
An environment to support structural testing of
autonomous vehicles

Vânia de Oliveira Neves, Márcio Eduardo Delamaro,
Paulo Cesar Masiero

Depto de Sistemas de Computação - ICMC
Universidade de São Paulo - São Carlos, SP - Brasil

{vaniaon,delamaro,masiero}@icmc.usp.br

Abstract—The software used to control autonomous vehicles
is a type of embedded system that needs to undergo strenuous
testing before deployment. Field testing is the final stage of testing
ensuring that autonomous vehicles show the intended behavior. It
usually does not take into consideration the code structure. In this
context, a previously proposed testing model and a software tool
to support structural testing in the context of autonomous vehicle
field testing have been improved to support the generation of new
input data from logs collected during field testing using strategies
of combination and mutation. Two strategies and an exploratory
study to assess their coverage according to the criteria all-nodes
and all-edges are presented.

I. INTRODUCTION

An Autonomous Mobile Robot (AMR) is an embedded
system that has as main feature the ability to move and operate
in semi- or fully autonomous mode [1]. An autonomous vehicle
is a type of AMR that aims to allow it to move and make
several maneuvers, such as passing another vehicle, park and
obey traffic rules without the presence of a conductor, i.e.,
autonomously. They are critical systems and, as such, require
high quality and must be tested carefully and thoroughly. The
test of such software can use functional techniques, which is
more common, or structural techniques based on code. There
are several researches related to embedded systems that seek to
increase the test coverage of the code without having to target
a specific type of failure [2]. Offline simulation or execution is
also a technique widely used for its lower cost and difficulties
to test in real situations.

In this sense, the objective of this work is to propose an
environment to support structural testing of software to control
autonomous vehicles complementing field testing. This test is
performed off-line based in one of the main inputs for this type
of test: logs of point clouds. Specifically, the paper proposes an
algorithm to generate new logs from logs collected in field tests
and presents an exploratory study of mutation and combination
strategies for point clouds, which are data structure obtained
by processing the images received by the stereo camera of the
vehicle.

This paper is organized as follows: Section II defines and
discusses briefly the field of autonomous vehicles testing;
Section III proposes heuristics to generate test data for au-
tonomous vehicle software and a meta-model that supports this
generation; Section IV defines two strategies for generating
new test data using mutation and combination; Section V
presents a tool that implements the model proposed in Section
III; Section VI presents an exploratory study that uses the tool

developed and a real software to control autonomous vehicles
to assess the coverage obtained by the strategies proposed; and,
finally, Section VII contains the paper’s conclusions and future
works.

II. FIELD TESTING OF AUTONOMOUS VEHICLES

According with Urmson et al. [3], the development of
software to drive automatically an autonomous vehicle follows
a cyclical process, as shown in Figure 1. Based on the re-
quirements, algorithms to perform the required functionalities
are developed and they are tested using different types of
simulators in a cycle, until the technology is accepted. This
occurs when the algorithms become sufficiently mature and
tested. At this point the software and hardware of the controller
are embedded in the test vehicle with the aim of assessing the
system’s interactions with the environment. These tests often
reveal problems with the algorithms or implementation errors
not discovered during the simulated tests.

Fig. 1. Development process used to develop Boss[3])

Tests with whole systems (software, hardware and vehicle)
are essentially functional and based on scenarios. Data can
be collected during these tests and can be used to rerun
the software (or part thereof) under different scenarios or
situations, in a type of regression testing.

Test with the vehicle in the environment is called by
Trepagnier et al. [4] ‘Field Test’. They claim that in field test
‘the vehicle goes through strenuous tests designed not only to
test the reliability and endurance of software and hardware,
but also vehicle performance ... going through difficult terrain,
difficult scenarios obstacles to be avoided and long run times’.
Field tests cannot be remade using exactly the same input data

as they are collected online during the execution of the test,
but these data can be used offline later in simulated executions.

Bacha et al. [5], Thrun et al. [6] and Raulskolb et al.
[7] emphasize the importance of regression testing using data
collected in field tests or tests based on simulations. They
comment on the existence of visualization tools in the devel-
opment environment, as well as rerunning the software from
data collected and stored in log files. Field tests are final and
decisive tests to ensure that an autonomous vehicle behaves as
expected, but they do not take into account any information
about the structure of the source code. It is possible that a
vehicle has passed through several field tests successfully but
important parts of the source code have never been performed.

III. PROPOSAL OF HEURISTICS TO SUPPORT FIELD TEST
OFFLINE

Considering the literature of the area and through contacts
with autonomous vehicles research groups, we realized that
structural testing of software in this type of system, although
important, is often neglected during the development process.
One possible reason is that this technique relies heavily on
testing tools available in the development environment.

Programs for autonomous vehicles undergo several succes-
sive refinements, many parts of the code or even the whole
code of a unit may change, thus generating a large number of
versions of a program, of test scenarios and of logs. To support
structural testing in this domain, also taking into account these
characteristics, the authors of this article defined a meta-model
to represent the most important concepts of this phase of
the development process [8]. A supporting tool based on this
model was also developed.

A version of a program is defined in this model as a specific
implementation of a program that differs in some part of the
code, but keeps the same architectural elements. Test scenarios
are test plans with a specific goal of testing a subset of features
of a program under test subject to certain conditions. Logs are
records of actual test data captured during a field test of a
program version for a particular scenario. Test data captured
during a field test are entries received by the vehicle, i.e.. the
controller software, as for example: images from a camera
and position received from a GPS. Combining a version and
a log entry is possible to simulate the program execution in
a simulation environment; the results may be displayed using
various testing criteria and types of graphs (control flow and
data) using different levels of granularity.

As a continuation of this work, the next step is to generate
other input of test data with the goal of improving coverage
according with certain criteria. For this generation, it would be
interesting to use a reduced set of test data representative of
data contained in a log [9]. A set of this type can be used,
for example, as the initial population of search algorithms
or regression testing. Thus, as described in greater detail
by Neves et al. [10], five field tests have been conducted
with an autonomous vehicle program controlled by a system
(hardware and software) developed by the ICMC-USP robotics
group [11], resulting in five logs. These logs were partitioned
into segments (or subsequences) containing approximately five
values of the same type of input data. The segments were
defined with five point clouds each so that they represent a

small part of the route taken during the test. The input data
considered for this partitioning are point clouds.

The controller program was executed in a simulated sit-
uation using a log composed by segments as input and the
coverage for criteria all-nodes and all-edges was calculated.
The reasoning to create the heuristics to generate segments
comes from the physical intuition of how the program behaves
when executed: in general, for each cycle of reading a point
cloud as input, if there are no obstacles in the way requiring,
for example, detours and/or speed changes, it is natural that the
program run the same computational commands and conditions
evaluated do not change. As a minimum limit, each segment
could have just one point cloud.

Analyzing the results obtained, it was noted that there
are some segments that give a greater contribution to the
coverage. These segments were interpreted as those in which
there was some change in the conditions of the route that led
the program to go change its route or its regular behavior in its
execution flow. We gave the name of discriminatory segment
to these special segments. According with the initial intuition,
they occur in small numbers and can be good candidates to
generate the initial population sought. Based on them seven
heuristics have been created and tested, and among the ones
that produced the best results two have been select [10]. These
were heuristics H2 and H6 and contained the segments that
better discriminated all-edges criterion. With the completion
of this study, it was observed that with a small subset of these
segments it is possible to obtain a near-complete coverage of
the execution log. As an example, for log 5, which contains
2490 point clouds and produces a coverage of 95% for the
criteria all-nodes for one of the methods of the program, the
heuristic H6 consists of 13 segments (about 65 point clouds)
and produces a coverage of 92%.

Thus, the meta-model originally proposed by Neves et al.
[8] was also enhanced and expanded to support the generation
and storage of heuristics [10] and the generation of new test
logs derived from existing logs, as can be seen in Figure 2.

Fig. 2. Meta-model to support field test

This new model considers that a log can be of two types:
log obtained from a field test (FTLog) and log generated
according to some heuristic (GeneratedLog). Also, a Log may

be composed by zero to n segments, being n the number of
point clouds in the segment.

The logs generated can be obtained by the composition of
the segments obtained by some heuristic or by the choice of
the tester. In addition, from these generated logs it is possible
to obtain new logs applying changes in point clouds belonging
to a segment. The next section explains in more detail how this
is done.

IV. GENERATING NEW LOGS FROM HEURISTICS BASED
ON COMBINATION AND MUTATION

With the aim of finding good heuristics for combining point
clouds to form other point clouds most likely to increase the
coverage obtained with the initial log, an algorithm that uses
the meta-model in the previous section and generates new log
has been designed. The algorithm has four steps:

• Choose an initial log to be the base. Preferably a small
log, so that the tester can create by selecting segments
or by generating from a heuristic.

• For each segment of the chosen log apply a mutation
strategy and a combination strategy on its point clouds
and generate new point clouds.

• A particular point cloud generated is inserted (or
merged) in the segment, in a location defined by
the strategy, explained below, thus forming a new
segment.

• The log generated is composed by these new segments
containing new (or modified) point clouds. The cov-
erage obtained according to the desired criterion is
calculated by executing the new log generated in the
same order of the original log.

The strategy of combination and mutation may be based in
a physical intuition about the environment in which the field
test was conducted. It could also be purely logical or abstract.
Generically, let L′ be the log base comprised by a set of S
segments selected by a heuristic H and m be the number of
segments of L′. S consists of a sequence of k point clouds
(pc). It is determined by a function of order n, n > 0. In the
context of this work an strategy St is functions of order 1
(mutation based in one point cloud) (St(pc) 7→ pc) or 2
(combination based on two point clouds) (St(pc, pc) 7→ pc).
In the first case, the point cloud generated is inserted in the
segment after the one which is its origin and in the second
case it is inserted between the two point clouds that were used
to generate it.

A new log L′′ is a log generated from L′ and consists of m
segments S′, where S′ is generated considering a strategy of
mutation or combination to create new point clouds modified
pc′. Thus, S′ contains pc and pc′ merged as shown in Figure
3, where the clouds unfilled represent pc and the clouds filled
represent PC ′. Thus, the number of point clouds in each
segment, original or modified, of S′ is 2k for mutations and
2k−1 for combinations. For this exploratory study a mutation
strategy and a combination strategy have been used.

The combination strategy is binary and the axis x, y, and
z of the new point cloud are calculated according with the

Fig. 3. Generation of new log diagrammatically (mutation)

average of the axis of the two point clouds. It is defined as
follows, for i integers varying from 1 to n − 1, where n is
maximum number of point clouds in each segment:

AV G(pci(x1, y1, z1), pci+1(x2, y2, z2)) 7→ pc′((x1 +
x2)/2, (y1 + y2)/2, (z1 + z2)/2)

The mutation strategy is unary and inserts a point cloud
NP ′i with a constant c added to the axis z of every cell of
Npi. This strategy increases (or decreases) the height of the
z axis. It is defined as follow, for i in the interval 1...n, as
above:

HGT (pci(x, y, z)) 7→ pc′(x, y, z + c)

After the generation of new segments S′, the coverages
obtained by log L′′ are calculated for each test criterion
desired. This coverage can be compared with the coverage
of the base log, but more importantly, it is possible to check if
any new test requirement was covered, i.e., a requirement not
previously covered by the log base L′. We call this coverage
the aggregate coverage of L′ and L′′. So, being nC the number
of nodes covered, nT the total number of nodes, eC the
number of covered edges, and eT the total number of edges
on a Control Flow graph, the coverage of L′ is calculated as
follows:

CovNodes(S1, ..., Sn) = (nCnT)

CovEdges(S1, ..., Sn) = (eCeT)

Similarly, the coverage of L′′ is:

CovNodes(S
′
1, ..., S

′
n) = (nCnT)

CovEdges(S
′
1, ..., S

′
n) = (eCeT)

Be NC ′ the set of requirements covered by the execution
of log L′ for a testing criterion, and be NC ′′ the set of
requirements covered by the execution of log L′′ for a testing
criterion. The aggregated coverage of L′ and L′′ is:

CovAgNodes
= |NC−NC′′|

nT

CovAgEdges
= |NC−NC′′|

eT

V. A TOOL TO SUPPORT OFFLINE TEST OF AUTONOMOUS
VEHICLES

A tool has been implemented to support the meta-model
proposed in Section III. In fact, it is an extension of the tool
described by Neves et al. [8]. The extension of the tool allows:
a) partition logs of different sizes using a parameter; b) select
automatically discriminatory segments of a set of segments

of a certain size n from a log using a particular heuristic; c)
generate a new log from these selected discriminatory seg-
ments or from a set of arbitrarily segments selected arbitrarily
by the tester; d) generate new logs using combination and
mutation strategies from the logs generated in c); e) simulate
logs generated both c) and d); f) calculate the coverage of
logs generated in c) and d) and compare them, calculating the
aggregate coverage as well.

Figure 4 shows the sequence diagram for the activity of
generating logs. First, the tester selects a log to be partitioned
and next generate segments. Then, the tester can request the
generation of a new log composed of discriminatory segments
selected according to an informed heuristic or by manually
selected segments. Next, combination and mutation strategies
can be applied to generate a new log and execute a simulation
to calculate the coverage obtained. Using the tool, the tester
can view the percentage of the coverage obtained for the
criteria all-nodes and all-edges of the classes and methods
involved, the source code of the program highlighting the lines
not executed, and the Control Flow Graph differentiating nodes
and edges not executed. It is also possible to select two logs to
compare coverage between them. When this option is chosen,
the tool also calculates the percentage of aggregated coverage
for the criteria all-nodes and all-edges.

Fig. 4. Sequence Diagram to generate logs

VI. AN EXPLORATORY STUDY OF THE COVERAGE
OBTAINED WITH LOGS GENERATED FROM COMBINATION

AND MUTATION STRATEGIES

An exploratory study was initially conducted with two
goals: to validate the tool developed based on the meta-model
proposed in Section V and to assess the efficacy of the two
combination and mutation strategies defined in Section IV, to
understand how to solve the problem of increasing coverage
for this type of software and eventually define and test other
strategies.

The program used in the exploratory study aims to drive an
autonomous vehicle in an urban area to get to a point defined
by a GPS coordinate, avoiding collisions. It is provided with a
stereo camera that generates two images that are processed
by a global semi-stereo algorithm to producing a disparity
map. This map is then converted to a 3D point cloud based
on the camera parameters. The orientation of the camera

relative to the ground is estimated by the RANSAC (Random
Sample Consensus) method. A method to detect obstacles that
classifies points based on elevations and relative differences in
height is also used. This information is input to the Vector Field
Histogram (VFH) method that is used to guide the vehicle to
the point of arrival [11]. The class diagram of this program is
shown in Figure 5.

Fig. 5. Class Diagram

The program was implemented using the functionalities
of the framework ROS1. Thus, the readings of the stereo
camera and of the other input data of the program are
published by ROS and received by the controller program
via the method main(). This method sends the input data to
the cObstacleAvoidance class, which is responsible for the
processes described in the paragraph above, and then make the
decision on the actuation of the vehicle: accelerating, deceler-
ating, braking, changing the angle of wheels etc. The two main
methods of the program responsible for these calculations and
decisions are process(), from the class cObstacleAvoidance
and calculate(), from the class cV FH . The first has 155 lines
of code without comments and the second 153. The exploratory
study and the analysis presented in this article are based on
these two methods, because the others are simple and small,
easily reaching high levels of coverage of nodes and edges.

After completion of the field testing and the selection
of the discriminatory segments described in Section III, we
used the tool to generate new logs of discriminatory segments
selected by heuristic H2 and H6 (the second best [10]), for
the methods under test. These logs were used as basis for the
implementation of both combination and mutation strategies
defined in Section IV thus creating a second version of the
new logs. For the AVG strategy, the value of height constant
used was 10. After the simulation of all new logs the coverage
criteria all-nodes and all-edges, based on the Control Flow
Graphs (GFC) of the methods under test were calculated.
Tables I and II show respectively the coverage obtained for
the all-nodes criterion and all-edges of the method process().
Similarly, Tables III and IV present, respectively, the coverage
obtained for the criteria all-nodes and all-edges of the method
to calcule().

Analyzing tables it can be noticed that for some logs new
testing requirements were covered, although the increase in
coverage is small. This result can be better visualized in Figure

1www.ros.org

TABLE I. COVERAGE OBTAINED FOR THE METHOD process() AND
THE CRITERION ALL-NODES

Log FT
Log

H2-
Base

H2-
Agg-
AVG

H2-
Agg-
HGT

H6-
Base

H6-
Agg-
AVG

H6-
Agg-
HGT

1 60% 63% 63% 63% 63% 63% 63%
2 71% 74% 74% 74% 74% 74% 74%
3 70% 63% 63% 63% 63% 63% 63%
4 71% 74% 74% 74% 74% 75% 75%
5 71% 63% 63% 63% 63% 72% 72%
average 68,6% 67,4% 67,4% 67,4% 67,4% 69,4% 69,4%

TABLE II. COVERAGE OBTAINED FOR THE METHOD process() AND
THE CRITERION ALL-EDGES

Log FT
Log

H2-
Base

H2-
Agg-
AVG

H2-
Agg-
HGT

H6-
Base

H6-
Agg-
AVG

H6-
Agg-
HGT

1 46% 48% 48% 48% 48% 48% 48%
2 56% 58% 58% 58% 58% 59% 59%
3 54% 48% 48% 48% 48% 48% 48%
4 56% 59% 59% 59% 59% 60% 60%
5 56% 48% 48% 48% 48% 56% 56%
average 53,6% 52,2% 52,2% 52,2% 52,2% 54,2% 54,2%

TABLE III. COVERAGE OBTAINED FOR THE METHOD calcule() AND
THE CRITERION ALL-NODES

Log FT
Log

H2-
Base

H2-
Agg-
AVG

H2-
Agg-
HGT

H6-
Base

H6-
Agg-
AVG

H6-
Agg-
HGT

1 91% 91% 91% 91% 91% 91% 92%
2 93% 93% 93% 93% 93% 93% 93%
3 93% 91% 92% 92% 91% 92% 92%
4 90% 90% 90% 90% 93% 93% 93%
5 95% 92% 93% 93% 92% 93% 93%
average 92,4% 91,8% 91,8% 91,8% 92% 92,4% 92,6%

TABLE IV. COVERAGE OBTAINED FOR THE METHOD calcule() AND
THE CRITERION ALL-EDGES

Log FT
Log

H2-
Base

H2-
Agg-
AVG

H2-
Agg-
HGT

H6-
Base

H6-
Agg-
AVG

H6-
Agg-
HGT

1 74% 74% 74% 74% 74% 74% 75%
2 78% 77% 77% 77% 78% 78% 78%
3 77% 73% 74% 75% 73% 75% 75%
4 74% 73% 74% 74% 77% 77% 77%
5 81% 75% 78% 78% 75% 79% 78%
average 76,8% 74,4% 75,4% 75,6% 75,4% 76,6% 76,6%

6, which shows the average of the coverage obtained by the
five logs used in the study.

Figure 7 presents a diagram that relate the coverage ob-
tained by the log created by the field test, the base log and logs
generated by using the strategies of mutation and combination
for the all-nodes criterion (a) and for the all-edges criterion (b)
of the process() method. By analyzing such diagram, it can
be noticed that the AVG and HGT strategies obtained the same
results for all logs and both criteria. This may be explained
since in the process() method there is no command decision
involving the coordinates x, y, z of the point cloud, which were
the entries that have been modified by these strategies.

Figure 8 shows similar diagrams but considering the
method calcule(). They show that strategies AVG and HGT
obtained different coverages for some logs. While AVG got
better coverage for the all-edges criterion of log 5 using
heuristic H6, HGT was better considering the criteria all-nodes
and all-edges of log 1 and heuristic H6 and considering the
criterion all-edges of log 2 using heuristic H2. It is possible to
note that the HGT strategy tends to be better than AVG for this

Fig. 6. Diagram with the averages of coverages obtained

Fig. 7. Diagram showing log coverage obtained from the combination of
heuristic and strategy for the method process() and criteria all-nodes and
all-edges

method. This can be explained because calculate() considers
the z axis of the point cloud to do processing. However, one
can not come to any conclusion since the number of logs used
in this study is small.

Other interesting point to observe is that for most logs of
the method process() and for some of the logs of method
calcule(), the coverage reached by all of the criteria all-nodes
and all-edges considering the base logs was larger than the
coverage reached by the logs generated in the field test (FT-
log). Since the coverage of the method calcule() reached by
the base log created in the field test was already high, the
chances of generating new logs that enhanced coverage were
smaller than in the method process(), which reached a lower
coverage for the same log.

Fig. 8. Diagram showing log coverage obtained from the combination of
heuristic and strategy for the method calcule() and criteria a) all-nodes and
b) all-edges

VII. CONCLUSIONS AND FUTURE WORK

This work presents an environment that supports structural
testing of autonomous vehicles. A meta-model defined in an
earlier work and that stores information of test scenarios,
logs and versions of a program has been enhanced to support
the generation of heuristics to select discriminatory segments
of execution logs and also to generate new logs modified
according to strategies of combination and mutation, which
have also been defined in this paper.

A tool that implements the proposed model was presented
and an exploratory study using this tool was also presented.
The aim of this study was to better understand the process
of generating mutations and combinations of point clouds and
how to build a support tool to support this process. The result
was promising because it was perceived that requirements not
executed by the field test were covered by the logs generated,
even using simple strategies for combination and mutation.

From this study we intend to define and evaluate new
and more complex strategies of combination and mutation,
considering other sizes of segments and also other software for
controlling autonomous vehicles, including water and aerial
vehicles. In addition, we intend to improve the model and
the proposed tool to include the generation of new logs using
search based algorithms, and creating logs derived that satisfy
a fitness function, as for example how to reach a specific node
or edge, or to execute a given command in order to increase
the coverage.

AKCNOWLEDGEMENTS

The authors acknowledge the financial support from the
brazilian research agencies FAPESP, CAPES, CNPq and

INCT-SEC.

REFERENCES

[1] D. F. Wolf, E. V. Simões, F. S. Osório, and O. T. Junior,
“Robótica móvel inteligente: Da simulação Às aplicações
no mundo real,” vol. 1, 2009.

[2] J. C. Costa and J. C. Monteiro, “Coverage-directed
observability-based validation for embedded software,”
Trans. on Design Automation of Electronic Systems,
vol. 18, no. 2, pp. 1–20, 2013.

[3] C. Urmson, J. Anhalt, D. Bagnell et al., “Autonomous
driving in urban environments: Boss and the urban chal-
lenge,” Journal of Field Robotics, vol. 25, pp. 425–466,
August 2008.

[4] P. G. Trepagnier, J. Nagel, P. M. Kinney, C. Kout-
sougeras, and M. Dooner, “Kat-5: Robust systems for au-
tonomous vehicle navigation in challenging and unknown
terrain.” J. Field Robotics, vol. 23, no. 8, pp. 509–526,
2006.

[5] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Ter-
welp, C. Reinholtz, D. Hong, A. Wicks, T. Alberi, D. An-
derson, S. Cacciola, P. Currier, A. Dalton, J. Farmer,
J. Hurdus, S. Kimmel, P. King, A. Taylor, D. V. Covern,
and M. Webster, “Odin: Team victortango’s entry in
the darpa urban challenge,” Journal of Field Robotics,
vol. 25, no. 8, pp. 467–492, 2008.

[6] S. Thrun, M. Montemerlo et al., Journal of Field
Robotics, vol. 23, pp. 661–92, September 2006.

[7] F. W. Raulskolb et al., “Caroline: An autonomously driv-
ing vehicle for urban environments,” J. Field Robotics,
vol. 25, no. 9, pp. 674–724, 2008.

[8] V. d. O. Neves, M. E. Delamaro, and P. C. Masiero,
“Structural testing of autonomous vehicles,” in Proc.
of the 21th Int. Conf. on Software Engineering and
Knowledge Engineering, ser. SEKE’13. Boston, USA:
Knowledge Systems Institute, 2013, pp. 200–05.

[9] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study
of the effects of test-suite reduction on fault localization,”
in Proc. of the 30th Int. Conf. on Software Engineering.
New York, USA: ACM, 2008, pp. 201–10.

[10] V. d. O. Neves, M. E. Delamaro, and P. C. Masiero,
“Heuristics for the selection of the initial population of
search based data generation algorithms for autonomous
vehicles controller software,” in SAST 2004 - 8th Brazil-
ian Workshop on Systematic and Automated Software
Testing. Porto Alegre, BR: SBC, 2014, p. to be published
(in Portuguese).

[11] C. C. T. Mendes and D. F. Wolf, in Real Time Au-
tonomous Navigation and Obstacle Avoidance Using a
Semi-global Stereo Method. New York, USA: ACM,
2013, pp. 235–36.

