
A model driven approach for Android applications development

Abilio G. Parada, Lisane B. de Brisolara
Grupo de Arquitetura e Circuitos Integrados (GACI)

Centro de Desenvolvimento Tecnológico (CDTec)
Universidade Federal de Pelotas (UFPel) - Pelotas, Brazil

{agparada,lisane}@inf.ufpel.edu.br

Abstract—The mobile application development industry is
increasingly growing up due to the intensive use of applications
in mobile devices, most of them running Android Operating
System. However, developing applications for mobile platforms
demands additional worries such as code efficiency, interaction
with device resources, as well as short time-to-market. Model-
driven Engineering (MDE) combined with UML, as already
used in software engineering, could provide abstraction and
automation for mobile software developers. To support that, ad-
equate tools and approaches are required. This paper presents
a MDE approach for Android applications development, which
includes UML-based modeling and code generation in order
to facilitate and accelerate the development of mobile applica-
tions.

Keywords-Android applications; mobile; Model-Driven En-
gineering; UML model; code generation; modeling approaches

I. INTRODUCTION

Smart phones become an alternative to personal comput-
ers, emerging as a mobile computation device. Most of these
devices run Android Operating System. Android [1] is the
Google’s mobile platform, which represents an open solution
with development tools, a large support to many devices, as
well an operating system.

Android applications are developed in Java language,
however these do not run on the traditional Java Virtual
Machine (JVM). Moreover, a desktop Java application de-
veloped to desktop should be adapted mainly due to new
concepts, such as Activity and Service, and specific APIs
used in the development of Android applications.

Mobile applications are significantly different from tradi-
tional applications. Typically, mobile applications are event-
driven and have to constantly react with an input from user
interfaces or sensors [2]. Additionally, mobile applications as
any embedded software should efficiently use limited device
resources. On the other hand, the development demands
additional worries about the short time-to-market.

In traditional software development, there are many ap-
proaches to accelerate design and development. Among
these approaches, Model-driven Engineering (MDE) has re-
ceived attention because provides abstraction through high-
level models (e.g. UML), thus facilitating the design of
complex software [3]. MDE [4] considers models as key
artifacts, and these are used in all phases of software

engineering (analysis, design, implementation, and testing).
The main objective of this approach is to reduce the gap
between the problem domain and the software implemen-
tation through the use of technologies that support system-
atic model transformations. Typically, the effective use of
this paradigm, combining models and tools, can provide
abstraction and automation, properties surveyed mainly by
embedded software designers. According to a study by the
Motorola, MDE may reduce the time spent on software
production by 70% [5].

More recently, Wang [6] studies the use of UML mod-
els for the smartphone applications development. However,
most of available modeling tools do not completely address
UML-based modeling and code generation for Android ap-
plications. Recent efforts propose solutions for this problem
[7] [2], but these present some limitations, as discussed in
the related work section.

This paper proposes a model driven approach for Android
applications development. This approach includes UML-
based modeling and automatic code generation to facilitate
and accelerate the development of Android applications.

The remaining of the paper is organized as follows.
Section II presents the background. The proposed approach
is presented in Section III. A case study is described in
Section IV, while related works is discussed in Section V.
Section VI concludes and points out directions for future
work.

II. DEVELOPING ANDROID APPS

The Android is an Operating System (OS) based on
the Linux kernel held by Google to mobile devices. Its
applications are developed in Java, but run on a specific
virtual machine called Dalvik [8]. This platform provides
also an API with several components that can be reused
to define an Android application. Between them, activity,
service, broadcast receiver, and content provider are core
components.

A typical Android application consists of one or more
activities. An activity usually shows a single visual user
interface. Service is a special type of activity that does
not have a visual user interface and usually run in the
background for an indefinite period of time. Among the core

components, activity and service typically encapsulate the
most part of the behavioral code.

Android applications have to adhere to strict life cycle
protocols, typically specified by methods [2]. An activity
has its lifecycle defined by the following methods: onCreate,
onStart, onResume, onPause, onStop, and onDestroy. The
onCreate method is invoked by the OS when starts an
application. The onStart puts the activity in foreground
in the screen, while onResume is invoked if it lost the
foreground, and onPause when the foreground is changed
to other application. The onStop method is invoked when
the activity is not visible, and onDestroy to run the last
task before the activity be closed. To define the lifecycle
for a service, the onBind and onDestroy methods are used.
The service’s onBind method is used to make a persistent
connection with a service, while onDestroy to terminate it.

An activity may transfer control and data to another
activity through an interprocess communication protocol
called intents. To promote this, a Broadcast Receiver (BR)
component is used, which is a dedicated listener that waits
for broadcasts messages. When an intent is broadcasted, the
BR responds by executing a specific activity. Requesting for
common datasets (e.g. contacts, pictures, messages, audio,
and files) are handled by the Content Provider (CP), which is
a data-centric service that makes persistent datasets available
for Android applications. A data requesting is indicated
through Uniform Resource Identifier (URI), which provides
the standard access to CP.

III. MDE APPROACH FOR ANDROID

This section presents the proposed MDE approach for
Android application development, which supports UML
modeling and automatic code generation.

A. Modeling

This paper proposes how completely model the structure
and behavior of an Android application using standard
UML, focusing on specific aspects of these applications, not
completely covered by traditional modeling approaches. Our
modeling is based on UML, using class diagram to describe
the application structural view, and sequence diagrams to
represent the behavioral view. Subsection III-A1 presents
modeling of main structural components, while the behav-
ioral aspects are described in subsection III-A2.

1) Structural View: Activity and Service (in gray in Fig.
1) are special components used to define the application
structure and the developer should specify which application
classes are activities and which are services. Fig. 1 illustrates
the proposed approach, where Main is defined as an Activity
and Background as a Service using inheritance relationship.

The Activity and Service classes have several default
methods (see Section II) that often are customized by
the designer. Thus, with the indication in the model of
which methods must be customized, standard code (e.g. calls

Figure 1. Class Diagram - Main structural components.

for the superclass constructors) can be generated following
characteristics of each method. In the example illustrated
in Fig. 1, two methods (onCreate from Main and onBind
from Background) are indicated to be customized for the
application.

This section focuses on specific aspects of Android appli-
cations structure. To define more details about the structure
(as definition of classes/interfaces, attributes, operations and
relationships), the designer can use UML class diagram
notations as used on traditional software modeling.

2) Behavioral View: In our approach, the application
behavioral view is represented using sequence diagrams,
which can represent iteration, conditional, and message
exchanges, as usual for traditional object-oriented software.

However, the behavior of an Android application can
evolve components as Content Provider and Intention, as
discussed in Section II, when an application class can
request some data or some service from another component.
It should be described in the UML model to provide a
complete application behavioral view. Fig. 2 illustrates the
proposed representation for a data request to the Content
Provider (CP), modeled by the contact message sent by the
Main class to CP.

Figure 2. Description of a Data Request to CP.

A service request is handled by the Broadcast Receiver
(BR), as explained in Section II, and our proposal for mod-
eling it is illustrated in Fig. 3. The Main lifeline indicates
that this activity will be held in the Main class. Firstly, the
intent request is performed, sending a message to the Intent
lifeline and using ACTION CALL to define the required
intents action. The return of this operation will be assigned to
the intentName object. The second action is the functionality
request, performed by the startService message, which has
as argument the Intent object.

The methods inherited from Activity or Service are of-
ten customized by the programmer and the behavior for
each customized method should be detailed. The onCreate

Figure 3. Description for functionality request to BR.

method, inherited from Activity, describes the first task exe-
cuted when the application is started. In the model illustrated
in Fig. 4 is represented the basic behavior of this method,
which is related to CP and BR components, as indicated by
Ref fragments. Thereupon, a service is requested through the
sent messages onStart and onBind. The first message is used
to start the service, while the second to make a persistent
connection to this.

Figure 4. Behavioral description of the onCreate method.

B. Code Generation

The main benefit of the MDE adoption in the development
of Android applications is the automation. This way, to
demonstrate the automation support provided by our MDE
approach, we are extending the GenCode [9] tool to generate
Android code. As the original GenCode, our Android code
generation is based on class and sequence diagrams.

From the class diagram, GenCode generates the applica-
tion structure, producing a Java file for each class. It em-
bodies class definition with attributes and methods, including
also constructor, setting and getting methods. Relationship
between classes or interfaces, as inheritance and association,
are considered during the code generation. When the class
represents an Android API component, the generation also
includes necessaries imports, according with attributes dec-
laration and parameters of methods. Furthermore, the code
generation also provides invocation for Activity and Services
standard methods, like onCreate.

The behavioral code generation is based on sequence
diagrams, what limits the code generation until the method
invocations level, thus, simple operations like variable at-
tributions or math operations cannot be generated. From

this diagram, the sequence of method invocations is cap-
tured, including argument and return for each invocation.
Moreover, loops and conditionals are also captured from this
diagram producing the corresponding Java statements. When
this diagram presents an Android element, like an Intent, the
tool provides the intent creation according to the action call
made and the invoked service.

IV. CASE STUDY

The Snake, an open source application from Android
developer web site [10], was chosen as case study. Although
it is a simple example of Android apps, it allows us to
demonstrate the main features of the proposed approach.

To obtain a UML model from Snake code, manual reverse
engineering was used. As result, a UML model was built
using Papyrus [11], representing static and dynamic aspects
of the application. This model consists of one class diagram
and twenty-three sequence diagrams.

The Snake static view, represented by the class diagram is
depicted in Fig. 5. The Android classes, Activity, Intent,View,
Handler, Bundle, and Canvas, are highlighted in gray in this
model, while the application classes (Snake, SnakeView, and
TileView), and two SnakeView inner classes (RefreshHandler
and Coordinate) are illustrated as white-boxes.

Figure 5. Class diagram - Structural view of Snake.

Snake is the main application class and represents an
Android activity, as indicated by the inheritance relationship.
For this class, onCreate, onPause, onSavedInstanceState,
and onBackPressed methods are explicitly defined, indicat-
ing that these methods will be customized. This class is
responsible by the user interface and is associated to the
SnakeView, which is also used in the graphic user interface
definition.

The graphic view descriptions are given by the TileView
class, SnakeView class, and its inner classes, RefreshHandler
and Coordinate. TileView is responsible by the described
view, as indicated by the inheritance relationship with the

View class. TileView overrides the onSizeChanged, and on-
Draw methods, inherited from View. The SnakeView class
is responsible for the game management, describing and
managing the game elements. The RefreshHandler inner
class, a specialization of Handler, performs the animation,
while Coordinate is responsible for elements management,
as mAppleList and mSnakeTrail.

The customization for the onCreate method is represented
by the onCreate sd (sequence diagram) from Fig. 6. This
diagram describes the behavior when the application is
started. Basically, it checks the last game and chose to start
the game for a new or a previous state. In this, two lifelines
represent the mSnakeView and savedInstanceState objects,
which interact on this scenario. The alt fragment represents
an if/else, when the conditional is true, a new game is load,
otherwise, a previous state is load. The Bundle component
is used to restore a previous state.

Figure 6. Sequence diagram for the onCreate Method.

Fig. 7 depicts the onBackPressed sd, in which the model-
ing of an intent can be observed. This diagram represents the
tasks executed when the Back button is pressed, pausing the
game and calling the mainscreen. The game state is saved
and when the application is called again, it is started from the
previous game scene. To implement this behavior, an intent
is used. Following the represented sequence, the intent object
should be created and the argument passed in the message,
in this case ACTION MAIN, identifies the required action.
After that, the two following messages, addCategory and
setFlags, represent the addition of new features to the intent.
In the sequence, the startActivity service is invoked using as
argument the setIntent object.

The behavior of the onDraw method from TileView is
represented in the onDraw sd illustrated in Fig. 8. In this sd,
a loop fragment is used to represent an iteration (for). This
method represents the process performed to draw the game
scenario and it depends on the number of XTiles and YTiles.
The opt fragment indicates the invocation of the drawBitmap
as optional. This method is invoked from the canvas object.

Figure 7. Sequence diagram for the onBackPressed Method.

Figure 8. Sequence diagram for the onDraw Method.

Applying our approach, we produced Java code from
the Snake UML model using the extension of GenCode.
Listing 1 illustrates the code generated for the Snake class,
declaring imports for Android API components, the Activity
extension, and class attributes.

1 import a n d r o i d . app . A c t i v i t y ;
2 import a n d r o i d . c o n t e n t . I n t e n t ;
3 import a n d r o i d . os . Bundle ;
4

5 p u b l i c c l a s s Snake ex tends A c t i v i t y {
6 /∗ ∗ A t t r i b u t e s ∗ /
7 p r i v a t e SnakeView mSnakeView ;
8 p r i v a t e S t r i n g ICICLE KEY = "snake_view" ;
9 . . .

Listing 1. Generated Code for Snake - Imports and Attributes.

Listing 2 illustrates the generated code for the onCre-
ate method, where can be observed the invocations to
the super.onCreate method and setContentView, standard
invocations to the onCreate method and also the behavior
specified by onCreate sd from Fig. 6.

1 /∗ ∗ Methods ∗ /
2 p u b l i c vo id o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {
3 super . o n C r e a t e (s a v e d I n s t a n c e S t a t e) ;
4 s e t C o n t e n t V i e w (R . l a y o u t . Snake) ;
5 /∗ ∗ S p e c i f i e d by sd onCrea te ∗ /
6 mSnakeView . se tTex tView (R . i d . snake) ;
7 i f (s a v e d I n s t a n c e S t a t e == n u l l) {
8 mSnakeView . setMode (SnakeView .READY) ;
9 } e l s e {

10 Bundle map = s a v e d I n s t a n c e S t a t e . g e t B u n d l e (
SnakeView . PAUSE) ;

11 i f (map != n u l l) {
12 mSnakeView . r e s t o r e S t a t e (map) ;

13 } e l s e {
14 mSnakeView . setMode (SnakeView . PAUSE) ;
15 }
16 }
17 }

Listing 2. Generated Code for Snake - onCreate Method.

The generated code from the onBackPressed method,
which demonstrates an intent usage, is depicted in Listing
3. In this code, the creation of the setIntent Intent, as
ACTION MAIN, is specified and after that, two methods,
addCategory and setFlags, are invoked to setIntent. Finally,
the service is invoked through the startActivity message with
the setIntent argument. The tool also generates standard calls
for Activity methods as super.onPause inside of onPause,
and outState.putBundle in onSaveInstanceState, as can be
observed in Listing 3.

1 p u b l i c vo id onBackPres sed () {
2 /∗ ∗ S p e c i f i e d by sd onBackPressed ∗ /
3 I n t e n t s e t I n t e n t = new I n t e n t (I n t e n t . ACTION MAIN)

;
4 s e t I n t e n t . addCa tego ry (I n t e n t .CATEGORY HOME) ;
5 s e t I n t e n t . s e t F l a g s (I n t e n t . FLAG ACTIVITY NEW TASK)

;
6 s t a r t A c t i v i t y (s e t I n t e n t) ;
7 }
8

9 p r o t e c t e d void onPause () {
10 super . onPause () ;
11 }
12

13 p u b l i c vo id o n S a v e I n s t a n c e S t a t e (Bundle o u t S t a t e) {
14 o u t S t a t e . pu tBund le () ;
15 }

Listing 3. Generated Code for Snake - onBackPressed, onPause and
onSaveInstanceState Methods.

Listing 4 demonstrates the generated code for the onDraw
method modeled in the onDraw sd from Fig. 8. This code
includes the declaration of the loop statement (for) with its
conditionals and counter and also the conditional (if), as well
as the invocation of the drawBitmap method from the canvas
object, which embodies its arguments.

1 p u b l i c vo id onDraw (Canvas ca nv as) {
2 /∗ ∗ S p e c i f i e d by sd onDraw ∗ /
3 f o r (i n t x =0; x < mXTileCount ; x ++){
4 f o r (i n t y =0; y < mYTileCount ; y ++){
5 i f (mTi leGr id [x] [y] > 0){
6 c an va s . drawBitmap (mTi leArray [mTi leGr id [x] [y]] ,
7 mXOffset + x ∗ mTi leS ize ,
8 mYOffset + y ∗ mTi leS ize ,
9 mPaint) ;

10 }
11 }
12 }
13 }

Listing 4. Generated Code for TileView - onDraw Method.

As the original GenCode, its extension also supports the
generation of constructor methods, attributes with default

values, setting and getting methods, and inner classes.
Listing 5 illustrates code fragments from the SnakeView
class, demonstrating the generated code lines, which include
declarations of attributes, and setting and getting methods.

1 p u b l i c c l a s s SnakeView ex tends Ti leView{
2 /∗ ∗ A t t r i b u t e s ∗ /
3 p u b l i c i n t READY = 1 ;
4 p u b l i c i n t RUNNING = 2 ;
5 p u b l i c i n t LOSE = 3 ;
6 . . .
7 p u b l i c SnakeView (S t r i n g TAG, . . . , Random RNG,

A r r a y L i s t<C o o r d i n a t e> mSnakeTra i l) {
8 t h i s .TAG = TAG;
9 . . .

10 t h i s .RNG = RNG;
11 t h i s . mSnakeTra i l = new A r r a y L i s t<C o o r d i n a t e >() ;
12 }
13

14 /∗ ∗ Get ∗ /
15 p u b l i c S t r i n g getTAG () {
16 re turn t h i s .TAG;
17 }
18

19 /∗ ∗ S e t ∗ /
20 p u b l i c vo id setMRedrawHandler (R e f r e s h H a n d l e r

mRedrawHandler) {
21 t h i s . mRedrawHandler = mRedrawHandler ;
22 }
23

24 p u b l i c c l a s s R e f r e s h H a n d l e r ex tends Hand le r{
25 /∗ ∗ C o n s t r u c t o r ∗ /
26 p u b l i c R e f r e s h H a n d l e r () {
27 super () ;
28 }
29 . . .
30 }
31 }

Listing 5. Generated Code for SnakeView.

V. RELATED WORKS

There are a huge number of tools that provide software
modeling support using graphical notations as UML, the
standard object-oriented modeling language. Some of these
are able to generate code from UML models, as UModel
[12], and Artisan Studio [13]. However, these tools focus
on traditional software development, and do not completely
support Android applications development.

To turn easier the development of Android Apps, App
Inventor [14] was proposed, which is a web-based tool to
produce simple Android applications. However, its approach
is considered as more “visual programming” instead of
“modeling”.

Recent efforts have focused on MDE support for An-
droid applications proposing specific solutions and tools [2]
[15] [7]. AndroMate [15] is an Eclipse modeling tool for
Android development which supports graphical modeling
of Android applications and generate some code. Although
this approach is proposed as model-driven, it does not use
UML and we consider more close to visual programming
approaches than model-driven ones.

IBM Rational Rhapsody [7] is a commercial tool for
software modeling, and recently, it was extended to support
modeling and code generation for Android applications. Al-
though, it is a complete solution, in order to turn possible the
complete code generation, the application behavior should be
specified in low details, making the code generation almost
a mapping 1-to-1.

The use of UML activities, like building blocks to con-
struct applications, is proposed by Arctis [2]. These activities
are after translated to a state machine in order to generate
code and other files needed to wrap the state machines
into an executable Android application. Authors use a small
UML profile that defines specific stereotypes for Android
modeling. Differently from this approach, we propose the
use of UML sequence diagram to represent application
behavior. Furthermore, our approach was defined using
UML standard notation without new stereotypes, and thus,
allowing the use of any UML tool for Android application
modeling and not requiring any new knowledge.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes a MDE approach for Android appli-
cations development, which addresses how to model specific
aspects of Android applications, as an intent and a data/ser-
vice request, using standard UML notations. Moreover, it
supports static and behavioral code generation from UML
class and sequence diagrams, according to the rules imposed
by the Android platform. To demonstrate our approach, a
case study was conducted, in which an Android application
was modeled in UML and code was generated from it. To
generate code, the extension of GenCode was used.

However, the actual version of GenCode tool that supports
the proposed approach, only made an automatic transforma-
tion from UML class and sequence diagrams to the target
Android Java code, without consider any optimization in
the generated code. As future work, we plan to extend this
tool in order to consider the good practices for Android
development [16], and thus generating efficient code.

ACKNOWLEDGMENT

The authors acknowledge financial support received from
CNPq, and NESS project (PRONEX-10/0043-0).

REFERENCES

[1] Google. (2012, Jul.) Anatomy of an
android application. [Online]. Available:
http://code.google.com/android/intro/anatomy.html

[2] F. A. Kraemer et al., “Engineering android applications based
on uml activities,” Proceedings of the 14th international
conference on Model driven engineering languages and sys-
tems (MODELS’11), Jon Whittle, Tony Clark, and Thomas
Khne (Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 183–
197, 2011.

[3] B. Selic, “Models, software models, and uml,” UML for real:
Design of embedded realtime systems, vol. Boston: Kluwer
Academic Publishers, pp. 1–16, 2003.

[4] ——, “Uml 2: A model–driven development tool. model–
driven software development,” IBM Systems, Riverton, vol.
45, n. 3, pp. 607–620, 2006.

[5] T. Weigert, “Practical experiences in using model-driven en-
gineering to develop trustworthy,” Computing Systems. IEEE
International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing, vol. 1 (SUTC’06), 2011.

[6] Z. Wang, “The study of smart phone development based
on uml,” Computer Science and Service System (CSSS), pp.
2791–2794, 2011.

[7] IBM. (2012, Jul.) Rational Rhapsody. [Online]. Available:
http://www.ibm.com/software/awdtools/rhapsody/

[8] Google. (2012, Jul.) Dalvik virtual machine. [Online].
Available: http://www.dalvikvm.com/

[9] A. Parada, E. Siegert, and L. Brisolara, “Generating java
code from uml class and sequence diagrams,” Workshop
de Sistemas Embarcados, 2011, Florianópolis. II Simpósio
Brasileiro de Engenharia de Sistemas Computacionais, vol. 1,
2011.

[10] Google. (2012, Jul.) Android ap-
plication samples. [Online]. Available:
http://http://developer.android.com/tools/samples/index.html

[11] Eclipse. (2011, Jul.) Papyrus. [Online]. Available:
http://www.eclipse.org/modeling/mdt/papyrus/

[12] Altova. (2012, Jul.) UModel. [Online]. Available:
http://www.altova.com/umodel/uml-code-generation.html

[13] Atego. (2012, Jul.) Artisan Studio. [Online]. Available:
http://www.atego.com/products/artisan-studio/

[14] Massachusetts Institute of Technology. (2012, Jul.) MIT App
Inventor. [Online]. Available: http://appinventor.mit.edu/

[15] Telematica Instituut. (2012, Jul.) The android
modeller and code generator. [Online]. Available:
http://www.lab.telin.nl/∼msteen/andromate/

[16] Google. (2012, Jul.) Designing
for performance. [Online]. Available:
http://developer.android.com/guide/practices/design/performance.html

