
Assessing the Use of Continuous-Time and
Timed-Triggered Models for Designing

Cyber-Physical Systems

Fernando Silvano Gonçalves
and Leandro Buss Becker

Department of Automation and Systems (DAS)
Federal University of Santa Catarina (UFSC)

Florianópolis, SC, Brazil.
Email: fernando.goncalves@posgrad.ufsc.br

leandro.becker@ufsc.br

Abstract—Different models of computation can be used for
designing the embedded computing system from a Cyber-Physical
System. Such embedded system should be in charge of executing
the control algorithms and communicating with the sensors and
actuators. Timed-Trigger and Continuous-Time are examples of
models-of-computation (MoC) used in such application domain.
This work presents an assessment of using these two MoCs when
applied for representing the stability control system from an
Unmanned Aerial Vehicle. The paper addresses facilities and
difficulties on mapping high-level models using these two MoCs
to a typical execution platform.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are characterized for cre-
ating a connection between computational devices and the
real world. While computational devices are in charge of
data processing, the real world refers to the electromechanical
processes that can be controlled by the computers [1]. The CPS
can be organized into a single centralized application or split
into subsystems in order to meet the environment requirements
that they are applied [2].

Designing CPSs is a complex task, especially due to
the required adjustments in the timing characteristics of the
respective software, which must be in compass with the
physical process. It is observed that two different models-of-
computation (MoCs) are usually applied to fulfill these needs,
the Continuous-Time (CT) and Timed-Triggered (TT) models.

The CT model is a composition of actors that represent
a set of mathematical functions of continuous nature. Given
its continuous nature, the mathematical functions could not be
executed in a discrete time computer without modifications.
Therefore, the approximate execution of this model are per-
formed by a solver that numerically approximates the solution
of an ordinary differential equation (ODE) [3].

The CT model can be seen as a synchronous-reactive
system where the time interval between the reactions is
determined by the solver. In other words, the underlying
infrastructure consults the actors in a determined time interval
such that the events of interest can be precisely collected.

Differently, in the TT model presented in [4] there exists a
distributed mechanism to trigger events periodically in accor-

dance with a clock signal that measures the elapse of time. This
model results in the so-called Time-Triggered Architecture
(TTA), which contains a set of model artifacts used to support
and coordinate different kinds of embedded real-time systems.

The TT MoC is similar to the synchronous-reactive in
the sense that a global clock coordinates the computations.
The TT MoC associates every computational processing with
a temporal logic execution. The inputs are obtained in ticks
of the global clock, however the outputs are only visible to
other components in the next tick. In between tick times the
components do not communicate among themselves, avoiding
problems like race conditions [3].

In the present paper we aim at assessing the use of the
CT and the TT MoCs for designing the stability control
system of an Unmanned Aerial Vehicle (UAV), which is an
example of a typical CPS. The paper also addresses facilities
and difficulties on mapping the high-level models representing
these two MoCs to a typical execution platform.

The remaining parts of the paper are organized as follows:
Section II discusses in more details the MoCs to be applied
for designing the UAV stability control. Section III details the
UAV stability control used as case study. Section IV presents
the TT model designed to support the UAV system. Section V
describes the CT model developed from the aircraft. Section
VI discusses about the model of computation comparing their
characteristics and analyzing their behavior. Finally, Section
VII concludes the paper.

II. MODELS OF COMPUTATION

Cyber-Physical Systems are typically designed by selecting
and connecting a set of components. These structures should
be integrated between themselves in order to guarantee the
iteration with the physical process. In the real environment
process running together and the system components can be
able to operate simultaneously. There is no particular order in
their operations [3].

The Models-of-Computation (MoCs) provide a framework
to support the implementation of CPSs. Different kinds of
MoCs can be adopted according to the characteristics of the
CPS under construction. Since in this paper we concern with

the stability control system of an UAV, it focusses the Time-
Triggered (TT) and the Continuous-Timed (CT) models, as
further detailed in the incoming subsections.

A. Timed-Triggered Model

The TT model defines that computations should be closely
related with a periodic clock [5]. To implement the TT model
a set of components are needed: the RT Entity (RTE), the In-
terface, the Communication System (CS), and the Transducer.

The RTE describes the system actor actions, being respon-
sible for the data processing. For instance, this component
implements the functions of the system and produces the
data to be consumed by other components. An interface is
applied to this component in other to allow the exchanging of
information with other Entities and Transducers of the model.

The Transducer is responsible for providing the commu-
nication, allowing data to be exchanged between the TT
system and the environment. In other words, it provides
the communication protocols that are needed to support the
process of exchange information with the real world. Only
by this component the TT model can communicate with the
environment where it is applied.

RTEs and Transducers make use of an Interface, which is
responsible for the information exchange between the system
components. Each interface stores the data produced by the
components. It is using Interfaces that data is transmitted
between the system actors.

The data exchange between the Interfaces is managed by
the CS, where a set of rules need to be specified in order to
describe the system information flows. The CS manages the
system interfaces and updates the inputs and output of the
interfaces according these rules.

B. Continuous-Time Model

Systems designed using the CT model are based on ordi-
nary differential equations (ODEs) and can be described as an
interconnection of actors, where the communication between
these actors occurs by means of signals flowing continuously
in time [3].

CT models cannot be implemented without modifications
in a digital computer since a digital computer is not capable
to operate in continuous time - recall that digital systems are
discrete machines. However, the CT model can be modified
by using a solver that constructs a numerical approximation
of the ODE solution. Different kind of solvers can be used to
implement this approximation, such as the Euler Solver.

These approximations are based on a step time, which
is used to estimate the function values at some time points.
However, this approach presents approximation errors that
accumulate over time. Such problem can be overcome by using
two different techniques: (i) applying a variable-step solver
that defines the step size based on the estimated error, so that
a small error is kept; or (ii) implementing a more sophisticated
solver that uses the slope of the curve to apply an trapezoidal
approximation.

The CT model can be considered as a synchronous-reactive
model with a time step between global reactions settled by a

solver. This model is represented by a network of actors, where
each one is a cascade composition of a simple memory less
computation actor and a state machine, and where the actor
reactions are simultaneous and instantaneous. The reactions
time are determined by a solver [6].

Generally, in every time step the solver consults the actors
in order to precise the system events, like level crossings. De-
spite the additional effort to provide a solver, the mechanisms
required to achieve a CT model are not much different from
those required to achieve a Synchronous-Reactive and Discrete
Event models.

Different software tools can be used to implement and
simulate CT based systems. The Simulink tool is for sure one
of the most widely used tool for such purposes. An alternative
tool MATRIXx from National Instruments, which also supports
graphical modeling.

In this work both CT and TT models were developed for
representing the UAV control system that is described in the
next section, together with the respective models.

III. UAV DESCRIPTION

The UAV used in this study was created in the context of
project ProVant1, which is currently being developed at the
Federal University of Santa Catarina (UFSC) in partnership
with the Federal University of Minas Gerais (UFMG). The
main goal of Provant is to develop an UAV that can be used
as a study platform. Currently, different research projects are
developed based on this aircraft, such as the development of
control strategies for stability and path track, communication
with a wireless sensors network, load transportation, use of
intelligent agents and others.

The developed UAV has a Vertical Takeoff and Landing
(VTOL) Tilt-rotor configuration. Figure 1 show the prototype
of the aircraft, which is composed by two rotors that can be
rotated longitudinally up to 180 degrees and by the actuation
of individual servomotors.

For control purposes three structures are considered on the
UAV: the main body (frame B); the right rotor (frame R); and
the left rotor (frame L). The longitudinal gradients performed
by the servomotors are described by the angles αR to the right
rotor and αL to the left rotor.

The UAV dynamic model was obtained using Euler-
Lagrange equations as described in [7]. It gives a mathematical
representation that describes the UAV’s motion in relation to
the forces and torques applied to it. This model was used
to create a simulation environment in Simulink, in which the
control algorithms can be tested.

A control strategy for a similar UAV is presented in [8],
where the authors proposed a control approach based on three
blocks: the translational control that performs the path tracking
of the UAV; the rotational control that is responsible to stabilize
the aircraft; and the signal transformation that performs a
transformation of the output control data in signals of force
and angle to send to the system actuators. In the present paper
only the rotational controller and the signal transformation are
discussed.

1http://provant.das.ufsc.br

Fig. 1: Tilt-rotor model of UAV.

The rotational controller is responsible for the UAV stabil-
ity during the flights. The rotational model is described with
the following equation:

M1 (Θ) Θ̈ + C1(Θ, Θ̇)Θ = τ (1)

As the motions are based on the Inertia Matrix (M1),
Coriolis, and the centrifugal force Matrix (C1) and the external
torque vector (τ). A feedback linearization is applied to this
model as follows:

τ =

τφτθ
τψ

 = M1 (Θ)

γ1γ2
γ3

+ C1

(
Θ, Θ̇

)φ̇θ̇
ψ̇

 (2)

Substituting equation 2 into 1 it results in the new system
dynamics Γ = [γ1γ2γ3] where γi are the PD equations:

φ̈ = γ1 = −Kpφ(φ− φd) −Kvφ(φ̇− φ̇d) + φ̈d,

θ̈ = γ2 = −Kpθ(θ − θd) −Kvθ(θ̇ − θ̇d) + θ̈d,

ψ̈ = γ3 = −Kpψ(ψ − ψd) −Kvψ(ψ̇ − ψ̇d) + ψ̈d.

(3)

Where Kp and Kv are the control parameters.

The external force equations are:

Fzb = fR cos (αR) + fL cos (αL) (4)

τ =

τφτθ
τψ

 =

 [fL cos(αL) − fR cos (αR)] l
[fL sin (αL) + fR sin (αR)]h
[fL sin (αL) − fR sin (αR)] l

 (5)

Where Fzb is the force in the Z axis and the control inputs
of the system are fR, fL, αR, and αL.

To apply the controller from equation 2, equation 5 must
be solved in relation to the control inputs. This leads to:

fL =
1

2

√(τθ
h

+
τψ
l

)2
+
(
Fzb −

τφ
l

)2
,

fR =
1

2

√(τθ
h

− τψ
l

)2
+
(
Fzb +

τφ
l

)2
.

(6)

αL = arctan

(τθ
h +

τψ
l

Fzb − τθ
l

)
,

αR = arctan

(τθ
h − τψ

l

Fzb + τθ
l

)
.

(7)

Where l is the fuselage length and h is the center of mass
displacement in the Y axis. As we only want to stabilize the
UAV, Fzb will be the force required for the aircraft to maintain
is current altitude, which is the product mass*gravity. More
details can be seen in [8].

In order to support the control strategy the hardware
architecture was specified. This structure is composed by
two embedded platforms: the Olimex STM32F4 [9] and the
Beaglebone [10]. The first is responsible to communicate with
the sensors and actuators and the second performs the high
level processing, running the control algorithms based on the
received data from the first platform.

Coupled to the embedded platforms there is a set of
sensor and actuators: one Inertial Measurement Unit (IMU);
one Global Position System (GPS); two Servomotors; two
Electronic Speed Controller (ESC); one Sonar; one Radio
Control; and, finally, the Radio Wireless.

The arrangement of these components within the platforms
is presented in Figure 2. At this time only the rotational
controller was implemented and just part of the components are
used. This approach uses the IMU, servomotors, and ESCs. In
the incoming phases of the project the UAV should be capable
to perform autonomous flights and, therefore, all components
must be used.

Fig. 2: Hardware Structure of UAV.

Based on the UAV description the two MoCs were devel-
oped in order to support the UAV system, running the control
algorithms and maintaining the stability of the aircraft during
the flights.

IV. TIME-TRIGGERED MODEL

UAVs are critical embedded systems that need periodical
message responses in order to guarantee the aircraft stability.
To assure these messages a Time-Triggered model was devel-
oped. The TT model designed to represent the UAV system
is composed of the following components: two Transducers
(imuThread e actThread), one RT Entitie (controlThread), one
communication system (communicationSystemThread), and
three Interfaces (intAct, intIMU, intCE). The class diagram
of this model it is depicted in Figure 3a.

The TT model designed to represent the UAV system
is composed of the following components: two Transducers
(imuThread e actThread), one RT Entitie (controlThread), one
communication system (communicationSystemThread), and
three Interfaces (intAct, intIMU, intCE). The class diagram
of this model it is depicted in Figure 3a.

The actThread Transducer is responsible for interfacing
the high-level platform (where the control system is executed)
with the low-level platform (that interacts with the sensors
and actuators). It basically sends the control references to the
system actuators (servomotors and ESCs). This component
was implemented using a periodic thread with a period of 6
milliseconds.

Its counterpart is the imuThread Transducer, which re-
ceives the estimated position data from the low-level platform.
This information is used in the control algorithms for path-
following. This Transducer was also developed using a peri-
odic thread with period of 6 milliseconds.

The controlThread RTE was developed to execute the
control algorithms responsible to maintain the aircraft stability.
This component receives the attitude and angular velocity from
the imuThread Transducer, applies the control algorithms and
sends the control references to the actThread Transducer. This
entity was also developed in a periodic thread with a period
of 6 milliseconds.

The Transducers and the RTE exchange information by the
use of interfaces, which are responsible to create a communi-
cation channel between the system components. These com-
ponents are implemented in global objects that are managed
by the CS.

The information flow was specified in the CS, at this
component all the system connections are mapped by the
definition of rules that connect the inputs and outputs of the
system interfaces. By this rules different outputs from different
interfaces can be connected with the same interface, as well as
the output of one interface can be sent to different interfaces
simultaneously.

The CS is also responsible for ensuring the delivery of
the messages exchanged between the interfaces. The critical
sections are protected by the using mutexes, barriers, and
shared variables. The information exchanged is periodic and
this component was modeled in a periodic thread with a period
of 6 milliseconds. By the use of shared variables, each loop
the new produced data are signalized and exchanged by a set
of predefined rules.

The TT system is controlled by a global clock, where in
each loop new data is received from the IMU. Such data is

sent to the RTE by the CS and after that the control references
are calculated. With a new produced data in the RTE, the CS
sends this information to the transducer responsible for the
actuation and the calculated control references that are sent to
the second platform in order to act in the UAV system.

The TT architecture was implemented using the C++
language and the Pthreads library. It runs in the Beaglebone
platform, which uses the Angstrom Linux [11].

V. CONTINUOUS-TIME MODEL OF UAV

The CT Model of the UAV was developed based in a model
implemented in the Simulink tool for simulation purposes.
Such initial model allowed to analyze the system behavior
and the model structure that will be applied to the embedded
platform. This system was implemented in the Beaglebone and
interfaced with the low-level platform in order to guarantee
the estimation of the attitude and angular velocity, plus the
additional actuation commands.

The CT model structure is composed by a set of threads,
as follows: the control thread, the communication thread, and
the main thread. The system architecture is represented by the
class diagram illustrated in Figure 3b.

The control thread is responsible for implementing the
stabilization control, as described in equations 2-5. Coupled
with the rotational motion equation a signal transformation was
applied in other to obtain the references by system actuators,
this transformation is described by equations 6 and 7. This
object was designed in a periodic thread with a period of the
6 milliseconds.

The communication thread was created in order to establish
a communication channel with the system sensors and actua-
tors. This component receives the estimation of the attitude and
angular velocities of the aircraft from the low-level platform
and sends the control references to the system actuators. These
information are sent to the control thread by the use a global
shared object that can be accessed by both tasks. This thread
was implemented in a periodic thread with a period of 6
milliseconds.

Due to the fact that the real-time operation system (RTOS)
was not used, in this approach the main thread was imple-
mented in order to schedule the other tasks according to
their periods, ensuring the system periodicity. The threads
are managed by the use of semaphores, and the main thread
signalizes the periodic execution of the tasks.

As previously described, the data exchanged by the system
components was represented by the use of global objects that
maps the system inputs and outputs. These components are
protected by the use of a mutex.

Based on the specifications the system, it was implemented
and tested in order to verify the behavior of both systems and
the UAV. Follows a comparative analysis of these approaches
describing their characteristics.

VI. COMPARATIVE ANALYZES

In order to perform a comparison between these two
modeling approaches (TT and CT), several evaluation criteria
have been identified. These criteria are specified in order to

(a) Timed-Trigger Model of UAV.

(b) Continuous-Time Model of UAV.

Fig. 3: Class Diagrams of Models of Computation.

TABLE I: Evaluation Criteria

Criterion Description Evaluation Expressed by

1 - Maintainability Easiness to make modifications in the models e.g., addition of new ele-
ments and changes in the external elements such as sensors. Qualitative

∗∗ strong
∗ adequate
0 weak

2 - Modularity / Hierarchy Capability of split a large system into independent modules. Qualitative
∗∗ strong
∗ adequate
0 weak

3 - Expressiveness Capability of the modeling language primitives to describe the specifica-
tion. Quantitative Number of lines of code programmed by

the designer.

4 - Simulation Capability of verifying if the specification can be used to validate the im-
plementation. Qualitative

∗∗ strong
∗ adequate
0 weak

5 - Verification Capability of demonstrating formally that the specification or generated
program meets the requirements. Qualitative

∗∗ strong
∗ adequate
0 weak

6 - Implementability
Criterion for evaluating whether the specification can be easily refined or
translated into an implementation, which is compatible with the rest of
the system.

Qualitative
∗∗ strong
∗ adequate
0 weak

perform a qualitative and quantitative analysis. The set of
criteria can be seen in Table I.

The obtained results are summarized in Table II. For
evaluating the qualitative aspects, the ∗∗ symbol was used to
indicate a particular strength of the approach, ∗ indicates that
the model meets the criterion in a way that is adequate, but
less than ideal, and 0 was used to indicate a weakness of the
model.

TABLE II: Comparison Results

Evaluation Criteria TT Model CT Model
1- Maintainability ∗∗ ∗
2- Modularity / Hierarchy ∗∗ ∗
3- Expressiveness 1250 1184
4- Simulation ∗ ∗∗
5- Verification ∗ ∗
6- Implementability ∗ ∗

The evaluation begins by analyzing the maintainability, the
intrinsic object orientation (OO) property from TT model, pro-
vide by its artifacts, such as the specialization/generalization
presented in the entities, interfaces, and transducers. The
conclusion is that it provides better maintainability if compared
to the CT approach where the model artifacts presented are not
formally defined.

Considering modularity/hierarchy aspects, it is possible to
conclude that the TT model present a better decomposition
than the CT model. This can be observed by comparing the
class diagrams of both approaches. The first (Figure 3a) present
a set of class that allows an easier interpretation of the physical
behavior. Although the CT approach (Figure 3b) presents less
classes than the TT approach, the system is also represented
in both approaches. However, the use of the less classes does
not allow a higher modularity of the system.

The next criteria concerns the model expressiveness, ana-
lyzing the number of lines code programmed by the designer
in each model, it can be observed that in the TT model the
designer has to manually write 1250 code lines, whilst in CT
model the designer has to manually write 1184 code lines. The
large number of code lines manually written in both model
is due to the fact that the code generated in the tools, like
Simulink for example, is not suitable to directly application in
the embedded platform. For such reason the applications were
implemented manually. Analyzing the structures of the models
of computations, CT presents less artifacts than the TT model
and, consequently, it has less code lines in the model.

Regarding model simulation, it is possible to observe that
in order to provide such features suitable modeling/design
tools are required. Regarding the UAV system, only the CT
model could be simulated by the use of the Simulink. The
available tools of TT model simulation could not be located.
However, considering the authors experience, the TT model
simulation could be performed using a Hardware-In-the-Loop
(HIL) environment, allowing to analyze the model behavior
before its application in the real environment.

In respect to the capacity to perform any kind of formal
verification, by using the assert library of the C++ language,
both models provide the support for formal verifications.
However, a huge effort should be made by developers in order
to specify the system properties to be verified and to identify
the points of the code that this assert should be included in
order to guarantee the correctly verification.

Finally, considering the model’s implementability, one can
see that from both models an architecture-independent speci-
fication can be derived. This criterion can be analyzed using
three different aspects.

The first is the capability of mapping the systems using the
models, the TT model present artifacts that facilitate the system
mapping by their use, the CT model does not provide artifacts
and its system implementation is more straightforward.

Another aspect is the fact that both TT and CT models need
a set of software requirements in order to support the systems
implementations, such as multi-thread support, critical sections
protection (e.g. mutexes, barriers, and condition variables), and
operating system support.

The last one refers to the special care with the critical
sections of the systems. In the TT model using the interface
artifacts this structures provides an implicit protection to the
data exchange, while in the CT model a special care should be
taken by the developer in order to guarantee the data safety.

VII. CONCLUSION

This work has presented a comparison between Time-
Triggered (TT) and Continuous-Timed (CT) models in order
to map the Cyber-Physical Systems to the embedded platforms
by their uses. Considering the obtained results, it can be seen
that both models present the same performance for requirement
specification. An advantage of using the TT model describes
that this model can be easily maintained and modulated than
CT models.

Due to the fact that the automatic code generated needs
several modifications to apply in the embedded platform the

model was manually implemented and the expressiveness was
verified according the number of code lines written their
implementation. Hence, analyzing the code generated was
verified that the TT model presents more artifacts than CT
model and consequently more code lines. However, due to
the fact the both systems using the same libraries of the C++
language, the code line difference between the systems is not
so expressive.

By the use of simulation tools like Matlab/Simulink the
CT model has an advantage over simulation systems of the
TT model. Analyzing the verification aspects both approaches
allow to perform this process but as described before it was
necessary a large experience of the engineers in other to
specify and implement this process in the code application.

Although the CPS system implementability is possible in
both models of computation, the map of the planned system to
the real embedded application is not a trivial task. The systems
present a set of characteristics that are not directly mapped to
the both models, however the TT model has a set of artifacts
that can facilitating this process.

Analyzing the models of computation and comparing their
characteristics can be concluded that both models meet the
requirements to support the UAV system. However, the TT
model describes a better behavior than CT model in order to
properly support Unmanned Aerial Vehicles systems.

REFERENCES

[1] E. Lee, “Cyber physical systems: Design challenges,” in Object Ori-
ented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on, may 2008, pp. 363 –369.

[2] M. Kim, M.-O. Stehr, and C. Talcott, “A distributed logic for networked
cyber-physical systems,” in ELSEVIER Journal of Science of Computer
Programming (SCP), 2012.

[3] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems -
A Cyber-Physical Systems Approach, 1st ed. Lee and Seshia, 2010.
[Online]. Available: http://chess.eecs.berkeley.edu/pubs/794.html

[4] H. Kopetz and G. Grünsteidl, “Ttp-a protocol for fault-tolerant
real-time systems,” Computer, vol. 27, no. 1, pp. 14–23, Jan. 1994.
[Online]. Available: http://dx.doi.org/10.1109/2.248873

[5] H. Kopetz, “The time-triggered model of computation,” in Real-Time
Systems Symposium, 1998. Proceedings., The 19th IEEE, Dec 1998, pp.
168–177.

[6] E. A. Lee and H. Zheng, “Leveraging synchronous language principles
for heterogeneous modeling and design of embedded systems.” in
EMSOFT, C. M. Kirsch and R. Wilhelm, Eds. ACM, 2007, pp. 114–
123.

[7] R. Donadel, G. Raffo, and L. Becker, “Modeling and control of
a tiltrotor uav for path tracking,” in 19th World Congress of the
International Federation of Automatic Control (IFAC 2014), 2014.

[8] A. Bhanja Chowdhury, A. Kulhare, and G. Raina, “Back-stepping
control strategy for stabilization of a tilt-rotor uav,” in Control and
Decision Conference (CCDC), 2012 24th Chinese, 2012, pp. 3475–
3480.

[9] Olimex. (2014) Stm32-h407 specifications.
https://www.olimex.com/Products/ARM/ST/STM32-H407/.

[10] BeagleBoard. (2014) Beaglebone website.
http://beagleboard.org/Products/BeagleBone.

[11] OpenEmbedded, OpenZaurus, and OpenSimpad. (2014) Angstrom
linux. http://www.angstrom-distribution.org/.

