
Hardware Virtualization On Coarse-Grained
Reconfigurable Architectures

Thiago Berticelli Lo
Departamento de Ensino, Pesquisa e Extensão

Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-
grandense, IFSUL

Charqueadas/RS, Brazil
thiagolo@charqueadas.ifsul.edu.br

Luigi Carro, Antonio Carlos Schneider Beck
Instituto de Informática – PPGC

Universidade Federal do Rio Grande do Sul, UFRGS
Porto Alegre/RS, Brazil

{carro, caco}@inf.ufrgs.br

Abstract—Even though reconfigurable systems have already
proven to be an alternative to speedup embedded applications
with reduced energy costs, because of their adaptability and high
flexibility, their use result in a significant overhead in chip area.
Therefore, this work addresses this issue by the use of the
hardware virtualization technique, using a coarse-grained
reconfigurable array as study case. We explore two different
virtualization alternatives, achieving a reduction in area of up
96%, with marginal performance loss comparing to the original
architecture.

Keywords—hardware virtualization; adaptable architectures,
reconfigurable systems;

I. INTRODUCTION

The advance of integrated circuits technology over the
years has allowed greater transistor integration. Smartphones
are an example: one can find several features in a single
electronic device. These devices are still classified as
embedded systems, even though they have to execute several
heterogeneous applications that present a mix of control and
dataflow behaviors. Therefore, embedded systems are
increasingly complex and need high performance computing.
However, they are also tied to a number of design restrictions
such as area occupation, energy consumption, memory
footprint and time-to-market constraints.

An approach that emerged as an alternative to the
aforementioned restrictions is reconfigurable computing. They
provide flexibility of implementation, thanks to its ability to
adapt to the behavior of the target applications after
manufacturing. They have already proven to be able to satisfy
the constraints imposed by embedded systems [1][2][3][4][5].
They may be classified into two categories: coarse- and fine-
grained, according to the level of reconfiguration (word and bit,
respectively).

However, in order to achieve significant performance gains,
large quantities of redundant functional units are usually
necessary (in the case of coarse-grained systems), which also
impacts the interconnections system (i.e.: increase the amount
of multiplexors). Consequently, there is a considerable increase
in the area occupied [6].

In this scenario, hardware virtualization can be an
interesting technique for embedded systems, particularly for

systems that use reconfigurable architectures where
applications should be mapped and executed on hardware with
limited area [7]. This is the main proposal of this work: the use
of virtualization to reduce the area of a reconfigurable system,
analyzing the impact on the performance and area. As a case
study, we use the coarse-grain architecture tightly coupled to
the MIPS R3000 processor [8].

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3presents the architecture of the
reconfigurable data path. Section 4 describes the hardware
virtualization implementation, while the results are presented in
Section 5. Finally, Section 6 draws the final considerations of
this paper.

II. RELATED WORK

In [9], using the same case study of this work, the authors
presented a tool called ARISE, which receives a set of
applications and gives a result the number of functional units
and the right structure of the reconfigurable array considering
the available ILP of the benchmark set. This optimized
architecture has achieved a reduction of 41%, on average,
compared to the original hardware. The disadvantage of this
approach is that when the applications set changes, the
reconfigurable array must be modified, which is not always
possible, since the system may have already been deployed.

In another study [10], the authors address the problem of
area reduction by optimizing the interconnections. In the case
study of this particular work, the interconnections are
responsible for approximately 50% of the total area of the chip.
The work suggests the use of Omega Networks [11] instead of
multiplexers. They present a reduction of 33% in the area of
the interconnection, which corresponds to 17% of the total
area.

Another approach to achieve area reduction is through
hardware virtualization (which can be applied not only to
reconfigurable systems). In[7], the author classified hardware
virtualization into three categories: Temporal partitioning,
virtualized execution, and virtual machine. The one used in this
work is classified as virtualized execution.

In the case of reconfigurable systems, virtualized execution
can be used to implement scalable and forward compatible

systems. A scheduler must be implemented
system to map the application either spatially or tempo
depending on the number of operators that are available in a
particular implementation of the reconfigurable
major advantage of this approach is the possibility of
design space exploration, allow
relationship between are cost and performance, maximizing the
gains for each particular project.

Examples for virtualized execution architectures are Score
[12], Zippy[13], WASMI [14
architectures mentioned, PipeRench is the m
is proposed in this paper. The basic principle of Pipe
the so-called “pipelined reconfiguration”
given kernel is broken into pieces, and these pieces can be
reconfigured and executed on demand.This way, the
given kernel are multiplexed in time and space into the
reconfigurable logic.

The device is organized into a physical pipeline of stripes,
which representthe minimal reconfigurable hardware blocks.
Each stripe has aninterconnection network and
Processing Elements (PEs
strictlypipelined and connects to the next stripe via an
interconnection network (see Fig. 1)
achieved by allowing an application to use an unlimited
number of virtual stripes [16

Fig. 1. Piperench architecture overview

In opposite to the Piperench, the case study of this work
maintains full binary compatibility, since it does not change the
binary code prior to its execution
mechanism that is used together with the reconfigurable logic,
as it will be explained next
authors’knowledge, there is no reconfigurable system that is
completely dynamic and transparent that uses virtualization.

III. CASE

Figure 2 shows the structure of the reconfigurable
architecture employed as case study for this work. The
reconfigurable unit is organized as a two
functional units, interconnected by multiplexers.
observed in Fig. 2b,the functional units are divided into
groups(e.g. ALU, Load/Store, Multiplier). Depending on the
delay of the functional units that belong to each group, more
than one operation can be executed within one equivalent

must be implemented in the runtime
map the application either spatially or temporally,

depending on the number of operators that are available in a
particular implementation of the reconfigurable architecture. A
major advantage of this approach is the possibility of the

allowing the designer to explore the
cost and performance, maximizing the
project.

Examples for virtualized execution architectures are Score
14] and PipeRench [15]. Among the

, PipeRench is the most similar to what
The basic principle of PipeRenchis

called “pipelined reconfiguration” [15]. It means that a
given kernel is broken into pieces, and these pieces can be
reconfigured and executed on demand.This way, the parts of a

multiplexed in time and space into the

The device is organized into a physical pipeline of stripes,
which representthe minimal reconfigurable hardware blocks.

ach stripe has aninterconnection network and a set of
PEs). A stripe’s output is

strictlypipelined and connects to the next stripe via an
(see Fig. 1). Hardware virtualization is

achieved by allowing an application to use an unlimited
[16].

overview [16].

In opposite to the Piperench, the case study of this work
maintains full binary compatibility, since it does not change the
binary code prior to its execution, thanks to a binary translation

is used together with the reconfigurable logic,
as it will be explained next. Therefore, to the best of the
authors’knowledge, there is no reconfigurable system that is
completely dynamic and transparent that uses virtualization.

ASE STUDY

the structure of the reconfigurable
architecture employed as case study for this work. The
reconfigurable unit is organized as a two-dimensional array of
functional units, interconnected by multiplexers. As can be

functional units are divided into
e.g. ALU, Load/Store, Multiplier). Depending on the

delay of the functional units that belong to each group, more
than one operation can be executed within one equivalent

processor cycle, which corresponds to one l
reconfigurable array. In this case study, according to the MIPS
R3000 critical path, one reconfigurable architecture level
corresponds to three rows of basic ALUs in sequence, one
Load/Store or one Multiplication [17
(Fig. 2a) allocation can be seen in Fig.
observed in more details in Fig. 1c.
very similar to other coarse grain reconfigurable architectures.

This architecture has a binary translation mechanism (BT)
[18], which is implemented in hardware and operates in
parallel to the processor. At run time, the BT unit detects
sequences of instructions that can be executed in the
reconfigurable architecture. This sequence is translated into a
configuration through the BT mechanism, and saved in the
context memory. These sequences are indexed by the Program
Counter (PC) register. This process is very similar to the use of
automated static tools, employed to find the best kernels of the
application and transform them to rec
However, it is much simpler compared to such tools, so it can
be implemented in hardware and executed at run time
sequence of instructions (kernel) that is transformed to be
executed in the reconfigurable array by the Binary Tr
hardware is called a configuration.

During execution, the PC of the current incoming
instruction is compared to the ones saved in a table, in order to
check if there is a configuration with the same value of the
current PC. If a configuration is found, it is fetched from the
context memory. Other reconfigurable systems work in a very
similar way. However, instead of having the configurations
indexed by the PC in a table, special instructions in the code
indicate where they are in the context memor

Fig. 2. General overview of the reconfigurable array

The rest of the process works as follows: initially, values of
the input context are fetched from the register file while the
configuration bits are fetched from the context memory. Then,
that configuration is executed, taking a given number of

processor cycle, which corresponds to one level in the
reconfigurable array. In this case study, according to the MIPS
R3000 critical path, one reconfigurable architecture level
corresponds to three rows of basic ALUs in sequence, one

[17]. Anexample of a hot spot
llocation can be seen in Fig. 2c. One level can be

c. The structure of the array is
very similar to other coarse grain reconfigurable architectures.

This architecture has a binary translation mechanism (BT)
which is implemented in hardware and operates in

parallel to the processor. At run time, the BT unit detects
sequences of instructions that can be executed in the
reconfigurable architecture. This sequence is translated into a

mechanism, and saved in the
context memory. These sequences are indexed by the Program
Counter (PC) register. This process is very similar to the use of
automated static tools, employed to find the best kernels of the
application and transform them to reconfigurable instructions.
However, it is much simpler compared to such tools, so it can
be implemented in hardware and executed at run time. A
sequence of instructions (kernel) that is transformed to be
executed in the reconfigurable array by the Binary Translation

During execution, the PC of the current incoming
instruction is compared to the ones saved in a table, in order to
check if there is a configuration with the same value of the

found, it is fetched from the
context memory. Other reconfigurable systems work in a very
similar way. However, instead of having the configurations
indexed by the PC in a table, special instructions in the code
indicate where they are in the context memory.

General overview of the reconfigurable array [17].

The rest of the process works as follows: initially, values of
the input context are fetched from the register file while the
configuration bits are fetched from the context memory. Then,

ration is executed, taking a given number of

equivalent processor cycles. Finally, results are written back to
the register bank.

The number of context memory entries determines the
number of configurations that can be stored in the context
memory. The size of each entry depends on the number of
functional units that compose the reconfigurable array. These
parameters are determined at design time.
context memory contains the following data:

• The input context, composed of the operands field
where it can be found references from the register file,
immediate values and memory pointers.

• The configuration bits, that indicate which operation
each functional unit will perform and the and the
routing between them (by configuring the multiplexers).

Moreover, the following additional fields are found:

• The final PC address, in order to update the PC value
after the sequence of instructions is executed in the
array.

• The number of cycles taken by the operation in the
array.

IV. HARDWARE

In reconfigurable architectures
spatially, while in regular
structured in time (e.g. each instruction is executed in one cycle
of the CPU). While processors can run applications as large as
the memory capacity, reconfigurable architectures are
problems when the application
reconfigurable array. With the set
techniques can overcome this limitation by exploiting the
reconfigurability of devices [7

The proposed hardware virtualization is applied by
modifying the aforementioned
creating virtual pipeline levels. The main idea is to take
advantage of the regularity of the architecture and
the total number of levels with a small
levels (called stages).It is done
output context lines of each leve
registers store the outputs of
used for the next level, making it
this modification, two ways of implementing reconfigurable
array are modeled. While in
level is used to virtualize all
physical levels.

A. One Stage Virtualization

This implementation uses
equivalent to a reconfigurable array level. The outputs of
level are connected to their own entry
cyclic pipelined stage, as shown in Fig.

Each cycle stage is reconfigured to virtualize the next
virtual level that will be executed (making it possible to run as
many levels as necessary). Thus, t
provides great savings in area.

equivalent processor cycles. Finally, results are written back to

The number of context memory entries determines the
number of configurations that can be stored in the context

e of each entry depends on the number of
functional units that compose the reconfigurable array. These
parameters are determined at design time.Each entry in the
context memory contains the following data:

The input context, composed of the operands field,
where it can be found references from the register file,
immediate values and memory pointers.

The configuration bits, that indicate which operation
each functional unit will perform and the and the
routing between them (by configuring the multiplexers).

Moreover, the following additional fields are found:

The final PC address, in order to update the PC value
after the sequence of instructions is executed in the

The number of cycles taken by the operation in the

ARDWARE VIRTUALIZATION

configurable architectures, operations are organized
regular processors, they are mainly
each instruction is executed in one cycle

of the CPU). While processors can run applications as large as
the memory capacity, reconfigurable architectures are
problems when the application mapping exceeds the size of the
reconfigurable array. With the set of hardware virtualization
techniques can overcome this limitation by exploiting the

[7].

The proposed hardware virtualization is applied by
aforementioned reconfigurable architecture,

evels. The main idea is to take
the regularity of the architecture and to virtualize

levels with a smaller number of physical
It is done by inserting registers in the

of each level (refer to Figure 2c). These
registers store the outputs of the context lines which will be

making it similar to a pipeline. From
wo ways of implementing reconfigurable

n the first model only one physical
all others, the second one uses two

ization

uses only one physical stage, which is
a reconfigurable array level. The outputs of this

their own entry points, resulting in a
stage, as shown in Fig. 3.

Each cycle stage is reconfigured to virtualize the next
virtual level that will be executed (making it possible to run as
many levels as necessary). Thus, the hardware virtualization
provides great savings in area.

Fig. 3. Hardware virtualization with a physical stage

The operation proceeds as follows: First the reconfiguration
of functional units and interconnections are
performed.Thereafter, the execution
initiated.While executing the current level, the next level
fetched from the context memory in parallel.
the registers of the context lines store the results, which will be
the input to the next virtual level
these phases occur in the same cycle.These steps are repeated
according to the number of levels.

The control mechanism of the circuit of Fig
the fetch of the next level configuration
execution of the current level. The time cycle
execution time (2) can be computed
equations:

 TS1 = Τc + Τe

 T1 = N ⋅ TS

where:

 TS1 = Execution time of a

 Tc = Configuration time

 Te = Execution time of a level (functional units)

 Ts = Setup time of register

 Tte1 = Total execution time

 N = Number of levels to be executed

As can be noted in (1), the configuration time
thestage execution time, which was not included
architecture, since in this case the configuration starts only
when the configuration was fetched from the context memory.
Therefore, even though this approach is the one which presents
the smallest chip area possible, it r
overhead, which led us to develop the two
the virtualization.

B. Two Stages Virtualization

A 2-stage reconfigurable (Fig. 4
solve the problem of the increasing
discussed above.

The outputs of the stage 1 are connected
inputs; while the stage 2 outputs are connected to
stage 1, as observed in Figure 4. As in the previous model, the

Hardware virtualization with a physical stage.

The operation proceeds as follows: First the reconfiguration
of functional units and interconnections are
performed.Thereafter, the execution of the current level is

the current level, the next level is
from the context memory in parallel.After execution,

context lines store the results, which will be
the input to the next virtual level that will be processed. All
these phases occur in the same cycle.These steps are repeated

The control mechanism of the circuit of Fig. 3 is defined by
of the next level configuration, configuration and

rrent level. The time cycle (1) and the total
computed by the following

Τe + Ts (1)

TS1 (2)

 stage (time cycle)

Execution time of a level (functional units)

Total execution time

Number of levels to be executed

configuration time is part of
was not included in the original

since in this case the configuration starts only
fetched from the context memory.

Therefore, even though this approach is the one which presents
the smallest chip area possible, it results in performance

, which led us to develop the two-stages hardware for

4) array was implemented to
 the total execution time, as

are connected to the stage 2
outputs are connected to the inputs of

. As in the previous model, the

outputs of context lines also have the
intermediate results (between stages 1 and 2)
2-stage cyclic pipeline.

Fig. 4. Hardware virtualization with

Fig. 5. Mapping of virtual levels in physical levels (stages).

In the 2-stage model, the
reconfiguration: while a stage is running, the other is being
reconfigured, according to the next virtual leve

Cycle
Processor Pipeline Stages

IF ID
1 $I5 $I4
2 $I6 $I5
3
4
5
6
7
8
9
10
11 $I31
12 $I32 $I31

outputs of context lines also have the stage registers to store the
s (between stages 1 and 2), which results in a

Hardware virtualization with two physical stage.

Mapping of virtual levels in physical levels (stages).

the execution occurs in parallel with
reconfiguration: while a stage is running, the other is being

according to the next virtual level. All levels are

TABLE I. E

Processor Pipeline Stages Original
Mechanism EX MEM WB

 $I3 $I2 $I1
 $I4 $I3 $I2 PC found

$I5 $I4 $I3 Fetch Conf.
 $I5 $I4 Conf. Array
 $I5 Waiting Write Back
 Fetch Reg.
 Executing
 Executing
 Executing
 Executing
 Write Back

$I31

virtualized to be executed in the two

Figure 5 illustrates the hardware virtualization by mapping
a configuration that uses 6 levels in two physical stages.In the
first cycle, the virtual level 1 is
(physical level). In the following cycle, the virtual level
mapped into the second physical level
in the first stage is executed. In the third cycle the virtual level
3 is configured in stage 1,the same physical level that mapped
the virtual level 1 before. This process is repeated until there is
no more virtual levels to execute.

The control mechanism operates as follows: when an n
level is executing, the previous level
n+1 is reconfigured and the configuration
fetched from context memory. These
the same cycle.The time cycle (3) and the total
(4) can be computed by the following equations:

 TS2 = Τe + Ts

 T2 = N ⋅ TS

where:

 TS2 = Execution time of a

 Te = Execution time of a level (functional units)

 Ts = Setup time of register

 Tte2 = Total execution time

 N = Number of levels to be executed

In this approach, as in the original, the reconfiguration time
is shorter than the execution time of a
execution time of the stage in the equation

What differentiates the 2-stage model
model is the reconfiguration process
reconfiguration occurs during execution, while at the 1
model the reconfiguration and execution occur sequentially,
which directly impacts the processing time. In contrast, the
second model requires twice the area, since it is composed of
two stages.

Table I shows this procedure in more details. After the
configuration was found (e.g. instruction $I6), at each clock

EXECUTION STEPS.

Original
Mechanism Proposed Mechanism

PC found PC found

Fetch Conf. Fetch Initial Context
Conf. Array Wait WB

Waiting Write Back Wait WB || Fecth Level 1
Fetch Reg. Fetch Reg. || Conf. Level 1 || Fetch Level 2
Executing Executing Level 1 || Conf. Level 2 || Fetch Level 3
Executing Executing Level 2|| Conf. Level 3 || Fetch Level 4
Executing Executing Level 3 || Conf. Level 4
Executing Executing
Write Back Write Back

two available stages.

illustrates the hardware virtualization by mapping
a configuration that uses 6 levels in two physical stages.In the

is configured in the stage 1
he following cycle, the virtual level 2 is

mapped into the second physical level, while the configuration
In the third cycle the virtual level

the same physical level that mapped
This process is repeated until there is

The control mechanism operates as follows: when an n-
, the previous level output is stored, the level

is reconfigured and the configuration bitsof level n+2 is
These steps occur in parallel, in

and the total execution time
by the following equations:

+ Ts (3)

TS2 (4)

 stage (time cycle)

Execution time of a level (functional units)

Total execution time

= Number of levels to be executed

In this approach, as in the original, the reconfiguration time
time of a level, which justifies the

equation.

stage model from the 1-stage
process. In the 2-stage model the

reconfiguration occurs during execution, while at the 1-stage
reconfiguration and execution occur sequentially,

the processing time. In contrast, the
econd model requires twice the area, since it is composed of

shows this procedure in more details. After the
configuration was found (e.g. instruction $I6), at each clock

Proposed Mechanism

PC found

Fetch Initial Context
Wait WB

Wait WB || Fecth Level 1
Conf. Level 1 || Fetch Level 2

Executing Level 1 || Conf. Level 2 || Fetch Level 3
Executing Level 2|| Conf. Level 3 || Fetch Level 4

Executing Level 3 || Conf. Level 4
Executing Level 4

Write Back

cycle one level is fetched from the context memory. The fetch
of the next level will be performed while the previously fetched
level is executing. Therefore, no additional delay is inserted
and the performance is maintained. The same technique can be
easily adapted to other reconfigurable systems.

V. EXPERIMENTAL RESULTS

In our study we have used a SystemC model of both
reconfigurable system and the MIPS R3000 processor
executing the Mibench Benchmark Suite [19] to extract
performance results and the number of reconfiguration memory
requests. A VHDL version was used to gather energy data and
area. The experiments were performed using the CMOS 90 nm
technology.

As presented in Table II, four different array setups were
considered to evaluate the performance. Each setup is
composed of a different number of functional units and levels.
Setup 4 is the largest one.

TABLE II. DIFFERENT SETUPS FOR THE ARRAY

 Setup 1 Setup 2 Setup 3 Setup 4
Total #Levels 8 16 32 64
Total #Rows 24 48 96 192
#ALU / level 24 24 36 36
#Multipliers / level 1 2 2 2
#Ld|St /level 2 6 6 6

A. Performance

In the virtualized model, as in the original one, each level
has a computation time equal to one cycle of the processor.
Due to the insertion of the registers between the physical stages
in the virtualized model, the critical path of the functional units
has changed (an increase of 0.5%). However, this delay does
not cause any performance loss because even with this small
increment the critical path of the reconfigurable array is shorter
than the MIPS processor.

Nevertheless,if this technique is used in other architectures,
the register setup time may cause small increments in the
critical path, so the operating frequency may be affected. One
way to reduce this impact is increasing the number of stages
(physical levels) and putting the registers every two or four
levels, decreasing their influence in the total processing time.
For comparison purposes, let us consider an array with the
same number of functional units per level of the Setup 4, but
with an unlimited number of levels (referred as Setup Inf.).

Figure 6 presents the speedup of each benchmark
application, using the MIPS R3000 as baseline and considering
the Setup 4 and varying the number of entries (configurations)
that the context memory can keep. A context memory with
more than 256entries has not shown significant performance
gains, considering this benchmark set.

Figure 7 shows the speedup obtained for each of the
application with an infinite number of levels (Setup Inf.).
Comparing these two figures, one can be see that the
applications that benefited the most from this setup are
RjindaelD and RjindaelE, with a gain of approximately 130%
and 100% in speedup compared with the Setup 4 (which has

the best speedup results among all setups).These applications
required 85 levels to achieve this speedup.

Fig. 6. Speedup achieved by Setup 4 for Mibench benchmark.

Fig. 7. Speedup achieved by Setup Inf. for Mibench Benchmark.

1

1,5

2

2,5

3

3,5

4

4,5

8 16 32 64 128 256

S
p

e
e

d
u

p

Number of entries

Quick Corners Smoothing

Edges Bitcount JpegC

JpegD Dijkstra String

RjindaelE RjindaelD Sha

GSMC GSMD CRC

1

1,5

2

2,5

3

3,5

4

4,5

8 16 32 64 128 256

S
p

e
e

d
u

p

Number of entries

Quick Corners Smoothing

Edges Bitcount JpegC

JpegD Dijkstra String

RjindaelE RjindaelD Sha

GSMC GSMD CRC

Fig. 8. Average speedup.

Figure 8 presents the average speedup for each setup in
Table II and the Setup Inf. In this figure we can see that with a
unlimited number of levels, larger segments of the applications
may be executed in the array and, consequently, a higher
performance can be achieved. The average speedup of the
infinite setup was of 18% and 13% higher than Setup 3 and 4,
respectively.

B. Area

The virtualization technique significantly reduces the area,
since now only 2 physical levels are implemented. The Table
III shows the results in the area (gates) and the relation of
reconfigurable array compared to the MIPS R3000 processor.

The Setup 3 and 4 needed an area of 161 and 322 times
greater than the size of the processor, respectively. Through the
virtualization technique, this size decreased in a factor of 10
times. These results show that the reconfigurable architectures
can save area using hardware virtualizationtechnique. In
situations wherethe application mapping exceeds the size of the
reconfigurable array, this technique allows to better exploit the
reconfigurability of hardware and achieve higher performance
in some applications.

TABLE III. AREA RESULTS

 Setup 1 Setup 2 Setup 3 Setup 4

Area (Gates)
Original 785.743 1.621.024 4.335.680 8.671.360
Pipeline 196.692 202.884 271.364 271.364

Area in
relationto

MIPS

Original 29,2 60,3 161,3 322,5

Pipeline 7.3 7.5 10.1 10.1

Reduction (%) 75,0% 87,5% 93,7% 96,9%

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we show the technique of hardware
virtualization applied to a coarse-grained reconfigurable array.
The results show that hardware virtualization is a valuable
concept. In the architecture used as case-study, the
performancewas maintained with an area reduction of up to
96.9%. As future work, we will use omega networks for
optimizing the interconnections. Therefore, the union of both
techniques will allow further reductions in the area used by the
reconfigurable array.

REFERENCES
[1] P. Ienne and R. Leupers, “Customizable Embedded Processors: Design

Technologies and Applications”. San Mateo : Morgan Kaufmann, 2006.

[2] T. J. Todman, G. A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk
and P. Y. K. Cheung, “Reconfigurable computing: architectures and
design methods”, Computers and Digital Techniques, IEE Proceedings,
vol.152, no.2, pp. 193- 207, Mar 2005.

[3] R. Hartenstein, “A decade of reconfigurable computing: a visionary
retrospective”, In Proceedings of the conference on Design, automation
and test in Europe. Munich, Germany: IEEE Press, 2001.

[4] A. C. S. Beck, C. A. L. Lisbôa, L. Carro. Adaptable Embedded Systems.
Springer New York, 2013.

[5] A. C. S. Beck, L. Carro. Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques: Automatic Acceleration of
Software Execution. Springer, 2010.

[6] S. Borkar, “Electronics beyond nano-scale CMOS”. In Design
Automation Conference, 2006 43rd ACM/IEEE, pages 807–808, 2006.

[7] C. Plessl and M. Platzner, “Virtualization of hardware – introduction and
survey”. In Proc. 4rd Int. Conf. on Engineering of Reconfigurable
Systems and Algorithms (ERSA), pages 63– 69. CSREA Press, 2004.

[8] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev and L. Carro. “Transparent
Reconfigurable Acceleration for Heterogeneous Embedded
Applications”. In: Design, Automation and Test in Europe, 2008,
Munique.

[9] M. B. Rutzig, A. C. S. Beck Filho and L. Carro, “Balancing
Reconfigurable Data Path Resources According to Applications
Requirements”. In: 15th Reconfigurable Architecture Workshop, 2008,
Miami. Proceedings of 15th Reconfigurable Architecture Workshop,
2008.

[10] R.S. Ferreira, M. Laure,M. B. Rutzig, A.C.S. Beck and L. Carro.
“Reducing Interconnection Cost in Coarse-Grained Dynamic Computing
through Multistage Network”. In: International Conference on Field
Programmable Logic and Applications, 2008, Heidelberg.

[11] D. H. Lawrie, “Access and alignment of data in an array processor”,
IEEE Trans. Comput., vol. 24, no. 12, 1975.

[12] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek and A. Dehon,
“Stream computations organized for reconfigurable execution
(SCORE)”. In Proc. 10th Int. Conf. on Field Programmable Logic and
Applications (FPL), pages 605–614, 2000.

[13] C. Plessl and M. Platzner, “Zippy: A coarse-grained reconfigurable array
with support for hardware virtualization”, in Proc. 16th Int. Conf. on
Application-specific Systems, Architecture and Processors (ASAP 05),
July 2005, pp. 213–218.

[14] T. Fuji, K. Furuta,M. Motomura,M. Nomura,M. Mizuno, K. Anjo,K.
Wakabayashi, Y. Hirota,Y. Nakazawa,H. Itoh andM. A. Yamashina, “A
dynamically reconfigurable logic engine with a multi-context/multi-
mode unified-cell architecture”. In 46th IEEE Int. Solid-State Circuits
Conf. (ISSCC), Dig. Tech. Papers, pages 364–365,1999.

[15] S. Goldstien, H. Schmit, M. Moe, M. Budiuy, S. Cadambi, R. Taylora
and R. Laufer. “PipeRench: A Coprocessor for Streaming Multimedia
Acceleration”. in Proc. International Symposium on Computer
Architecture (ISCA), Atlanta, GA, 1999.

[16] H. Schmit, D. Whelihan, M. Moe, B. Levine, and R. R. Taylor.
“PipeRech: A virtualized programmable datapath in 0.18 micron
technology”. In Proc. 24th IEEE Custom Integrated Circuits Conf.
(CICC), 2002.

[17] A. C. S. Beck and L. Carro, “Automatic Dataflow Execution with
Reconfiguration and Dynamic Instruction Merging”. In: Very Large
Scale Iintegration, VLSI-SOC, 2006, Perth. Proceedings. New York:
IEEE Computer Society, 2007. p. 30–35.

[18] T. B. Ló, A. C. S. Beck, M. B. Rutzig and L. Carro,”A low-energy
approach for context memory in reconfigurable systems”. In Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst and T. M. Austin. “MiBench:
A Free, Commercially Representative Embedded Benchmark Suite”, in
4th Workshop on Workload Characterization, 2001.

1,5

1,7

1,9

2,1

2,3

2,5

2,7

8 16 32 64 128 256

S
p

e
e

d
u

p

Number of entries

Setup 1

Setup 2

Setup 3

Setup 4

Setup

inf.

