as the superscalar processor. It should be noted that 
considering the reorder buffer on the superscalar simulator was 
taken large (100+ positions), and assuming basic blocks take an 
average size of 13 micro-ops for the tests performed, then the 

Table 2. IPC for each benchmark executing on the RA, 

considering the six different setups. 

Benchmarks 
Array (different setups) 

1 2 3 4 5 6 

adpcm enc 1.67 1.71 1.71 1.71 1.69 1.56 

adpcm dec 1.69 1.76 1.76 1.76 1.71 1.54 

basicmath 2.24 2.47 2.51 2.49 2.33 1.95 

bitcount 1.94 2.26 2.27 2.27 2.25 2.09 

blowfish enc 1.86 2.02 2.07 2.06 2.00 1.74 

blowfish dec 1.88 2.04 2.09 2.08 2.01 1.75 

CRC32 1.85 2.02 2.02 2.02 1.95 1.64 

Dijkstra 1.32 1.42 1.43 1.42 1.42 1.39 

FFT 2.47 2.71 2.76 2.73 2.50 2.02 

FFT inv 2.38 2.63 2.67 2.65 2.48 2.06 

gsm enc 2.69 3.02 3.12 2.97 2.66 2.16 

gsm dec 1.63 1.72 1.73 1.73 1.67 1.53 

jpeg enc 2.35 2.46 2.46 2.32 2.14 1.72 

jpeg dec 4.25 4.34 4.35 4.08 3.38 2.19 

patricia 2.19 2.39 2.45 2.42 2.24 1.84 

qsort 2.21 2.36 2.39 2.34 2.19 1.82 

stringsearch 1.90 2.24 2.29 2.28 2.18 1.95 

susan corners 3.84 4.35 4.48 3.89 3.14 2.14 

susan edges 5.96 6.92 7.21 5.31 3.74 2.28 

susan smoothing 2.69 2.94 2.95 2.93 2.90 2.38 

Average 2,45 2,69 2,73 2,57 2,33 1,89 

 



consideration that up to 5 basic blocks can execute 
simultaneously on the RA is a reasonable assumption for this 
comparison. 

V. CONCLUSION 

In this work, we presented a new architecture for x86 
processors which aims to improve overall performance for all 
applications and provide energy savings. On our preliminary 
study, performance gains of up to 2.5x for some applications 
may be achieved, with an average gain of 1.68x. Currently, we 
are working on a prototype for the system, which will be used 
to take area and power estimations. We shall then analyze 
performance, area and power and compare all parameters with 
the superscalar architecture, in order to evaluate 
implementation tradeoffs. 
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