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Abstract— CMSIS-RTOS is an RTOS standard recently
defined by ARM to improve portability among microcontroller
applications. Compliance to this standard can be achieved by
design (the case for new RTOSes) or by an adaptation layer on top
of an existing RTOS.

CMSIS-RTOS has received criticism to its performance;
yet, there is no published data comparing its performance to other
RTOS. A comparative performance evaluation is conducted
against Commercial and FOSS RTOS, resulting in the first
published quantitative performance evaluation of CMSIS-RTOS.
Contrary to the criticism, the evaluated implementation of
CMSIS-RTOS presented no performance penalty when compared
to two other classes of RTOS: Commercial and FOSS.
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I. INTRODUCTION

CMSIS-RTOS is a standard published by ARM in 2012 [1]
that defines an RTOS API. Although the standard aims at Cortex
microcontrollers (CMSIS stands for Cortex Microcontroller
Software Interface Standard) it has been argued [2] to be suitable
for general small microcontroller architectures, i.e. for
microcontrollers without an MMU and thus implementing a
multithreading model of concurrency.

To accommodate an existing RTOS into this new standard
an adaptation layer is required that could impact system’s
performance. This scenario has been used to justify criticism to
CMSIS-RTOS [3]. However, to this date, no published data is
available comparing CMSIS-RTOS to other RTOSes, indicating
that the criticism lacks any quantitative data to support it.

The aim of the research described here is to conduct a
quantitative performance evaluation of CMSIS-RTOS to two
other classes of RTOS: Commercial and FOSS (Free and Open
Source Software). The X Real-Time Kernel [4] as a
representative of a commercial RTOS and a FOSS RTOS.

II. RTOS PERFORMANCE EVALUATION

Recent publications on performance evaluation of RTOS
include the “Survey and Performance Evaluation” by Anh and
Tan [5], in IEEE Micro 2009 and the Master Thesis of Boger
(2013) [6]. Both used benchmarks based on the Rhealstone.

The Rhealstone benchmark for RTOS was proposed in 1990
[7] as a composition of six time measurements of basic services
provided by an RTOS: task switching time, preemption time,
interrupt latency, semaphore shuffling time, deadlock breaking
time, and inter-task messaging latency. The benchmark result is
the number of rhealstones/second calculated from inverse of the
(possibly weighted) average of these six measurements. It is a
simplistic benchmark that certainly can be improved but is has
the benefits of concentrating on the most basic services and has
been the basis for many RTOS performance evaluations.

Anh and Tan [5] surveyed the features of 15 RTOS (both
commercial and FOSS). Four of these RTOS were selected for
performance bechmarking on a given hardware platform
(Renesas M16C/62P, with a 16-bit microcontroller at 24MHz).
In some of the measurements reported, including task switching
time, the difference in performance among the four RTOS was
larger than ten times. Also noticeable is that the RTOS that
performed best in one measurement, often performed worst in
another.

The results presented by Anh and Tan leads us to question
the lack of performance data available for comparing RTOS
performance.

Boger [6] evaluated the FreeRTOS [8] on a dual-core
Cortex-A9 running at 667 MHz. The benchmark code used was
the Rhealstone. The results were not compared to any other
processor or RTOS.

Aroca [9] measured the latency, jitter and worst case
response time of PCs (Pentium II 400 MHz) when running
Windows XP, Windows CE, QNX, uC/OS, Linux, and
VxWorks. The focus was on generating interrupts at high rates
to measure latency due to interrupts disabled by the kernel.

III. CMSIS-RTOS

CMSIS v1.0 [10] was defined by ARM in 2008 to provide a
standard device driver API to embedded software developers.
CMSIS version 1 objectives were:

 Standard access by middleware libraries (USB stack, TCP/IP
stack, file system, ...) to the integrated peripherals of Cortex
microcontrollers [11].

 A vendor-independent HAL that would allow a standard way
of accessing the peripheral hardware improving portability



among Cortex microcontrollers of different silicon vendors
[10].

In 2012 [12], CMSIS version 3.0 (Fig. 1) was published
adding CMSIS-RTOS and CMSIS-SVD. The first is a
standardized RTOS API while the second is a standardized
XML description of the registers of integrated peripherals.

The current release of CMSIS is version 4, dated Feb 28,
2014. It includes CMSIS-Driver and CMSIS-Pack. The first is a
standard API for the device driver functions to be used by
middleware components. The second is a description of a
software component delivery mechanism.

ARM´s market share in the 32-bit microcontroller market
puts ARM in a leadership position to define such standards.
Market acceptability is likely to turn CMSIS into a de-facto
standard.

The thrust behind CMSIS-RTOS is [11]:

 to stimulate the development of middleware that is now built
on top of standardized HAL and RTOS API´s;

 to reduce the learning curve for embedded software
developers of concurrent applications;

 to improve the portability of concurrent embedded software
applications.

CMSIS also includes (Fig. 1): (a) CMSIS-DSP: a DSP
library optimized for Cortex-M4; and (b) CMSIS-DAP: a
standard debugging interface.

Fig 1 - CMSIS v 3 Structure (source ARM [11] ).

IV. CMSIS-RTOS FUNCTIONALITY

This section summarizes the functionality defined in the
CMSIS-RTOS API.

The state diagram of CMSIS-RTOS threads is presented in
Fig. 2, while Fig. 3 presents an overview of the CMSIS-RTOS
services. Functions marked with a $ sign are optional.

Fig 2 – Thread state diagram in CMSIS-RTOS (source ARM [13] ).

Fig 3 - Overview of CMSIS-RTOS API (source ARM [12] ).

A. Mutex (mutual exclusion semaphore)

A Mutex is used to implement mutual exclusion among a set
of taks, hence, it cannot be used by ISRs. The thread that locked
(osMutexWait) the mutex has ownership and  no other thread
may release it (osMutexRelease). An osMutexWait may specify
a timeout.

Fig 4 - CMSIS-RTOS Mutex (source ARM [13] ).

A given implementation of Mutex may include priority
inheritance, in this case, a thread that owns a mutex inherits the
highest priority among the threads that are blocked on that
mutex.



B. Semaphore

Semaphores have three significant differences to mutexes:

a) on creation they are assigned a value (1 or more);

b) can be released by ISRs;

c) have no notion of ownership or priority inheritance.

As an ISR cannot be blocked, a call to osSemaphoreWait
returns an error code immediately if the current value of the
semaphore is 0.

Semaphores (Fig. 5) may be used for synchronization
between ISRs and threads: a thread blocks on a semaphore
(osSemaphoreWait) and is released by an ISR
(osSemaphoreRelease). Semaphores may also be used to control
the access to several shared resources of the same type, in this
situation the semaphore initial value corresponds to the number
of shared  resources.

Fig 5 - CMSIS-RTOS Semaphores (source ARM [13] ).

C. Message Queue

A Message Queue (Fig. 6) stores copies of integers (or
pointers). The size of the queue is determined when it is created.
Values are inserted with osMessagePut and removed with
osMessageGet. Threads are blocked (with optional timeout)
when attempting to insert to a queue that is full or to remove
from a queue that is empty. ISRs have access to message queues
but instead of blocking they get an error code.

Fig 6 – Message Queue (source ARM)[13].

D. Mail Queue

A Mail Queue (Fig. 7) holds messages of any size that are
actually stored in a memory pool. Hence, the queue holds only
pointers to the memory blocks in the pool. A call to
osMailCreate reserves memory for the pointer queue and for the
memory blocks. osMailAlloc finds a free memory block that is
then filled by the sending thread before sending (osMailPut).
The receiver thread performs an osMailGet, accesses the

memory block and then releases it (osMailFree). Threads may
be blocked (with optional timeout) by osMailAlloc, osMailPut
or osMailGet. ISRs cannot be blocked and  instead receive error
codes.

Fig 7 - CMSIS-RTOS Mail Queue (source ARM [14] ).

E. Memory Pool

A Memory Pool is composed of a set of memory blocks of
fixed size and managed by the RTOS. The size of the pool is
defined when it is created (osPoolCreate) and the required
memory is reserved, as well as the number of memory blocks
and their sizes. Threads request memory blocks with osPollAlloc
and return these blocks to the pool with osPollFree. There is no
blocking, if no memory block is available osPollAlloc simply
returns an error code.

F. Timming Services

Timming services include delays and Timers:

 osDelay(T) – suspends the execution of a thread for T
milliseconds.

 osWait(TO) – suspends the execution of a thread until
either a signal, message or mail is received. A timeout
(TO) may be specified.

 osTimerCreate – creates a software timer including
the definition of a callback function, its argument, and
the type of timer (single-shot or periodic).

 osTimerStar(T) – starts the countdown with a value of
T milliseconds.

 osTimerStop – stops the timer. It can be restarted later.

G. Signals

A signal is a binary flag that may be set/reset by other threads
or ISRs, hence, it is the simplest form of
communication/synchronization among threads and ISRs. A
thread may own as many as 31 flags. A thread may suspend its
execution (osSignalWait) waiting on a specific flag or on a set
of them.



V. EVALUATION OF CMSIS-RTOS

The author has previously conducted a detailed study,
reported in [15], comparing the functionality presented in the
CMSIS-RTOS standard to POSIX and to three RTOS
(VxWorks, FreeRTOS and X Real-Time Kernel). The
conclusions of this study are summarized as:

 The functionality defined in CMSIS-RTOS is
representative of its class of RTOS for microcontrollers
without MMU. RTOSes in this class implement multi-
threading.

 In a class providing more functionality are the POSIX-
compliant RTOSes that are targeted at microprocessors
with MMU. These RTOS support multiple processes.

 The wide acceptability of a standard for multi-threaded
RTOS would bring several beneficial consequences,
including: availability of interchangeable software
components, particularly middleware; reduction of
development cost and time, improving competitiveness
due to developer’s efficiency and reducing time-to-
market; and reduction of the learning curve for
concurrent real-time software development.

 Although the CMSIS-RTOS was defined for the ARM-
Cortex architecture, it is applicable to other
architectures. Hence, if widely adopted it would fill a
gap due to a lack of standard for this class of RTOS.

 Combined with CMSIS-CORE that defines an API for
access to peripherals (HAL), CMSIS becomes a
complete Low Level Platform API  providing a
significant benefit to layers above.

VI. PERFORMANCE EVALUATIONS

Rather than creating a new RTOS benchmark, the
benchmark used is the same as in Anh and Tan [5] that is based
on the Rhealstone [7] [6]. It evaluates six performance aspects
of an RTOS basic functionality: task switch time, semaphore
passing time, inter-task message transfer time, memory
allocation and release, task activation from an ISR, and interrupt
latency.

The hardware platform used in this benchmark is a Cortex-
M3 microcontroller, with 32K of Flash, 8K of RAM and a 72
MHz clock. The compiler used was the IAR EWARM v7.2. The
CMSIS-RTOS RTK version v4.7 (made freely available by
ARM) was compared to the X Real-Time Kernel v2.1 and a
FOSS.

Time measurements were performed with an oscilloscope
that monitors two I/O pins. The same code was used in all tests
to set/reset the I/O pins; the execution time of each of these
operations is 30ns. The only difference in the tested codes was
to accommodate the differences in the APIs of the RTOS, as
depicted in Table I below.

Among the relevant characteristics of an RTOS is its
determinism [16]. Hence, performance evalutation of RTOS is

not performed in the same way as General Purpose Operating
Systems would be evaluated. By repeating the test, exactly the
same result is obtained (within the resolution of the oscilloscope
based measurement). The way that the Rhealstone benchmark is
conceived, with simple tests with only one or two threads,
collaborates to this determinism.

TABLE I. RTOS API USED IN EVALUATION

CMSIS-RTOS X Real-Time Kernel FOSS
osThreadYield os.Yield YIELD
osSemaphoreWait sem.Wait SemaphoreTake
osSemaphoreRelease sem.Signal SemaphoreGive
osMessagePut os.Put QueueSend
osMessageGet os.Receive QueueReceive
osPoolAlloc os.Alloc Malloc
osPoolFree os.Free Free
osSignalSet os.ResumeThread Resume
osSignalWait os.SuspendThread Suspend

A. Task switching time

Measures the time to transfer control of one task to another at
the same priority level after a call to Yield(), hence, the
measured time includes the execution time of the Yield( ) plus
the context switch time.

Task1 Task2
Pulse pin 1
Yield()

Pulse pin 2
Yield()

Measure time
from pulse 1 to
pulse 2

B. Semaphore passing time

Two time measurements: the time to transfer control of one task
to another due to a semaphore wait and back to the first task
after a semaphore release and Yield. Both tasks at the same
priority level. The first measurement includes the semaphore
wait and the context switch. The second includes the semaphore
release and the context switch.

Task1 Task2
Pulse pin 1
SemWait

Pulse pin 1

Pulse pin 2
SemRelease
Yield()

Measure time
from pulse 1 to
pulse 2 and then
to next pulse 1.

C. Inter-task message transfer time

The receiver tasks has higher priority than the transmitter task.
Measure execution time of Receive and context switch (due to
empty message box) and time to send message and context
switch (due to higher priority task receive a message).



Task1 - Rx
(higher prio)

Task2 - Tx

Pulse pin 1
Receive

Pulse pin 1

Pulse pin 2
Put

Measure time from
pulse 1 to pulse 2 and
then to next pulse 1.

D. Memory Allocation

A single task allocates and releases a memory block.

Task1
Pulse pin 1
Alloc
Pulse pin 2
Free
Pulse pin 1

Measure time from
pulse 1 to pulse 2 and
then to next pulse 1.

E. Task activation from an ISR

An ISR wakes a suspended task. Measure the time from the
resume command in the ISR to the start of execution of the
waken task. An idle task is used to measure the time to execute
Suspend.

Task1 Timer ISR

request timer IRQ
Pulse pin 1
Suspend

Pulse pin 1
…

Set pin 2
Resume
Reset pin 2

Measure Suspend
and CS (pulse 1 to
start of idle task).
Then  measure
pin2 pulse width
and time from
negative edge of
pulse 2 to pulse 1.

F. Interrupt Latency

A task generates an interrupt request via an I/O pin. Measure
the time from the request to the start of execution of the ISR.
None of the three RTOS evaluated had any interference in this
measurement, hence all measures were the same. The reason
being that interrupts with a priority higher than the kernel’s
interrupt are never disabled.

Task1 ISR

pulse IRQ

Pulse pin 2
RETI

Measure time
from IRQ to pulse
2.

VII. MEASUREMENTS

By conducting the tests described in the previous section for
the three RTOSes, the following measurements were obtained:

TABLE II. MEASURED TIMES (US)

Test RTK X RT Kernel FOSS

1 Yield+CS 3.92 3.64 2.1

2.1 Wait+CS 4.56 4.3 14.9

2.2
Release+Yield+CS

4.68 4.62 10.8

2 Total 9.24 8.92 25.7

3.1 Get+CS 5.48 7.3 17.5

3.2 Put+preemption 5.72 6.4 9.7

3 Total 11.2 13.7 27.2

4.1 Alloc 0.92 1.4 3.8

4.2 Free 1.12 0.96 3.1

4 Total 2.04 2.36 6.9

5.1 Suspend+CS 5.5 4.4 5.1

5.2 Resume 2.5 2.48 3.8

5.3 CS to task 5.6 2.5 1.9

5 Total 8.1 4.98 5.7

6 IRQ Latency 0.32 0.32 0.32

k Rhealstones*/s 172.3 176.8 88.3
CS = Context Switch
Rhealstones* = Rhealstones variant described in Section II

Analyzing the results above, one notices that the largest
performance differences of the final result are 2:1. Also, the
largest difference in individual measurements is 3.45:1. Hence,
the results obtained here have a much lower variance than those
reported by [5] (described in Section II).

Concerning the aim of this research, the evaluation of
CMSIS-RTOS, the results indicate that there was no
performance penalty when an RTOS is designed to follow the
API defined in the standard. This was the case for RTK.

But then another question arises: would there be a
performance penalty if an adaptation layer was used with an
existing RTOS ? To evaluate this scenario, an adaptation layer
was written for the X Real-Time Kernel. This adaptation layer
is partly implemented by macros (#define) and partly
implemented by functions. Since macros may perform
straightforward conversions of one API to another and thus they
can often be resolved at compile time, they are preferred since
this poses no runtime penalty.

For the services listed in Table II, only osSignalSet and
osSignalWait required implementation by functions that convert
calls to osSignalSet and osSignalWait into calls to
os.SuspendThread os.ResumeThread. Hence, only test 5 had



differences in execution time. The new three measurements of
test 5 are reported in Table III below. These values were used to
calculate the number of Rhealstones/s resulting in the value
176,300, which is 0.35% below the previous value of 176,800.

TABLE III. MEASURED TIMES (US) IN TEST 5 FOR X REAL-TIME KERNEL
WITH ADAPTATION LAYER FOR CMSIS-RTOS

Test X RT Kernel with
adaptation layer

5.1 Suspend+CS 4.46

5.2 Resume 2.60

5.3 CS to task 2.5

5 Total 4.98

k Rhealstones*/s 176.3

The 0.35% overhead due to the adaptation layer for the X
Real-Time Kernel cannot be taken as a general rule, as this value
may vary depending on the characteristics of each specific
RTOS. It shows, however, that CMSIS-RTOS compliance may
be obtained with an adaptation layer at almost no performance
cost.

VIII. CONCLUSION

By analyzing the results of tests described in the previous
sections for the three evaluated RTOSes, the following
conclusions can be drawn:

 Contrary to what was expected in paper [3], the
CMSIS-RTOS standard does not impose a significant
performance overhead. Not even when an adaptation
layer is used.

 The complexity of an adaptation layer, and
consequently its performance penalty, is strongly
dependent on the differences among the API of
CMSIS-RTOS and the API of the kernel in use. When
the same type of services are available in both then the
adaptation layer tends to be a replacement of function
names and parameters that can be resolved at compile
time with little to none performance overhead.
However, if the type of services made available by the
kernel is significantly different then the adaptation
layer may impose a higher performance overhead.

 The analysis reported in [15] shows that CMSIS-RTOS
defines the same sort of services that are available in
the 4 other analyzed APIs.

For future work in this research line, many other RTOSes
may have their performance evaluated. The measuring infra-
strucuture is readily available in a lab and easily implemented in
code. The structure of each test is well defined in Section VI of
this paper and can be repeated by anyone interested in repeating
these tests or comparing other RTOSes to the ones presented
here.
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