
A Model Considering QoS for Real-Time Systems
with Energy and Temperature Constraints

Ŕıad Nassiffe, Eduardo Camponogara
Dept. of Automation and Syst. Eng.
Federal University of Santa Catarina

Florianópolis, SC, Brazil
Email: riad, camponog@das.ufsc.br

Daniel Mossé
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA, USA

Email: mosse@cs.pitt.edu

George Lima
Dept. of Computer Science
Federal University of Bahia

Salvador, BA, Brazil
Email: gmlima@ufba.br

Abstract—Saving energy is widespread goal, partic-
ularly in battery-supplied real-time embedded systems.
Moreover, application lifetime and delivered quality
of service are associated with the amount of energy
that can be saved. In this context, mechanisms for
providing energy savings must be in place and should
take into consideration system-wide aspects such as
CPU usage and temperature, which influence in the
energy consumed by the system. In this paper we
describe a model to capture such needs. The model is
formalized as a convex optimization problem, with the
goal of maximizing system quality of service while being
subject to schedulability, energy, and temperature con-
straints. The CPU frequency and task execution time
are decision variables. The effectiveness and behavior
of the proposed solution is shown through numerical
analysis. We conclude that a good approximate solution
is enough for guarantee the constraints.

I. Introduction

Due to the steady development of embedded systems,
the usage of such systems has grown in recent years in
host of applications: health monitoring, security systems,
etc. These applications are often subject to constraints
as energy, schedulability, temperature, and system QoS
requirements. Since such devices can run different sets of
applications with specific goals, several mechanisms have
been implemented at the operating system level to keep
the systems working properly.

Ensuring energy savings and temperature bound guar-
antees in a real-time embedded system requires sophisti-
cated solutions, when compared to general purpose op-
erating systems for which it may be enough to manage
the underlying hardware power-saving and CPU throttling
functionalities.

The constraint of energy comes from the fact that
some devices may not be connected to a continuous power
source, but rather depend on a battery which is recharged
by solar energy, as in [1]. As a result, it is important
to know for how long the system can be powered up by
the available energy. The lack of energy management may
result in failure of the system execution.

The temperature has impact on system power con-
sumption and performance. For example, high tempera-

This work was supported by CAPES n◦6544/13-4 and CNPq
n◦478273/2012-6.

tures can increase the leakage and cooling power, and even
reduce the device lifespan.

In real-time systems the success of task execution
depends on temporal and logical correctness. Hence, some
real-time systems can accept results with less precision,
which implies in less execution time. They are composed
of tasks with multiple execution modes (multi-modal) as
in multimedia, image and speech processing, and in math-
ematical applications that can be prematurely halting.

This paper develops a convex model for providing a
reconfiguration mechanism, which jointly selects the CPU
frequency and task precision or execution mode, while
considering the system and application constraints. The
solution must be flexible to work on different systems,
efficient to provide on-line reconfiguration according the
situation, maximize the QoS, and also obey all constraints.

The remainder of this paper is structured as follows.
First, in Section II the related work is discussed. Section
III presents a general formulation of the problem, with
the constraints being detailed after a brief problem in-
troduction. Section IV presents a brief overview of the
solution used to solve the proposed model. In Section V,
the behavior and efficiency of an algorithm for solving the
reconfiguration problem is evaluated numerically. Finally,
section VI offers some conclusions.

II. Related Work

To control CPU temperature and save energy the CPU
Dynamic Voltage and Frequency Scaling (DVFS) is a
technique commonly used in real-time systems, such as
the system discussed in [2], [3], [4], [5], [6] that offer
guarantees on minimal energy savings and improve the
system quality of service. For example, in [6], QoS increases
as the probability of deadline task miss decreases.

The effects of temperature in computers is analyzed in
[7], [8]. These works show that high temperatures decrease
CPU power efficiency, reduces system reliability, and in-
creases the power drawn by the cooling system, with a
throttling mechanism that degrades the CPU performance.
To address these issues, new models have been proposed
in [9], [10] to account for the temperature effects. Never-
theless, these works do not guarantee any energy saving.

In [4], [5] it is proposed an on-line mechanism that guar-
antees energy savings, ensures schedulability, and avoids



QoS degradation. Nevertheless, this mechanism does not
take into account the temperature effects.

Our work proposes a new mechanism that guarantees
minimal energy savings, considers the temperature in a
power-consumption model, supports multi-modal tasks,
and further keeps CPU temperature under control to
avoid CPU throttling. To achieve these goals, the proposed
mechanism selects the CPU frequency for DVFS applica-
tions and defines the executing mode of the tasks, while
respecting all of the system constraints. The algorithm
developed in this work should be run only when the system
experiences new conditions, such as when the temperature
is close to the maximum or minimum limit, or the energy
source has less or more power than predicted.

III. The Addressed Problem

A model for managing real-time systems with energy
consumption, temperature, and schedulability constraints
is presented. The CPU frequency and task mode are con-
sidered continuous variables, and will be adjusted to maxi-
mize system QoS and satisfy the constraints. Although we
consider a continuous model, applications are discrete and
the algorithm would pick the next discrete mode.

A. System Model

The system is composed of n independent real-time
tasks. Each task has more than one operating mode, each
being associated with an execution time that should be
above CD,min

i and below CD,max
i . The system uses a single

core CPU that operates with a continuous frequency Fi,
that will be represented by fi. Variable fi will be used to
indicate the frequency used by a task, fi = Fi

Fmax
, where

Fmax is the maximum frequency supported by the CPU.
The frequency fi varies from the minimum value of fmin

to the maximum value of fmax.

The tasks share a single processor that runs in a
continuous range of frequency, such as ARM1176JZF-
S, used by RaspBerry-Pi [11]. This processor simulates
a continuous frequency and the voltage operates in the
interval [0.8V,1.4V], changing in steps of 0.025V.

The execution time Ci is composed of two terms, CD
i

and CI
i , which represent the time an activation of τi may

spend using the CPU and other devices, respectively. CD
i

is considered to be inversely proportional to the value of
the selected frequency: CD

i increases by 100% when the
processor frequency is reduced by 50% and it will vary in
the range from CD,min

i to CD,max
i . Thus, the total execution

time of τi is expressed as:

Ci =
CD

i

fi
+ CI

i .

Processor utilization is determined by the sum of the
utilizations of each task τi, being defined as:

ui(fi, C
D
i ) =

Ci

Ti
=

CD
i

Tifi
+
CI

i

Ti
.

It is well known that for the tasks to be EDF-schedulable
the following condition must hold:

n∑
i=1

ui(fi, C
D
i ) ≤ 1. (1)

Since the configuration of the task frequencies consumes
CPU resources, the management algorithm should be in-
voked only when needed.

B. Problem Formulation

The model is for a system with real-time tasks, energy
consumption and temperature limits. System QoS should
be kept as high as possible for the prevailing situation,
which evolves dynamically depending on the conditions of
the environment. A convex optimization model was sought
to grant an efficient solution, with the objective function
reflecting the quality of service and the constraints repre-
senting the system limits.

Under these assumptions, the problem is generically
formulated as:

P : max

n∑
i=1

G(ui, αi, fi) (2a)

s.t. :

n∑
i=1

ui ≤ Ul (2b)

n∑
i=1

Pi ≤
E?

Test
(2c)

fmin ≤ fi ≤ fmax
i , i = 1, . . . , n (2d)

CD,min
i ≤ CD

i ≤ CD,max
i , i = 1, . . . , n (2e)

H(fi) ≤ Hthr, i = 1, . . . , n (2f)

where:

• Eq. (2a) expresses the task configuration profit;

• Eq. (2b) models CPU utilization according with
the selected scheduling policy (see Eq. (1));

• constraint (2c) represents the sum of Pi, that is
the power drawn by a task depending on their
configuration, where E? and Test the available
energy and the system lifetime respectively;

• constraint (2d) establishes bounds for fi;

• Eq. (2e) defines the range for task execution time;

• constraint (2f) ensures that the CPU temperature
won’t rise above Hthr (maximum admissible tem-
perature) with fi.

The proposed model is designed to accept any schedul-
ing policy, as long as a convex function can determine
whether or not a set of tasks is schedulable. Hereafter, we
assume a EDF policy for an uniprocessor system, and the
schedulability is ensured by Eq. (1). In the next subsections
the other constraints will be discussed in detail.



C. Energy Model

We make two assumptions regarding energy: 1) the
energy consumption of the tasks accounts for the devices
as in [12]; and 2) the temperature increases with power
consumption [9], [13]. Based on these assumptions, the
DPM (Dynamic Power Model) [14] was chosen to represent
the energy consumption of a task τi per unit of time:

Pi = P Ind
i + PDep

i + PFan + P Sleep (3)

where: P Ind
i is the power that is independent of processor

frequency, determined by the peripherals used by task τi;
PDep
i is the energy per unit of time consumed by the CPU

to perform τi; P
Fan is the power consumed by the fan to

cool the system; P Sleep is the power cost to maintain the
system devices in the sleep mode, which, being a constant,
will be omitted to simplify the presentation.

PDep
i will be given by the sum of the CPU dynamic

and leakage power, being expressed as:

PDep
i = PDyn

i + PLeak
i (4)

with PDyn
i being defined as CefV

2
ddFi, where Fi is the

frequency used by the processor to perform task τi, Cef

is the capacitance required to execute an instruction, and
Vdd is the voltage needed to operate the system at a given
frequency. According to [15], it is common to affirm that
the voltage required by the CPU to run at frequency Fi is
given by Vdd = Vmaxfi.

The power consumption of the ARM architecture [16]
can increase 14%, when the temperature reaches 85◦C.
This behavior occurs due to the leakage power, which has
an exponential dependence on the CPU temperature, H,
as shown in [8]. This is represented as:

PLeak
i = C1 + C2e

HC3 (5)

where C1, C2, and C3 are defined by experiments and
analysis of the CPU leakage power. Again, according to [8],
the sum of the leakage and fan power is a convex-like curve
that reaches a minimum at a certain point, which yields
the best speed to execute the fan. Hence, PFan becomes a
constant and will be omitted to simplify the presentation.

For the formulation presented here, the power drawn
by a task from the system becomes:

Pi(fi, C
D
i ) = CefV

2
maxf

3
i Fmax + C1 + C2e

HC3 + P Ind
i . (6)

By adding up the energy consumed per unit of time
by each task, the following expression of the total power
required to operate the system is obtained:

n∑
i=1

Pi(fi, C
D
i )ui(fi, C

D
i ) (7)

The values of PDep
i and P Ind

i represent the power con-
sumed by the processor and other devices. Further, ui
shows the power drawn by a task from the system.

The energy consumption of a task is not fixed due to
the variability of the computational load, task execution
time and mode (which vary according to the environment

conditions). Consequently, it is not possible to anticipate
how much energy will be needed to accomplish a goal.
Therefore, it becomes necessary to estimate execution time
and available energy to avoid unnecessary QoS degrada-
tion. Hence the following constraint was added to the
model, to limit the power consumed by the system:

n∑
i=1

Pi(fi, C
D
i )ui(fi, C

D
i ) ≤ E?

Test
(8)

where E?

Test
is the available power of the system.

D. Temperature

The CPU temperature is of major importance because
cooling systems are not evolving at the same rate of
performance and the heat produced by new processors. In
[7] it is showed that the CPU power dependents on the
temperature, increasing with it. To this end, a Dynamic
Thermal Management (DTM) system is used to prevent a
CPU from reaching high temperatures and burning.

Despite the extensive research on DTM and its hard-
ware implementation, which with low system overhead,
DTM exhibits a zig-zag behavior and can degrade system
performance because the processor can run for unknown
time at the lowest frequency until cooling the system.
This behavior can make a task take more time to finish
its execution or even miss the deadline. In order to avoid
this undesirable behavior, we add to the model the heat
produced by the execution of each task.

According to [9], [13], the temperature of a CPU can
be modeled as a function that depends on its consumed
power and cooling capacity, being expressed as:

PDyn
i

Cth
− h− hamb

RthCth
(9)

where: PDyn
i = CefVmaxf

3
i Fmax, Cth is the thermal ca-

pacitance of the chip, Rth is the thermal resistance of
the chip, and h and hamb represent respectively the CPU
and ambient temperatures. To simplify the equations the
following constants are introduced:

a =
CefVmaxFmax

Cth
, b =

1

RthCth
.

Hence, the dynamic temperature for the CPU to run task
τi at the selected frequency fi is given by:

H(fi) = af3
i − b(h− hamb) + h. (11)

The set of constraints of the model does not define an
order for task execution, so the only way to ensure that
CPU temperature will never go above a limit Hthr is:

H(fi) ≤ Hthr, i = 1, . . . , n. (12)

E. Problem Decision Variables

The proposed model has two decision variables for each
task τi, namely the frequency fi and the task execution
time CD

i . Basically, the number of decision variables in a
system will be twice the number of tasks. fi limits are
defined by fmin ≤ fi ≤ fmax, where fmin is the lowest



frequency supported by the processor and fmax is the
maximum.

The range for CD
i depends on τi as CD,min

i ≤ CD
i ≤

CD,max
i , with CD,min

i being the shortest time required to
execute τi, whereas CD,max

i is the maximum. They are
defined considering the CPU at fmax. These bounds are
determined by how much a task can be degraded.

F. Objective Function

According to [4], the task profit must capture aspects
as the task weight, the degradation of execution quality,
and its importance for the system as the function below:

n∑
i=1

(CI
ifi
Ti

+
CD

i

Ti

)
αi. (13)

This equation has two terms, the first one divides the
product of CI

i and fi by Ti, which reflects the weight of
the independent CPU time of a task and the importance
of increase the frequency. The second term represent the
weight of the CPU execution time of a task without the
frequency effect. And all the terms are multiplied by αi,
this value represents the task importance for the system.

G. Problem Formulation

By using the specific objective function and constraints
detailed above, the generic formulation (2) becomes:

Pinit : max f =

n∑
i=1

(CI
ifi
Ti

+
CD

i

Ti

)
αi (14a)

s.t. :

n∑
i=1

CD
i

Tifi
≤ 1−

∑
Si∈S

CI
i

Ti
(14b)

n∑
i=1

(
CefV

2
maxf

2
i Fmax

CD
i

Ti
+ CefV

2
maxf

3
i (14c)

+ Fmax
CI

i

Ti
+
C1C

D
i

Tifi
+
C2e

HC3CD
i

Tifi
+ (14d)

P I
i
CD

i

Tifi

)
≤ E?

Test
− P S −

∑
Si∈S

(P I
iC

I
i

Ti
(14e)

− CI
iC1 − CI

iC2e
HC3

Ti

)
(14f)

fmin ≤ fi ≤ fmax, i = 1, . . . , n (14g)

CD,min
i ≤ CD

i ≤ CD,max
i , i = 1, . . . , n (14h)

H(fi) ≤ Hthr, i = 1, . . . , n (14i)

As we have two decision variables, fi and CD
i , the Problem

(14) is not convex. Since an exponential function is convex
[17, Cap. 3], Problem (14) is recast in an equivalent form
according with the following change of variables:{

fi = efi

CD
i = eC

D
i

⇐⇒
{

fi = log(fi)

CD
i = log(CD

i )

which leads to the following equivalent problem:

P : max f =

n∑
i=1

(
log(

CI
ie

fi

Ti
) + log(

eC
D
i

Ti
)
)
αi (15a)

s.t. :

n∑
i=1

eC
D
i

Tiefi
≤ 1−

∑
Si∈S

CI
i

Ti
(15b)

n∑
i=1

(
CefV

2
maxe

2fiFmax
eC

D
i

Ti
+ CefV

2
maxe

3fi (15c)

Fmax
CI

i

Ti
+
C1e

CD
i

Tiefi
+
C2e

HC3eC
D
i

Tiefi
+ (15d)

P I
i
eC

D
i

Tiefi

)
≤ E?

Test
− P S (15e)

−
∑
Si∈S

(P I
iC

I
i

Ti
− CI

iC1 − CI
iC2e

HC3

Ti

)
(15f)

H(efi) ≤ Hthr, i = 1, . . . , n (15g)

log(fmin)s ≤ fi ≤ log(fmax), i = 1, . . . , n (15h)

log(CD,min
i ) ≤ CD

i ≤ log(CD,max
i ), i = 1, . . . , n (15i)

The proposed formulation (15) is a convex-programming
problem, and can be solved by efficient algorithms, such
as sequential quadratic programming [18].

IV. Sequential Quadratic Programming (SQP)

Sequential quadratic programming (SQP) is a general
framework for solving constrained nonlinear problems.
Given the current iterate xk = (fki , C

D,k
i : i = 1, . . . , n),

SQP solves a quadratic program approximating the local
optimality conditions, the Karush-Kuhn–Tucker (KKT)
conditions [18], and then produces the next iterate. The ob-
tained solution x̃k defines a search direction pk = (x̃k−xk)
along which a line-search is applied to define a step ηk > 0
that yields the next iterate xk+1 = (xk + ηkpk). An
efficient implementation of Sequential Quadratic Program-
ming (SQP) is CFSQP [19]. For convex programs, CFSQP
will arrive at a global optimum [19].

As the algorithm to solve the problem is iterative, it
can be halted at any moment. Hence, it will be divided
into two on-line phases. Phase 1 that obtains a feasible
solution and Phase 2 executes the algorithm until reach
the optimal solution. A solution is feasible if it satisfies
all the constraints, not necessarily guaranteeing optimality.
Finding the optimum may take considerable time, hence a
tolerance factor is used to accept a nearly optimal solution.
For example, a small tolerance ε ensures that the distance
of an approximate solution x to the optimum x? will be
bounded by ε, namely ‖x− x?‖ ≤ ε.

V. Numerical Analyses

This section presents the results of three numerical
analyses based on the CFSQP solver; namely, the impact
of tolerance, the impact of phases, and the time to solve
the mathematical problem (15). With these analyses the
solution overhead, and effectiveness are evaluated.



A. Experimental Setup

To evaluate the proposed solution, 200 synthetic sets
with 5, 10, and 20 tasks were generated with the UUniFast
algorithm [20]. Each task set has a system utilization of
80%, this value was set based on values chosen by [1], [10],
in which 60% is the CPU usage and 20% represents CI

i .
CD,min

i is 80% of CD,max
i , the deadline is equal to the task

period, which is 1 s and P I
i varies from 2 to 93 mW

The experiments were performed using a Raspberry-pi
model B, operating at 700Mhz with 512Mb of RAM. This
hardware platform runs an embedded version of the Linux
system. The energy parameters used in the experiments
were: V = 1.2; fmax = 700Mhz; fmin = 100MHz;
P S = 0; Cef = 1.0035 × 10−10. In order to find Cef

the CPU maximum power was considered to be 0.85W .
Moreover, E?/Test was set as 5% more than the power
needed for providing the highest QoS. This is to avoid
border conditions, forcing a reconfiguration in the system.
Thermal parameters were defined according to [8]: the
CPU maximum temperature was set to 48◦C; the environ-
ment temperature was 26◦C; and the CPU temperature
was 42◦C. Two values for the tolerance were assumed:
ε = 10−1 (high tolerance); and ε = 10−4 (low tolerance).

In the figures below, we present most of the results in
the form of box and whiskers plots, where the line in the
box represents the median value, the bottom and top of
the box are the 25th and 75th percentile, lines below and
above the box represent the minimal and maximum values,
except for the outliers which are shown as crosses.

B. Impact of Tolerance (ε)

Figure 1 illustrates the utilization of the CPU and the
difference in power consumption of Phase 2, according to
ε variation. The first graph of the figure shows how much
CPU is consumed when we go from a low tolerance to a
high tolerance. We can see a small variation (about 1%–
3%) in the average usage of CPU resources. And the second
graph shows that a low tolerance (that is, being more strict
in how close the solution has to be from optimal) will cause
savings of less than 3mW on average, which represents less
than 1% of the power consumed by the system.

Fig. 1. Difference between the power for low tolerance and high
tolerance, for Phase 2, for different numbers of tasks.

The difference in percentage of profit between the low
and high tolerance for Phase 2 with 20 tasks is under
0.02%, implying that higher tolerance will influence the
profitability of the system in less than 1%. From this re-
sults, we can show that a high tolerance (10−1) is sufficient
to obtain good solutions.

C. Impact of Phases (feasible vs optimal)

Figure 2 has two graphs, one shows the difference of
CPU usage and the other the difference of power consumed
from Phase 2 to 1 in the low tolerance scenario; the high
tolerance scenario (not shown) has the same behavior. In
the CPU usage graph we noted that as the number of
tasks increases, the CPU utilization decreases slightly and
in Phase 2 the utilization improves almost 12%. From the

Fig. 2. The graphs represent the difference of CPU usage and power
of Phases 2 and 1 in the low tolerance scenario, respectively.

second graph of Figure 2 is possible to note that the dif-
ference increases with the number of tasks, implying that
Phase 1 is more effective with more tasks (i.e., consumes
less power). However, the amount of saved power by not
running Phase 2 is insignificant.

In our experiments, the profit difference between
Phases 1 and 2 with low tolerance is relatively low, approxi-
mately 2.5%. This observation is in accordance with Figure
2, which shows a small variation in resource consumption
(CPU and power) in configurations of Phase 1 and 2.
However, as it will be shown in the next section, Phase 2
takes significantly longer to find a quasi-optimal solution.

From this analysis, it is possible to verify the effec-
tiveness of Phase 1, and the gain in QoS induced by a
low tolerance is very small. The configurations of Phase
2 used all available resource to ensure the minimum QoS
degradation, while obeying the constraints.

D. Execution Time Analysis

Figures 3 and 4 show that Phase 1 can be efficiently
solved by CFSQP in all scenarios. Considering a low

Phase1 Case1 Phase2 Case1 Phase1 Case2 Phase2 Case2 Phase1 Case1Phase2 Case1 Phase1 Case2 Phase2 Case2
0

10

20

30

40

50

60

70

T
im

es
(m

s)

T
im

es
(m

s)

5 Tasks 10 Tasks

Fig. 3. Execution times in ms of CFSQP for 5 and 10 tasks.

tolerance, for the respective scenarios of 5, 10 and 20 tasks,
the lowest, highest and mean execution time in millisec-
onds to solve Phase 1 were {1.6, 2.2, 1.7}, {2, 3.5, 2.3} and
{3.5, 5.2, 4}. The cumulative execution time for Phase 1
and Phase 2 were: {11.5, 13.9, 12.2}, {45.8, 48.7, 46.9} and
{63.0, 67.1, 64.6}. The graphs in Figures 3 and 4, show that
the execution time required for executing Phase 2 is more
sensitive to size of the task set and tolerance values.



0

0.1

0.2

0.3

0.4

0.5

Phase1 Case1 Phase2 Case1 Phase1 Case2 Phase2 Case2

T
im

es
(s

)

20 Tasks

Fig. 4. Execution times in ms of CFSQP for 5 and 10 tasks.

In conclusion, the presented results indicate that the
distribution of the execution time is reasonably concen-
trated around the mean value, indicating small variations
on the execution time of the CFSQP. A high tolerance
implies in low QoS degradation and less execution time.
Furthermore, if the worst scenario is known it is possible
to solve the problem off-line and use the answer to solve
the problem on-line, this method is known as Warm Start.

E. Impact of Energy Budget

We analyze the behavior of CFSQP with varying energy
availability, which we decrease by 5%, up to the value of
80% of the energy needed for the best configuration. Also,
the mean execution time taken by CFSQP for 20 tasks and
ε = 10−4 is shown in Table I. Some tests were done with
less than 80%, but it was not enough to schedule most of
the sets, so we do not include it in the table.

TABLE I. CFSQP Mean Execution Time And Profit
Varying Energy Availability

Energy Available: 95% 90% 85% 80%
Phase 1 exec. time 0.01S 0.01S 0.011S 0.011S
Phase 2 exec. time 0.85S 1.07S 1.17S 1.28S
Profit difference(%) 3.9 3.8 3.5 2.7

Table I shows that Phase 1 can be efficiently solved with
profit very close to the one of Phase 2, implying in a low
resources consumption. Note that as the available energy
decreases, the profit difference between phases decreases.

VI. Conclusion

A new reconfiguration mechanism that provides energy-
savings with guarantees and temperature management in
real-time system was presented, along the algorithm for
its solution. A numerical analysis evaluated the efficiency
and behavior of the used algorithm. The proposed model
tends to be more representative of real world systems
than current models, due to the temperature constraint.
Another feature of the model is the convexity, which
enables efficient softwares or methods discussed in [17].

Our model does not depend on a specific scheduling
policy; it supports any policy that can ensure the schedu-
lability of a task set in a single core by a convex function.
Moreover, our scheme can be complemented by algorithms
that increase the energy-saving by using slack time (see
[6]). Future work will consider the validation of the model
in a real system and comparison with other solutions.

References

[1] S. Liu, Q. Wu, and Q. Qiu, “An Adaptive Scheduling and
Voltage/Frequency Selection Algorithm for Real-Time Energy
Harvesting Systems,” in Proc. of the ACM/IEEE 46th Conf. on
Des. Automation, 2009, pp. 782–787.

[2] C. Rusu, R. Melhem, and D. Mossé, “Multi-Version Scheduling
in Rechargeable Energy-Aware Real-Time Systems,”Journal of
Embedded Computing, vol. 1, no. 2, pp. 271–283, 2005.

[3] L. Niu, “Energy Efficient Scheduling for Real-Time Embedded
Systems with QoS Guarantee,” Real-Time Syst., vol. 47, no. 2,
pp. 75–108, 2011.

[4] R. Nassiffe, E. Camponogara, and G. Lima, “Optimizing QoS
in Energy-Aware Real-Time Systems,” ACM SIGBED Review,
vol. 10, no. 2, pp. 25–25, 2013.

[5] R. Nassiffe, E. Camponogara, G. Lima, and D. Mossé, “Op-
timizing QoS in Adaptive Real-Time Systems With Energy
Constraint Varying CPU Frequency,” in Proc. of the Brazilian
Symposium on Computing Syst. Engineering, 2013.

[6] R. Xu, D. Mossé, and R. Melhem, “Minimizing Expected
Energy Consumption in Real-Time Systems Through Dy-
namic Voltage Scaling,”ACM Transactions on Computer Syst.,
vol. 25, no. 4, Dec. 2007.

[7] W. Liao, L. He, and K. Lepak, “Temperature and Supply
Voltage Aware Performance and Power Modeling at Microar-
chitecture Level,” IEEE Transactions on Computer-Aided Des.
of Integrated Circuits and Syst., vol. 24, pp. 1042–1053, 2005.

[8] M. Zapater, J. Ayala, J. Moya, K. Vaidyanathan, K. Gross, and
A. Coskun, “Leakage and Temperature Aware Server Control
for Improving Energy Efficiency in Data Centers,” in Proc. of
the Conf. on Des., Automation and Test in Europe, 2013, pp.
266–269.

[9] J. Gu and G. Qu, “Incorporating Temperature-Leakage In-
terdependency Into Dynamic Voltage Scaling for Real-Time
Systems,” in Proc. of the 24th IEEE Int. Conf. on Application-
Specific Syst., Architectures and Processors, 2013, pp. 289–296.

[10] R. Rao and S. Vrudhula, “Performance Optimal Processor
Throttling Under Thermal Constraints,” in Proc. of Int. Conf.
on Compilers, Architecture, and Synthesis for Embedded Syst.,
2007, pp. 257–266.

[11] Intelligent Energy Controller, ARM.

[12] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez, “Power-
Aware Scheduling for Periodic Real-Time Tasks,” IEEE Trans-
actions on Computers, vol. 53, no. 5, pp. 584–600, 2004.

[13] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. Koutsoukos, and
H. Wang, “Feedback Thermal Control for Real-Time Systems,”
in Proc. of the 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2010, pp. 111–120.

[14] B. Zhao and H. Aydin, “Minimizing Expected Energy Con-
sumption Through Optimal Integration of DVS and DPM,” in
Proc. of the Int. Conf. on Computer-Aided Des., 2009, pp. 449
–456.

[15] C. Kyung and S. Yoo, Energy-Aware System Design: Algo-
rithms and Architectures. Springer, 2011.

[16] K. Flautner, D. Flynn, and M. Rives, “A Combined Hardware-
Software Approach for Low-Power SoCs: Applying Adaptive
Voltage Scaling and Intelligent Energy Management Software,”
in Proc of the 29th European Solid-State Circuits Conf., 2003.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge, 2004.

[18] P. T. Boggs and J. W. Tolle, “Sequential quadratic program-
ming,” Acta Numerica, vol. 4, pp. 1–51, 1995.

[19] C. T. Lawrence and A. Zhou, J.L. end Tits, “User’s Guide for
CFSQP Version 2.0: A C Code for Solving (Large Scale) Con-
strained Nonlinear (Minimax) Optimization Problems, Gener-
ating Iterates Satisfying All Inequality Constraints,” Electrical
Engineering Dept., University of Maryland, Tech. Rep., 1994.

[20] E. Bini and G. Buttazzo, “Measuring the Performance of
Schedulability Tests,” Real-Time Syst., vol. 30, no. 1, pp. 129–
154, 2005.


