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Abstract—Even though reconfigurable systems have already 
proven to be an alternative to speedup embedded applications 
with reduced energy costs, because of their adaptability and high 
flexibility, their use result in a significant overhead in chip area. 
Therefore, this work addresses this issue by the use of the 
hardware virtualization technique, using a coarse-grained 
reconfigurable array as study case. We explore two different 
virtualization alternatives, achieving a reduction in area of up 
96%, with marginal performance loss comparing to the original 
architecture. 

Keywords—hardware virtualization; adaptable architectures, 
reconfigurable systems; 

I.  INTRODUCTION 

The advance of integrated circuits technology over the 
years has allowed greater transistor integration. Smartphones 
are an example: one can find several features in a single 
electronic device. These devices are still classified as 
embedded systems, even though they have to execute several 
heterogeneous applications that present a mix of control and 
dataflow behaviors. Therefore, embedded systems are 
increasingly complex and need high performance computing. 
However, they are also tied to a number of design restrictions 
such as area occupation, energy consumption, memory 
footprint and time-to-market constraints. 

An approach that emerged as an alternative to the 
aforementioned restrictions is reconfigurable computing. They 
provide flexibility of implementation, thanks to its ability to 
adapt to the behavior of the target applications after 
manufacturing. They have already proven to be able to satisfy 
the constraints imposed by embedded systems [1][2][3][4][5]. 
They may be classified into two categories: coarse- and fine-
grained, according to the level of reconfiguration (word and bit, 
respectively). 

However, in order to achieve significant performance gains, 
large quantities of redundant functional units are usually 
necessary (in the case of coarse-grained systems), which also 
impacts the interconnections system (i.e.: increase the amount 
of multiplexors). Consequently, there is a considerable increase 
in the area occupied [6]. 

In this scenario, hardware virtualization can be an 
interesting technique for embedded systems, particularly for 

systems that use reconfigurable architectures where 
applications should be mapped and executed on hardware with 
limited area [7]. This is the main proposal of this work: the use 
of virtualization to reduce the area of a reconfigurable system, 
analyzing the impact on the performance and area. As a case 
study, we use the coarse-grain architecture tightly coupled to 
the MIPS R3000 processor [8]. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3presents the architecture of the 
reconfigurable data path. Section 4 describes the hardware 
virtualization implementation, while the results are presented in 
Section 5. Finally, Section 6 draws the final considerations of 
this paper. 

II.  RELATED WORK 

In [9], using the same case study of this work, the authors 
presented a tool called ARISE, which receives a set of 
applications and gives a result the number of functional units 
and the right structure of the reconfigurable array considering 
the available ILP of the benchmark set. This optimized 
architecture has achieved a reduction of 41%, on average, 
compared to the original hardware. The disadvantage of this 
approach is that when the applications set changes, the 
reconfigurable array must be modified, which is not always 
possible, since the system may have already been deployed. 

In another study [10], the authors address the problem of 
area reduction by optimizing the interconnections. In the case 
study of this particular work, the interconnections are 
responsible for approximately 50% of the total area of the chip. 
The work suggests the use of Omega Networks [11] instead of 
multiplexers. They present a reduction of 33% in the area of 
the interconnection, which corresponds to 17% of the total 
area.  

Another approach to achieve area reduction is through 
hardware virtualization (which can be applied not only to 
reconfigurable systems). In[7], the author classified hardware 
virtualization into three categories: Temporal partitioning, 
virtualized execution, and virtual machine. The one used in this 
work is classified as virtualized execution. 

In the case of reconfigurable systems, virtualized execution 
can be used to implement scalable and forward compatible 



systems. A scheduler must be implemented 
system to map the application either spatially or tempo
depending on the number of operators that are available in a 
particular implementation of the reconfigurable
major advantage of this approach is the possibility of 
design space exploration, allow
relationship between are cost and performance, maximizing the 
gains for each particular project. 

Examples for virtualized execution architectures are Score 
[12], Zippy[13], WASMI [14
architectures mentioned, PipeRench is the m
is proposed in this paper. The basic principle of Pipe
the so-called “pipelined reconfiguration”
given kernel is broken into pieces, and these pieces can be 
reconfigured and executed on demand.This way, the
given kernel are multiplexed in time and space into the 
reconfigurable logic. 

The device is organized into a physical pipeline of stripes, 
which representthe minimal reconfigurable hardware blocks. 
Each stripe has aninterconnection network and 
Processing Elements (PEs
strictlypipelined and connects to the next stripe via an 
interconnection network (see Fig. 1)
achieved by allowing an application to use an unlimited 
number of virtual stripes [16

Fig. 1. Piperench architecture overview

In opposite to the Piperench, the case study of this work 
maintains full binary compatibility, since it does not change the 
binary code prior to its execution
mechanism that is used together with the reconfigurable logic, 
as it will be explained next
authors’knowledge, there is no reconfigurable system that is 
completely dynamic and transparent that uses virtualization.

III.  CASE 

Figure 2 shows the structure of the reconfigurable 
architecture employed as case study for this work. The 
reconfigurable unit is organized as a two
functional units, interconnected by multiplexers. 
observed in Fig. 2b,the functional units are divided into 
groups(e.g. ALU, Load/Store, Multiplier). Depending on the 
delay of the functional units that belong to each group, more 
than one operation can be executed within one equivalent 

must be implemented in the runtime 
map the application either spatially or temporally, 

depending on the number of operators that are available in a 
particular implementation of the reconfigurable architecture. A 
major advantage of this approach is the possibility of the 

allowing the designer to explore the 
cost and performance, maximizing the 
project.  

Examples for virtualized execution architectures are Score 
14] and PipeRench [15]. Among the 

, PipeRench is the most similar to what 
The basic principle of PipeRenchis 

called “pipelined reconfiguration” [15]. It means that a 
given kernel is broken into pieces, and these pieces can be 
reconfigured and executed on demand.This way, the parts of a 

multiplexed in time and space into the 

The device is organized into a physical pipeline of stripes, 
which representthe minimal reconfigurable hardware blocks. 

ach stripe has aninterconnection network and a set of 
PEs). A stripe’s output is 

strictlypipelined and connects to the next stripe via an 
(see Fig. 1). Hardware virtualization is 

achieved by allowing an application to use an unlimited 
[16]. 

 
overview [16]. 

In opposite to the Piperench, the case study of this work 
maintains full binary compatibility, since it does not change the 
binary code prior to its execution, thanks to a binary translation 

is used together with the reconfigurable logic, 
as it will be explained next. Therefore, to the best of the 
authors’knowledge, there is no reconfigurable system that is 
completely dynamic and transparent that uses virtualization. 

ASE STUDY 

the structure of the reconfigurable 
architecture employed as case study for this work. The 
reconfigurable unit is organized as a two-dimensional array of 
functional units, interconnected by multiplexers. As can be 

functional units are divided into 
e.g. ALU, Load/Store, Multiplier). Depending on the 

delay of the functional units that belong to each group, more 
than one operation can be executed within one equivalent 

processor cycle, which corresponds to one l
reconfigurable array. In this case study, according to the MIPS 
R3000 critical path, one reconfigurable architecture level 
corresponds to three rows of basic ALUs in sequence, one 
Load/Store or one Multiplication [17
(Fig. 2a) allocation can be seen in Fig.
observed in more details in Fig. 1c. 
very similar to other coarse grain reconfigurable architectures.

This architecture has a binary translation mechanism (BT)
[18], which is implemented in hardware and operates in 
parallel to the processor. At run time, the BT unit detects 
sequences of instructions that can be executed in the 
reconfigurable architecture. This sequence is translated into a 
configuration through the BT mechanism, and saved in the 
context memory. These sequences are indexed by the Program 
Counter (PC) register. This process is very similar to the use of 
automated static tools, employed to find the best kernels of the 
application and transform them to rec
However, it is much simpler compared to such tools, so it can 
be implemented in hardware and executed at run time
sequence of instructions (kernel) that is transformed to be 
executed in the reconfigurable array by the Binary Tr
hardware is called a configuration. 

During execution, the PC of the current incoming 
instruction is compared to the ones saved in a table, in order to 
check if there is a configuration with the same value of the 
current PC. If a configuration is found, it is fetched from the 
context memory. Other reconfigurable systems work in a very 
similar way. However, instead of having the configurations 
indexed by the PC in a table, special instructions in the code 
indicate where they are in the context memor

Fig. 2. General overview of the reconfigurable array

The rest of the process works as follows: initially, values of 
the input context are fetched from the register file while the 
configuration bits are fetched from the context memory. Then, 
that configuration is executed, taking a given number of 

processor cycle, which corresponds to one level in the 
reconfigurable array. In this case study, according to the MIPS 
R3000 critical path, one reconfigurable architecture level 
corresponds to three rows of basic ALUs in sequence, one 

[17]. Anexample of a hot spot 
llocation can be seen in Fig. 2c. One level can be 

c. The structure of the array is 
very similar to other coarse grain reconfigurable architectures. 

This architecture has a binary translation mechanism (BT) 
which is implemented in hardware and operates in 

parallel to the processor. At run time, the BT unit detects 
sequences of instructions that can be executed in the 
reconfigurable architecture. This sequence is translated into a 

mechanism, and saved in the 
context memory. These sequences are indexed by the Program 
Counter (PC) register. This process is very similar to the use of 
automated static tools, employed to find the best kernels of the 
application and transform them to reconfigurable instructions. 
However, it is much simpler compared to such tools, so it can 
be implemented in hardware and executed at run time. A 
sequence of instructions (kernel) that is transformed to be 
executed in the reconfigurable array by the Binary Translation 

During execution, the PC of the current incoming 
instruction is compared to the ones saved in a table, in order to 
check if there is a configuration with the same value of the 

found, it is fetched from the 
context memory. Other reconfigurable systems work in a very 
similar way. However, instead of having the configurations 
indexed by the PC in a table, special instructions in the code 
indicate where they are in the context memory. 

 
General overview of the reconfigurable array [17]. 

The rest of the process works as follows: initially, values of 
the input context are fetched from the register file while the 
configuration bits are fetched from the context memory. Then, 

ration is executed, taking a given number of 



equivalent processor cycles. Finally, results are written back to 
the register bank. 

The number of context memory entries determines the 
number of configurations that can be stored in the context 
memory. The size of each entry depends on the number of 
functional units that compose the reconfigurable array. These 
parameters are determined at design time.
context memory contains the following data: 

• The input context, composed of the operands field
where it can be found references from the register file, 
immediate values and memory pointers.

• The configuration bits, that indicate which operation 
each functional unit will perform and the and the 
routing between them (by configuring the multiplexers).

Moreover, the following additional fields are found:

• The final PC address, in order to update the PC value 
after the sequence of instructions is executed in the 
array. 

• The number of cycles taken by the operation in the 
array. 

IV.  HARDWARE 

In reconfigurable architectures
spatially, while in regular 
structured in time (e.g. each instruction is executed in one cycle 
of the CPU). While processors can run applications as large as 
the memory capacity, reconfigurable architectures are 
problems when the application
reconfigurable array. With the set
techniques can overcome this limitation by exploiting the 
reconfigurability of devices [7

The proposed hardware virtualization is applied by 
modifying the aforementioned 
creating virtual pipeline levels. The main idea is to take 
advantage of the regularity of the architecture and 
the total number of levels with a small
levels (called stages).It is done 
output context lines of each leve
registers store the outputs of 
used for the next level, making it 
this modification, two ways of implementing reconfigurable 
array are modeled. While in 
level is used to virtualize all 
physical levels. 

A. One Stage Virtualization

This implementation uses
equivalent to a reconfigurable array level. The outputs of 
level are connected to their own entry
cyclic pipelined stage, as shown in Fig. 

Each cycle stage is reconfigured to virtualize the next 
virtual level that will be executed (making it possible to run as 
many levels as necessary). Thus, t
provides great savings in area.

equivalent processor cycles. Finally, results are written back to 

The number of context memory entries determines the 
number of configurations that can be stored in the context 

e of each entry depends on the number of 
functional units that compose the reconfigurable array. These 
parameters are determined at design time.Each entry in the 
context memory contains the following data:  

The input context, composed of the operands field, 
where it can be found references from the register file, 
immediate values and memory pointers. 

The configuration bits, that indicate which operation 
each functional unit will perform and the and the 
routing between them (by configuring the multiplexers). 

Moreover, the following additional fields are found: 

The final PC address, in order to update the PC value 
after the sequence of instructions is executed in the 

The number of cycles taken by the operation in the 

ARDWARE VIRTUALIZATION  

configurable architectures, operations are organized 
regular processors, they are mainly 
each instruction is executed in one cycle 

of the CPU). While processors can run applications as large as 
the memory capacity, reconfigurable architectures are 
problems when the application mapping exceeds the size of the 
reconfigurable array. With the set of hardware virtualization 
techniques can overcome this limitation by exploiting the 

[7]. 

The proposed hardware virtualization is applied by 
aforementioned reconfigurable architecture, 

evels. The main idea is to take 
the regularity of the architecture and to virtualize 

levels with a smaller number of physical 
It is done by inserting registers in the 

of each level (refer to Figure 2c). These 
registers store the outputs of the context lines which will be 

making it similar to a pipeline. From 
wo ways of implementing reconfigurable 

n the first model only one physical 
all others, the second one uses two 

ization 

uses only one physical stage, which is 
a reconfigurable array level. The outputs of this 

their own entry points, resulting in a 
stage, as shown in Fig. 3. 

Each cycle stage is reconfigured to virtualize the next 
virtual level that will be executed (making it possible to run as 
many levels as necessary). Thus, the hardware virtualization 
provides great savings in area. 

Fig. 3. Hardware virtualization with a physical stage

The operation proceeds as follows: First the reconfiguration 
of functional units and interconnections are 
performed.Thereafter, the execution
initiated.While executing the current level, the next level 
fetched from the context memory in parallel.
the registers of the context lines store the results, which will be 
the input to the next virtual level 
these phases occur in the same cycle.These steps are repeated 
according to the number of levels. 

The control mechanism of the circuit of Fig
the fetch of the next level configuration
execution of the current level. The time cycle
execution time (2) can be computed
equations: 

 TS1 = Τc + Τe

 T1 = N ⋅ TS

where: 

 TS1 = Execution time of a 

 Tc = Configuration time 

 Te = Execution time of a level (functional units)

 Ts = Setup time of register 

 Tte1 = Total execution time

 N = Number of levels to be executed

As can be noted in (1), the configuration time
thestage execution time, which was not included
architecture, since in this case the configuration starts only 
when the configuration was fetched from the context memory. 
Therefore, even though this approach is the one which presents 
the smallest chip area possible, it r
overhead, which led us to develop the two
the virtualization.  

B. Two Stages Virtualization 

A 2-stage reconfigurable (Fig. 4
solve the problem of the increasing 
discussed above. 

The outputs of the stage 1 are connected 
inputs; while the stage 2 outputs are connected to 
stage 1, as observed in Figure 4. As in the previous model, the 

 
Hardware virtualization with a physical stage. 

The operation proceeds as follows: First the reconfiguration 
of functional units and interconnections are 
performed.Thereafter, the execution of the current level is 

the current level, the next level is 
from the context memory in parallel.After execution, 

context lines store the results, which will be 
the input to the next virtual level that will be processed. All 
these phases occur in the same cycle.These steps are repeated 

The control mechanism of the circuit of Fig. 3 is defined by 
of the next level configuration, configuration and 

rrent level. The time cycle (1) and the total 
computed by the following 

Τe + Ts (1)  

TS1 (2)  

 stage (time cycle) 

Execution time of a level (functional units) 

 

Total execution time 

Number of levels to be executed 

configuration time is part of 
was not included in the original 

since in this case the configuration starts only 
fetched from the context memory. 

Therefore, even though this approach is the one which presents 
the smallest chip area possible, it results in performance 

, which led us to develop the two-stages hardware for 

4) array was implemented to 
 the total execution time, as 

are connected to the stage 2 
outputs are connected to the inputs of 

. As in the previous model, the 



outputs of context lines also have the 
intermediate results (between stages 1 and 2)
2-stage cyclic pipeline. 

Fig. 4. Hardware virtualization with

Fig. 5. Mapping of virtual levels in physical levels (stages).

In the 2-stage model, the 
reconfiguration: while a stage is running, the other is being 
reconfigured, according to the next virtual leve

Cycle 
Processor Pipeline Stages

IF ID  
1 $I5 $I4 
2 $I6 $I5 
3   
4   
5   
6   
7   
8   
9   
10   
11 $I31  
12 $I32 $I31

outputs of context lines also have the stage registers to store the 
s (between stages 1 and 2), which results in a 

 
Hardware virtualization with two physical stage. 

 
Mapping of virtual levels in physical levels (stages). 

the execution occurs in parallel with 
reconfiguration: while a stage is running, the other is being 

according to the next virtual level. All levels are 

TABLE I.  E

Processor Pipeline Stages Original
Mechanism EX MEM WB 

 $I3 $I2 $I1 
 $I4 $I3 $I2 PC found

$I5 $I4 $I3 Fetch Conf.
 $I5 $I4 Conf. Array
  $I5 Waiting Write Back
   Fetch Reg.
   Executing
   Executing
   Executing
   Executing
   Write Back

$I31    

 

virtualized to be executed in the two

Figure 5 illustrates the hardware virtualization by mapping 
a configuration that uses 6 levels in two physical stages.In the 
first cycle, the virtual level 1 is 
(physical level). In the following cycle, the virtual level
mapped into the second physical level
in the first stage is executed. In the third cycle the virtual level 
3 is configured in stage 1,the same physical level that mapped 
the virtual level 1 before. This process is repeated until there is 
no more virtual levels to execute. 

The control mechanism operates as follows: when an n
level is executing, the previous level 
n+1 is reconfigured and the configuration
fetched from context memory. These
the same cycle.The time cycle (3) and the total 
(4) can be computed by the following equations:

 TS2 = Τe + Ts

 T2 = N ⋅ TS

where: 

 TS2 = Execution time of a 

 Te = Execution time of a level (functional units)

 Ts = Setup time of register 

 Tte2 = Total execution time

 N = Number of levels to be executed

In this approach, as in the original, the reconfiguration time 
is shorter than the execution time of a
execution time of the stage in the equation

What differentiates the 2-stage model 
model is the reconfiguration process
reconfiguration occurs during execution, while at the 1
model the reconfiguration and execution occur sequentially, 
which directly impacts the processing time. In contrast, the 
second model requires twice the area, since it is composed of 
two stages. 

Table I shows this procedure in more details. After the 
configuration was found (e.g. instruction $I6), at each clock 

EXECUTION STEPS.  

Original  
Mechanism Proposed Mechanism

  
PC found PC found

Fetch Conf. Fetch Initial Context 
Conf. Array Wait WB 

Waiting Write Back Wait WB || Fecth Level 1  
Fetch Reg. Fetch Reg. || Conf. Level 1 || Fetch Level 2
Executing Executing Level 1 || Conf. Level 2 || Fetch Level 3
Executing Executing Level 2|| Conf. Level 3 || Fetch Level 4
Executing Executing Level 3 || Conf. Level 4
Executing Executing 
Write Back Write Back

  

 

two available stages. 

illustrates the hardware virtualization by mapping 
a configuration that uses 6 levels in two physical stages.In the 

is configured in the stage 1 
he following cycle, the virtual level 2 is 

mapped into the second physical level, while the configuration 
In the third cycle the virtual level 

the same physical level that mapped 
This process is repeated until there is 

The control mechanism operates as follows: when an n-
, the previous level output is stored, the level 

is reconfigured and the configuration bitsof level n+2 is 
These steps occur in parallel, in 

and the total execution time 
by the following equations: 

+ Ts (3)  

TS2 (4)  

 stage (time cycle) 

Execution time of a level (functional units) 

 

Total execution time 

= Number of levels to be executed 

In this approach, as in the original, the reconfiguration time 
time of a level, which justifies the 

equation. 

stage model from the 1-stage 
process. In the 2-stage model the 

reconfiguration occurs during execution, while at the 1-stage 
reconfiguration and execution occur sequentially, 

the processing time. In contrast, the 
econd model requires twice the area, since it is composed of 

shows this procedure in more details. After the 
configuration was found (e.g. instruction $I6), at each clock 

Proposed Mechanism 

 
PC found 

Fetch Initial Context  
Wait WB  

Wait WB || Fecth Level 1   
Conf. Level 1 || Fetch Level 2 

Executing Level 1 || Conf. Level 2 || Fetch Level 3 
Executing Level 2|| Conf. Level 3 || Fetch Level 4 

Executing Level 3 || Conf. Level 4 
Executing Level 4 

Write Back 
 



cycle one level is fetched from the context memory. The fetch 
of the next level will be performed while the previously fetched 
level is executing. Therefore, no additional delay is inserted 
and the performance is maintained. The same technique can be 
easily adapted to other reconfigurable systems. 

V. EXPERIMENTAL RESULTS 

In our study we have used a SystemC model of both 
reconfigurable system and the MIPS R3000 processor 
executing the Mibench Benchmark Suite [19] to extract 
performance results and the number of reconfiguration memory 
requests. A VHDL version was used to gather energy data and 
area.  The experiments were performed using the CMOS 90 nm 
technology. 

As presented in Table II, four different array setups were 
considered to evaluate the performance. Each setup is 
composed of a different number of functional units and levels. 
Setup 4 is the largest one. 

TABLE II.  DIFFERENT SETUPS FOR THE ARRAY 

 Setup 1 Setup 2 Setup 3 Setup 4 
Total #Levels 8 16 32 64 
Total #Rows 24 48 96 192 
#ALU / level 24 24 36 36 
#Multipliers / level 1 2 2 2 
#Ld|St /level 2 6 6 6 

A. Performance 

In the virtualized model, as in the original one, each level 
has a computation time equal to one cycle of the processor. 
Due to the insertion of the registers between the physical stages 
in the virtualized model, the critical path of the functional units 
has changed (an increase of 0.5%). However, this delay does 
not cause any performance loss because even with this small 
increment the critical path of the reconfigurable array is shorter 
than the MIPS processor. 

Nevertheless,if this technique is used in other architectures, 
the register setup time may cause small increments in the 
critical path, so the operating frequency may be affected. One 
way to reduce this impact is increasing the number of stages 
(physical levels) and putting the registers every two or four 
levels, decreasing their influence in the total processing time. 
For comparison purposes, let us consider an array with the 
same number of functional units per level of the Setup 4, but 
with an unlimited number of levels (referred as Setup Inf.). 

Figure 6 presents the speedup of each benchmark 
application, using the MIPS R3000 as baseline and considering 
the Setup 4 and varying the number of entries (configurations) 
that the context memory can keep. A context memory with 
more than 256entries has not shown significant performance 
gains, considering this benchmark set. 

Figure 7 shows the speedup obtained for each of the 
application with an infinite number of levels (Setup Inf.). 
Comparing these two figures, one can be see that the 
applications that benefited the most from this setup are 
RjindaelD and RjindaelE, with a gain of approximately 130% 
and 100% in speedup compared with the Setup 4 (which has 

the best speedup results among all setups).These applications 
required 85 levels to achieve this speedup. 

Fig. 6. Speedup achieved by Setup 4 for Mibench benchmark. 

Fig. 7. Speedup achieved by Setup Inf. for Mibench Benchmark. 
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Fig. 8. Average speedup. 

Figure 8 presents the average speedup for each setup in 
Table II and the Setup Inf. In this figure we can see that with a 
unlimited number of levels, larger segments of the applications 
may be executed in the array and, consequently, a higher 
performance can be achieved. The average speedup of the 
infinite setup was of 18% and 13% higher than Setup 3 and 4, 
respectively.  

B. Area 

The virtualization technique significantly reduces the area, 
since now only 2 physical levels are implemented. The Table 
III shows the results in the area (gates) and the relation of 
reconfigurable array compared to the MIPS R3000 processor. 

The Setup 3 and 4 needed an area of 161 and 322 times 
greater than the size of the processor, respectively. Through the 
virtualization technique, this size decreased in a factor of 10 
times. These results show that the reconfigurable architectures 
can save area using hardware virtualizationtechnique. In 
situations wherethe application mapping exceeds the size of the 
reconfigurable array, this technique allows to better exploit the 
reconfigurability of hardware and achieve higher performance 
in some applications. 

TABLE III.  AREA RESULTS 

 Setup 1 Setup 2 Setup 3 Setup 4 

Area (Gates) 
Original 785.743 1.621.024 4.335.680 8.671.360 
Pipeline 196.692 202.884 271.364 271.364 

Area in 
relationto 

MIPS 

Original 29,2 60,3 161,3 322,5 

Pipeline 7.3 7.5 10.1 10.1 

Reduction (%) 75,0% 87,5% 93,7% 96,9% 

VI.  CONCLUSIONS AND FUTURE WORKS 

In this paper, we show the technique of hardware 
virtualization applied to a coarse-grained reconfigurable array. 
The results show that hardware virtualization is a valuable 
concept. In the architecture used as case-study, the 
performancewas maintained with an area reduction of up to 
96.9%. As future work, we will use omega networks for 
optimizing the interconnections. Therefore, the union of both 
techniques will allow further reductions in the area used by the 
reconfigurable array. 
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