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Abstract—Software product lines (SPL) have been 

successfully used in the development of automotive and avionics 

critical embedded systems. Hazards and their causes may change 

according to the selection of variants in a particular SPL 

product. Thereby, lower-level assets like fault trees and FMEA 

(Failure Modes and Effects Analysis) cannot be reused because 

they are dependent upon the selection of product variants. In this 

paper, model-based safety analysis techniques and SPL 

variability management tools are used together to reduce the 

effort of product safety analysis by: reusing SPL hazard analysis, 

and providing automatic safety analysis for each SPL product. 

Therefore, we propose a model-based approach to support the 

generation of safety analysis assets for multiple safety-critical 

SPL products. The proposed approach is illustrated using the 

Hephaestus variability management tool and the HiP-HOPS 

model-based safety analysis tool to generate fault trees and 

FMEA for the products of an automotive hybrid braking system 

SPL. Applying the approach reduced the effort to perform 

product safety analysis. 

Keywords—safety-critical product lines; product, model-based 

safety analysis. 

I. INTRODUCTION 

Critical embedded systems are computer systems ranging 
from small devices to complex monitoring and process 
management systems. Response time and worst case execution 
time are important design concerns in these systems, and they 
should also satisfy safety, reliability, and availability 
requirements [1]. Failures in critical embedded systems can 
lead to catastrophic consequences causing injuries or the loss 
of human’s life.  

Software Product Lines (SPL) have been successfully used 
in the development of critical embedded systems in 
automotive [2] and avionics [3] domains. SPL [4] is an 
integrated approach in which early life-cycle development and 
assessment artefacts such as requirements and analysis models 
can be reused as long as they adhere to the context, 
architectural constraints and variation rules defined in the 
SPL. The ability to reuse safety analysis, and not just 
implementation assets, is important for safety-critical product 
lines [5] by reducing the effort in performing product safety 
analysis. Otherwise, the value of a safety-critical SPL can be 
easily undermined if there is a need to derive fault trees and 
FMEA analysis by performing safety analysis from scratch, or 
in an ad-hoc manner, for each SPL product. 

Variation in safety-critical product lines is spread 
throughout architecture, hazards and their causes. As safety is 

context-dependent, hazards and their causes are not simple to 
reuse, as they may change according to the selection of 
product variants. Moreover, it is not possible to reuse low-
level analysis assets such as Fault Tree Analysis (FTA) and 
FMEA results, because they are also dependent upon the 
selection of product variations. Existing techniques to support 
product line safety analysis such as Software FTA [6][7][8][9] 
are not sensible to an individual product and just provide 
semi-automated capabilities to support the generation of safety 
analysis assets, thus not addressing multiple SPL products. 

Model-based safety analysis tools like HiP-HOPS 
(Hierarchically Performed Hazard Origin & Propagation 
Studies) [10]  provide the capability to generate fault trees and 
FMEA analysis for a single product. Product line variability 
management tools like Hephaestus [11] provide a mean to 
establish the mapping between product line architecture design 
elements, hazards and their causes by means of feature 
expressions and transformation rules applied to these elements 
to derive safety-critical products. So, these tools and 
techniques could be combined to support the generation of 
fault trees and FMEA analysis for multiple SPL products, 
reducing the effort to perform product safety analysis.  

In this paper, we propose a model-based approach to 
support the generation of safety analysis assets addressing 
multiple SPL products. The approach was used to generate 
fault trees and FMEA analysis for the products of an 
automotive hybrid braking system SPL developed based on 
the ISO 26262 [12] standard. Section II presents the proposed 
approach. Section III presents a case study conducted to 
evaluate the approach. Section IV presents related work. 
Section V presents the conclusions and future research. 

II. A MODEL-BASED APPROACH TO SUPPORT MULTI-PRODUCT 

SAFETY ANALYSIS AND ASSESSMENT 

An important requirement of safety-critical product line 
development processes is the inclusion of safety analysis 
activities such as hazard, risk, and causal analyses during 
product line domain engineering. These activities provide a 
preliminary safety assessment of the product line architecture 
by means of Fault Trees and FMEA assets. Such assets 
provide the causal information about the impact of failures in 
SPL design elements in the occurrence of hazards, and 
allocation of safety requirements necessary to minimize the 
hazard effects.  

Fig. 1 presents the proposed approach. It was built upon 
the automotive domain and the HiP-HOPS tool, but it can also 



be generalized and applied to other domains and model-based 
safety assessment (MBSA) tools. HiP-HOPS [10] is a MBSA 
tool that has an interface to the Simulink modeling package. 
HiP-HOPS provides a graphical failure editor to specify 
hazards to the system functions, and the failure logic (i.e. 
output and input deviations, and internal failures of a 
component that may lead to hazards) that describes how 
individual components can fail.  

HiP-HOPS failure editor allows safety analysts to annotate 
the system models with the failure information in the form of 
extend HAZOP (HaZards & Operability) safety analysis 
technique [10]. An editor for annotating the system models 
with failure logic was built as an extension of Simulink, using 
its application programming interface. Once the system 
models have been annotated with hazards and the component 
failure logic, HiP-HOPS synthetizes fault trees for every 
system hazard in the model, and combines them to create the 
FMEA. HiP-HOPS presents the fault trees and FMEA analysis 
results in the form of hyperlinked web pages. 

Product line variability management tools [2][11] were 
also used in the proposed approach to manage the variation in 
safety-critical product line design and safety analysis (i.e. 
Definition of Product Line Configuration Knowledge); and to 
support the Product Derivation according to the feature 
selection. Product line feature and context models are the 
starting point of the approach, while the main outputs are the 
fault trees and FMEA analysis for each SPL product. The 
feature model captures structural or conceptual relationships 
between common and variable functions of products of a 
domain [13]. As the approach stands on model-based 
development, tools like MATLAB/Simulink and HiP-HOPS 
can be used to support both design of the SPL architecture and 
safety analysis. SPL development and safety analysis activities 
can be performed concurrently. In the diagram of Fig. 1, n 

means the current product, and m represents the number of 
products involved in the analysis. The next subsections 
describe each step, its inputs and outputs.  

A. Design of Product Line Architectures 

In our approach, the design of a product line architecture 
consists of implementing the system functions specified in a 
product line feature model using model-based development 
tools like MATLAB/Simulink. The output of this activity is a 
set of hierarchical data-flow style models that represents the 
product line architecture. Simulink variability patterns 
available in the literature [14][15] can be used for modeling 
variation in SPL architectures developed with model-based 
development tools. Botterweck et al. [15] proposes the use of 
variability mechanisms of Simulink blocks to represent 
optional (Enabler subsystems), alternative (Switch blocks), and 
inclusive-or (Integration blocks) features.  

Steiner et al. [14] have extended the Simulink variability 
mechanisms with two patterns to configure features with 
hierarchical or dependency relationships in the data flow part 
of Simulink models; and two patterns to configure variability 
in finite state machines. These patterns are also applicable to 
models designed in modeling environments other than 
Simulink. Steiner et al. [14] also proposed an approach to 
support variability modeling in Simulink models using 

variability patterns, Pure::variants, and Hephaestus variability 
management tools applied to an UAV-SPL. Details on how to 
represent variability in product line models using these 
patterns and tools is outside the scope of this paper. 

 

Fig. 1. Multi-product model-based safety analysis. 

B. Product Line Hazard Analysis 

Hazards, their causes, and the allocated safety 
requirements may change according to the selection of product 
variations. Variations in an SPL architecture are expressed in 
its feature model [13]. Safety requirements placed to a 
particular hazard may also change according to contextual 
elements such as operational environment, safety standards, 
and regulations. These elements can be represented in product 
line context models. For the proposal of this paper we have 
considered to perform the hazard analysis based only on the 
product line feature model. Product line features in this paper 
stand for system functions implemented by design elements 
(e.g. system, subsystems, components).  

The product line hazard analysis aims to identify the 
possible hazards that can arise from failures in common and 
variable design elements and to allocate requirements to 
minimize the effects of these hazards. As it would be 
prohibitive performing a hazard analysis covering all possible 
product variants, we suggest constraining the scope of the 
analysis to a set of clearly defined products. Products can be 
defined by deriving instantiation scenarios from the analysis 
of the product line feature model. The criteria to constrain the 
scope of the analysis can be the SPL variations that are most 
relevant for the stakeholders.  



After scoping the analysis to a set of common and 
variation points, model-based hazard analysis can be 
performed, for example using the extended HAZOP analysis 
technique supported by HiP-HOPS tool [10]. Hazards and 
safety requirements can be specified via the HiP-HOPS failure 
editor. HiP-HOPS hazard analysis can be performed in parallel 
with the SPL architecture design. In HiP-HOPS, hazards are 
specified by means of logical expressions involving possible 
failures in design elements. These failures are generally stated 
in terms of failure types that typically include omission, 
commission, value, early, and late failures. Product line hazard 
analysis using HiP-HOPS can be performed by identifying the 
hazards associated to system functions common to all 
products; and by identifying the hazards associated to system 
functions standing for SPL variation. Next, safety 
requirements are allocated to the identified hazards. HiP-
HOPS stores the hazard analysis data in a failure model. 

C. Augmentation of Product Line Architecture with Failure 

Logic 

Variation in product line architecture may change the 
causes of a particular hazard. Describing how product line 
architectural design elements (i.e. product line components) 
can fail and contribute to the occurrence of each hazard 
identified in Product Line Hazard Analysis is the main goal of 
this step. We should specify the failure data inherent to each 
SPL design element, by stating what can go wrong with such 
element and how it responds to failures elsewhere in the 
architecture. Such information is called component failure 
logic. HiP-HOPS allows to annotate the product line 
architecture with a set of failure expressions showing how 
deviations in component outputs can be caused either by 
internal failures in the component or corresponding deviations 
in component inputs.  

Deviations may include unexpected omission of an output 
or unintended commission of output, or incorrect outputs 
values, or the output being too early or late [10]. HiP-HOPS 
failure editor also provides a graphical user interface to 
specify the failure logic of each individual product line 
component. HiP-HOPS stores such failure logic in a library, so 
that other components of the same type can reuse the failure 
logic. The failure logic inherent to each product line design 
element is stored by HiP-HOPS into the product line failure 
model together with the hazard analysis information.  

It is important to state that this local failure analysis can 
reflect either real characteristics or simply the design intention 
for the analyzed design elements. In both cases the analysis is 
useful. For example, at early stages when components are 
under design and only design intentions are encoded, it is still 
possible, using model-based safety analysis, to assess the 
suitability of the proposed design under these encoded 
intentions about failure logic, fault propagation, fault 
mitigation and fault tolerance of various design elements. 
Such analysis can help to identify weaknesses and decide how 
to improve the design e.g. by introducing elements with 
improved characteristics or fault tolerant features. Qualitative 
analysis is only needed for this purpose, while difficult to 
obtain or unavailable failure rates for software elements are 
not necessary. 

D. Definition of Product Line Configuration Knowledge  

Up to this point, we have identified the product line 
variabilities during the design of the SPL architecture (II-A 
subsection) by means of variation mechanisms such as 
Switches and Enabler Subsystems. We also have specified the 
variations in product line safety analysis by assigning hazards 
and placing requirements to common and variable SPL design 
elements (II-B subsection); and by specifying the failure logic 
inherent to each SPL design element (II-C subsection). In this 
step, the SPL configuration knowledge is established through 
a set of rules to manage the variation in both design and safety 
analysis assets. Such rules describe how these assets can be 
composed in a product according to the feature selection.  

The main information required to specify the product line 
configuration knowledge is derived from the SPL feature 
model. Product line variability management tools can be used 
to support the configuration knowledge definition. Tools like 
Pure::variants [2] provide support for negative variability, i.e. 
product derivation is based on the activation and deactivation 
of design elements according to the feature selection. Model 
transformation tools like Hephaestus/Simulink [14] support 
positive variability, i.e. the product derivation includes only 
the SPL design elements that correspond to the features 
specified in the feature selection.  

Product line configuration knowledge can be specified 
using model transformations tools like Hephaestus/Simulink 
[14]  by applying the following steps: 1) specify the feature 
expressions in the scope of the usage scenarios considered in 
the hazard analysis. A feature expression may include a single 
feature or a combination between two or more features; 2) for 
each feature expression, determine the product line design 
elements to be included and excluded; and 3) specify the 
hazards, the allocated safety requirements, and the failure 
logic to be included/excluded in each feature expression. After 
performing these steps, we obtain the mapping between 
product line features, design elements, hazards and the 
allocated safety requirements, and component failure logic. 
Additional details on how to use product line variability 
management tools to specify the configuration knowledge can 
be found elsewhere [14]. 

E. Product Derivation 

After establishing the rules to compose design and safety 
analysis assets (i.e. hazard, and failure logic), products can be 
derived. Variability management tools used for specifying the 
configuration knowledge can also be used to provide the 
automated support for product derivation according to the 
specified feature selection. The output of product derivation is 
the product architecture model, hazards and allocated 
requirements, and the failure logic (i.e. HiP-HOPS product 
failure model) corresponding to the feature selection of a 
particular product. This information will be further used to 
perform automatic fault trees and FMEA analysis for a 
particular product. 

F. Product Model-Based Safety Assessment 

Product line safety analysis activities may reduce the effort 
in performing product safety analysis and assessment by 
providing not all, but a set of product-specific hazards and 



failure logic. After the product derivation, HiP-HOPS can be 
used to perform product safety analysis by adding product-
specific hazards, and failure logic to the product failure model. 
Next, HiP-HOPS can be used for generating product-specific 
fault trees and FMEA results from the product architecture 
model and its HiP-HOPS failure model. HiP-HOPS stores 
product-specific fault trees and FMEA analysis results in a 
“fault trees” XML file, and presents it in the form of 
hyperlinked HTML pages. n is incremented at the end of the 

loop until it reaches m (i.e. the number of products involved in 
the analysis). The accuracy of product-specific HiP-HOPS 
fault trees and FMEA analysis depends on whether product 
line safety analysis activities were performed aware of safety-
related variation. 

III. CASE STUDY 

The Hybrid Braking System [16] automotive product line 
(HBS-SPL) was chosen to evaluate the proposed model-based 
approach to support automatic safety analysis of multiple SPL 
products. Three different HBS-SPL products were considered 
in this case study. The results of applying the proposed 
approach to HBS-SPL products were used as a proof of 
concept. 

A. Hybrid Braking System Product Line 

HBS-SPL is a real world automotive braking system 
product line designed in MATLAB/Simulink. HBS-SPL is 
meant for electrical vehicles integration, in particular for 
propulsion architectures that integrate one electrical motor per 
wheel [16]. The term hybrid comes from the fact that braking 
is achieved throughout the combined action of the electrical 
In-Wheel Motors (IWMs) and frictional Electromechanical 
Brakes (EMBs). One of the most important features of this 
system is that the integration of IWM in the braking process 
allows an increase in the vehicle’s range: while braking, 
IWMs work as generators and transform the vehicles kinetic 
energy into electrical energy that is fed into the powertrain 
battery. 

HBS-SPL components can be combined in different ways 
according to the constraints specified in HBS-SPL feature 
model presented in Fig. 2. It includes wheel braking 
alternative features: Brake_Unit1_Front, Brake_Unit2_Front, 

Brake_Unit3_Rear, and Brake_Unit4_ Rear aimed to provide 
the braking for each wheel; Mechanical Pedal, a hardware 
device aimed to capture driver presses; Electronic Pedal, a 
hardware device that senses and processes the actions from the 
mechanical pedal; Bus1 and Bus2 features send the wheel 
braking forces to the wheel braking units; Auxiliary Battery 
feature, a hardware device responsible for feeding the 
electromechanical brakes while braking; and Powertrain 
Battery, a hardware device that receives the electrical energy 
produced by the in-wheel motors. HBS-SPL feature model 
also presents the constraints showing how features can be 
composed in a product. 

B. HBS Product Line Hazard Analysis 

Hazards can arise from the interaction between HBS-SPL 
design assets in a range of usage scenarios. Different hazards 
can arise according to how HBS-SPL design elements can be 
composed in a product. Performing a hazard analysis covering 
all possible usage scenarios for HBS-SPL design elements 
would be prohibitive. Nevertheless, scoping the HBS-SPL 
hazard analysis to a set of products brought some degree of 
reuse for safety analysis assets. The extended HAZOP analysis 
technique [10] and HiP-HOPS were used to perform the HBS-
SPL hazard analysis. Wheel Braking variation point specified 
in the HBS-SPL feature model was considered in the hazard 
analysis. From the analysis of Wheel Braking variation point 
and mandatory elements of HBS-SPL, the following usage 
scenarios were established: HBS four wheels braking (HBS-
4WB); HBS front wheels braking (HBS-FWB); and HBS rear 
wheels braking (HBS-RWB). These scenarios were analyzed 
from the safety perspective. Table I presents the identified 
hazards, their causes, and the allocated ASILs (Automotive 
Safety Integrity Levels) to minimize their effects. Table I also 
presents the association between the hazards and the usage 
scenarios by means of the column “Usage Scenario”.  

In order to simplify the case study, we have not assigned 
ASILs to product line hazards on the basis of the full ISO 
26262 [12] risk assessment process. We have derived such 
ASILs only considering the hazard severity. In a product line 
hazard analysis, different ASILs can be assigned to the same 
hazard considering different usage scenarios for product line 
design elements. For example, the ASIL allocated to the “No 
braking rear” hazard is more stringent in HBS-RWB scenario  

 

Fig. 2. HBS-SPL feature model. 



TABLE I.  HBS PRODUCT LINE HAZARDS AND ASILS. 

Usage Scenario Hazard Causes ASIL 

 

 

HBS-4WB 

No braking four 

wheels 

Omission of all brake unit actuators outputs. 

 

D 

No braking rear Omission of brake unit3 and brake unit4 actuators outputs. C 

Value braking Incorrect value of all brake unit actuators outputs C 

HBS-FWB  No braking front Omission of brake unit1 and brake unit2 actuators outputs. D 

Value braking Incorrect value of brake unit1 and brake unit2 actuators outputs. D 

HBS-RWB  No braking rear Omission of brake unit3 and brake unit4 actuators outputs. D 

Value braking Incorrect Value of brake unit3 and brake unit4 actuators outputs. D 

and less stringent in HBS-4WB. Causes for a particular hazard 
can also change according to how product line design 
elements can be composed in a product. The causes for the 
“Value braking” hazard in HBS-FWB are different from the 
causes for that hazard in HBS-RWB. HBS-SPL hazards and 
ASIL allocation are stored by HiP-HOPS in the failure model. 

C. Augmentation of HBS Product Line Architecture with 

Failure Logic  

From product line hazards, 77 failure logic expressions 
inherent to 30 HBS-SPL design elements were added to the 
product line failure model via HiP-HOPS failure editor. 
Failure logic of a design component is stated in HiP-HOPS by 
specifying output deviations and the possible input and 
internal failures that may lead to the output deviations. Table 
II presents the failure logic for the Wheel Node Controller 
(WNC) component. Omission, commission, value, early, and 
late guidewords were used to express the failure logic of HBS-
SPL components. Input and internal failures contributing to 
the occurrence of output deviations were specified by means 
of failure expressions. For example, the omission of the WNC 
output can be caused by an internal failure in WNC or the 
omission of its inputs. 

TABLE II.  WNC COMPONENT FAILURE LOGIC. 

Component Output 

Deviation 

Failure Expression 

 

WNC 

Omission-Out1 WNCOFailure1 or (Omission-In1 

and Omission-In2) 

Value-Out1 WNCVFailure1 or Value-In1 or 

(Omission-In1 and Value-In2) 

D. Definition of the Configuration Knowledge 

The Hephaestus/Simulink [11][14] variability management 
tool was used to specify the HBS-SPL configuration 
knowledge. HBS-SPL design elements (i.e. Simulink model 
components), hazards, and component failure logic were 
mapped to feature expressions in Hephaestus. Feature 
expressions were defined from the HBS-SPL feature model. 
Transformation rules were also established to determine how 
HBS-SPL components, hazards, and component failure logic 
can be composed in a SPL product. 

E. HBS Product Derivation 

Hephaestus/Simulink [11][14] was also used to support the 
automated derivation of the following HBS-SPL products:  
HBS-4WB, HBS-FWB, and HBS-RWB. HBS-4WB 
architecture includes mechanical pedal and electronic pedal 
that sends the braking outputs to the communications buses. 

Communication buses send the braking commands to 
Brake_Unit1_Front, Brake_Unit2_Front, Brake_Unit3_Rear, 
and Brake_Unit4_Rear model components. HBS-FWB 
product differs from HBS-4WB by the absence of rear wheels 
braking units. HBS-RWB product differs from HBS-4WB by 
the absence of front wheels brake units. Hazards, causes, and 
components are different in each one of these products. For 
each product, the hazard analysis data is stored together with 
the product Simulink model in the product failure model. 

F. HiP-HOPS Model-Based Safety Assessment  

After the derivation of HBS-SPL products and their failure 
models using Hephaestus, each product was used as input to 
HiP-HOPS [10] to perform the safety assessment. From HiP-
HOPS analysis, fault trees, failure cut sets, and FMEA results 
were generated for each HBS-SPL product. Fault trees were 
generated for each product-specific hazard described on Table 
I. HiP-HOPS FMEA results describe the relationships between 
direct and further effects of a hazard and the failure modes. 
From the analysis of HBS-SPL products FMEA results, we 
have identified 9 single-point and 39 multi-point failure modes 
for HBS-4WB, 5 single-point and 33 multi-point failure 
modes for HBS-RWB, 5 single-point and 33 multi-point 
failure modes for HBS-FWB. This analysis has given insights 
into the design of the product line, for instance common single 
points of failure that affect different products and contribute to 
significant hazards that arise across the SPL, but also more 
subtle findings about the failures of individual SPL products.  

An example of the above is the failure mode “Omission of 
Brake_Unit3_Rear and Omission of Brake_Unit4_Rear” of 
the Wheel Braking component which causes “No braking 
rear” hazard in HBS-4WB and HBS-RWB products. 
Unfortunately, due to space limitation it is not possible to 
present in detail the results of the generated analysis. We 
should note that HiP-HOPS can also be used for allocating 
system safety requirements to elements of a design. So, from 
the ASILs allocated to HBS-SPL hazards, it is possible to 
automatically allocate ASILs to design elements, and thereby 
determine the safety requirements for those elements that must 
be met to fulfill the safety requirements of the product line 
[10]. This is indeed the subject of current research that extends 
the proposed framework for MBSA of product lines. 

IV. RELATED WORK 

Research in product line safety analysis has focused on 
adapting traditional safety analysis techniques, such as FTA 
and FMEA to suit product line processes. The most notable 
work addressed to this topic is the extension of Software FTA 



(SFTA) to address the impact of SPL variation on safety 
analysis [6][7][8]. This approach is based on a technique for 
the development of a product line SFTA in the domain 
engineering phase, and a pruning technique to reuse such 
SFTA for the analysis of SPL instances. It offers a systematic 
approach to treat SFTA results as a reusable asset. Such 
approach was later extended to integrate product line SFTA 
analysis results with model-based development using state-
based models [9]. However, the product line SFTA approach 
provides a semi-automated generation of SPL fault trees that 
requires support of domain expert reviews. It does not support 
the generation of FTA that reflects the complexity of product 
line features with context (product variants). SFTA approach 
is purely hierarchical and not sensible to the different SPL 
products. The novelty of our approach is the provision of 
guidelines to reuse product-specific hazards and their causal 
information, and to use the HiP-HOPS tool to generate 
product-specific fault trees and FMEA analysis from the 
product hazards and causes. Different from [6][7][8] [9], the 
proposed approach is sensible to product variants and does not 
require support of domain expert reviews. In our approach, the 
domain expert knowledge is stored in the configuration 
knowledge. Variability management tools use the 
configuration knowledge to provide automated consistency 
verification of the composition of product line design and 
safety analysis assets in a product.  

Blessing and Huhn [17] proposed a model-based formal 
safety analysis approach addressing a Pacemaker product line. 
The approach uses Common Variability Language (CVL) [18] 
for variability modeling, and the SCADE suite for system 
modeling. In their approach, SCADE automated model 
checking was used to prove the validity of safety requirements 
of Pacemaker variants. Their formal safety analysis approach 
is focused in automatic derivation of Pacemaker products 
using CVL, and in the formal verification of product safety 
requirements. The approach proposed in this paper uses 
variability management tools like Hephaestus for product 
derivation, and it is focused in  automated generation of fault 
trees and FMEA addressing multiple SPL products using HiP-
HOPS tool. CVL could be a possible way to manage the 
variation in SPL design and safety analysis in our approach. 

V. CONCLUSION 

Safety is highly connected to the system, so it should be 
considered early in domain engineering, when establishing the 
SPL architecture. Achieving the reuse of SPL safety analysis 
assets requires performing the safety analysis aware of 
interactions between SPL design assets in possible usage 
scenarios. The novelty of the approach proposed in this paper 
is the provision of guidelines prescribing how model-based 
development, safety analysis, and variability management 
tools can be used to reduce the effort of product safety 
analysis. These guidelines provide a mean to trace product line 
variation throughout SPL design and safety analysis. The 
proposed approach is tool independent, in which MBSA tools 
like HiP-HOPS can be used to automatically generate fault 
trees and FMEA results for multiple SPL products. Thus, the 
results obtained from this study can be generalized to other 
systems from different domains like avionics.  

Fault trees and FMEA assets can be used for structuring 
the product safety case argument organized into multi-view 

point argument modules [5] addressing product-specific 
hazards and allocated requirements, and the contribution of 
component failures to hazards. As future work, we propose a 
safety case pattern for SPL product argumentation using Goal 
Structuring Notation (GSN) [19]. We also intend to implement 
a tool to support the generation of safety cases, using such 
pattern, addressing multiple SPL products. 

ACKNOWLEDGMENT 

Our thanks to CNPq, process number 152693/2011-4. 

References 

[1] I., Crnkovic, “Component-based software engineering for embedded 
systems” Proceedings of the 27th International Conference on Software 
Engineering, St. Louis, MO, EUA, ACM, New York, 2005, p. 712-713. 

[2] J., Weiland, “Configuring variant-rich automotive software architecture 
models”, 2nd IEEE Conf. on Automotive Electronics, 2006, pp. 73-80. 

[3] F., Dordowsky,  R., Bridges, H., Tschope, “Implementing a Software 
Product Line for a Complex Avionics System”, Proc. of the 15th Int. 
Software Product Line Conference, IEEE, 2011, p. 241-250. 

[4] P., Clements, L., Northrop, Software Product Lines: Practices and 
Patterns. Addison-Wesley, 2001. 

[5] I., Habli, and T., Kelly, “A safety case approach to assuring configurable 
architectures of safety-critical product lines”, Proc. of the 1st Int. Conf. 
on Architecting Critical Systems, Springer-Verlag, 2010, pp. 142-160. 

[6] J., Dehlinger, R.,  Lutz,  “PLFaultCAT: A Product line Software Fault 
Tree Analysis Tool”, Automated Software Engineering, vol. 13, n. 1, pp. 
169-193, 2006. 

[7] J., Dehlinger, R., Lutz, “Software Fault Tree Analysis for Product 
Lines”, Proc. of the 8th IEEE International Symposium on High 
Assurance Systems Engineering, Florida, USA, 2004. 

[8] Q., Feng, R., Lutz,  “Bi-Directional Safety Analysis of Product Lines”, 
Journal of Systems and Software, vol. 78, n. 2, pp. 111-127, 2005. 

[9] J., Liu, J., Dehlinger, R.,  Lutz, “Safety Analysis of Software Product 
lines Using Stated Modeling”, Journal of Systems and Software, vol. 80, 
n. 11, pp. 1879-1892, 2007.  

[10] L., Azevedo, D., Parker, M., Walker, Y., Papadopoulos, R., Araujo,  
"Assisted Assignment of Automotive Safety Requirements". IEEE 
Software 31(1):62-68, 2014, IEEE. 

[11] R., Bonifácio, L., Teixeira, P., Borba, “Hephaestus: A tool for managing 
product line variabilities”, 3rd Brazilian Symposium on Components, 
Architecture, and Software Reuse, pp. 26-34, 2009). 

[12] ISO, ISO 26262: Road Vehicles Functional Safety, 2011. 

[13] K., Lee, K. C., Kang,  J., Lee, J., “Concepts and Guidelines of Feature 
Modeling for Product Line Software Engineering”, Proc. of the 7th Int. 
Conf. on Software Reuse: Methods, Techniques, and Tools, Springer-
Verlag, London, UK, 62-77, 2002. 

[14] E. M., Steiner, P. C., Masiero, “Managing SPL Variabilities in UAV 
Simulink Models with Pure::variants and Hephaestus”, CLEI Electronic 
Journal, v. 16, n. 1, 2013. 

[15] G., Botterweck, A., Polzer, S., Kowalewski, “Using higher-order 
transformations to derive variability mechanism for embedded systems" 
Models in Software Engineering, pp. 68-82, 2010. 

[16] R., De Castro, R. E., Araújo, D.,  Freitas, “Hybrid ABS with Electric 
motor and friction Brakes’,  22nd International Symposium on 
Dynamics of Vehicles on Roads and Tracks, Manchester, UK, 2011. 

[17] S., Blessing, M., Huhn, "Formal Safety Analysis and Verification in the 
Model Driven Development of a Pacemaker Product Line", MBEES, 
2012. 

[18] O., Haugen, B., Moller-Pedersen, J., Oldevik, G. K., Olsen, A., 
Svendsen, "Adding Standardized Variability to Domain Specific 
Languages," 12th International Software Product Line Conference, 
pp.139,148, 2008. 

[19] T., Kelly, “A systematic approach to safety case management”, SAE 
world congress, Society for Automotive Engineers, 2003. 


