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Abstract— One crucial step in the development of an application 

for a NoC-based MPSoC, consists on the allocation of the tasks 

that compose the system. When we consider such architecture, 

besides the computation time of the tasks, we also have to take 

into account the communication time between tasks in order to 

allocate and guarantee that tasks do not miss their deadlines. 

Communication between tasks is a factor that impacts directly in 

the real time system temporal behaviour. However, its 

combination with task execution is not fully taken in 

consideration in NoC-based architectures. In this paper we focus 

on the discussion and development of different heuristics that are 

used for task mapping with the use of genetic algorithms. We use 

different response-time equations in order to provide a feasibility 

analysis that works for both task execution and communication. 

Our evaluation of the algorithms show that certain heuristics can 

provide quite an improvement on the processor utilization. 

Real-time systems; Genetic algorithms; Multi-core; Network-

On-Chip 

I. INTRODUCTION 

Real-time systems are intrinsically related to embedded 
system – systems designed with a specific application in mind. 
Due to physical limitations regarding processor speed imposed 
over single-processor systems [9], multi-processor systems are 
commonly used nowadays, especially for the development of 
(real-time) embedded systems. Often, such systems are 
characterized as having soft and hard real-time constraints, 
where deadline miss for a task with hard real-time constraint 
may result in catastrophic problems [12]. 

In order to use multi-processor architectures for the 
development of real-time systems, especially those with hard 
real-time constraints, the designer has to deal with the problem 
of task mapping if the system uses a static allocation of tasks 
(know as partitioned scheduling). Therefore, each task 
competes for processor occupation only with the tasks at the 
same processor and, therefore, different task mappings may 
produce different temporal behaviours for the task set being 
mapped. Task mapping on a real-time system may be 
characterized as an NP-complete problem known as bin 
packing [11].   

Another inherit problem of real-time multi-processor 
architectures is the time that memory sharing may affect the 
system [1]. Since the time taken to share memory may directly 

impact over the timing behaviour of the task set. From a 
theoretical point of view, the memory sharing time is often 
ignored.  

In this work, we consider Network-on-Chip (NoC) 
architectures for multi-processor systems. NoC uses the 
concept of computer network to exchange data between cores, 
enabling the calculation of sharing memory time between cores 
of the system by use prioritized communication flows between 
tasks. Considering such architecture and combining different 
response-time equations for both task and communication 
flows [6], it is possible to execute a feasibility analysis over the 
system in order to achieve temporal guarantees [10].  

The contribution of this paper is the discussion and 
development of different heuristics for improving the task 
mapping in the context of genetic algorithms. This problem has 
been considered in previous work [2][3][4]. However, in this 
work we focus on using inherited aspects from real-time 
systems and NoC-based architecture and we provide three 
different main heuristics for task mapping: (i) utilization 
balance between cores; (ii) quantity of deadline misses; (iii) 
network stress. Our evaluation results show that the timing 
constraints imposed by the communication flows have a direct 
impact over the timing constraints for the tasks in the system. 
Therefore, it becomes very important to consider the time for 
memory sharing in the context of real-time multi-processor 
systems. 

This paper is organised as follows. Section II describes the 
NoC architecture we will be using in this work. Section III 
presents the computational model, and the combination of 
response-time equations that enables the feasibility analysis of 
the system. In Section IV, different heuristics derived from 
inherent properties of the NoC architecture and system model 
are proposed. In order to address the problem of task mapping, 
Section V describes the basic principles behind genetic 
algorithms, which is used to implement and evaluate the 
proposed heuristics. Experimental work presenting the results 
for the developed task mapping heuristics using genetic 
algorithms is shown in Section VI. Conclusions and future 
work are presented in Section VII. 

II. NOC ARCHITECTURE 

The design space of NoC architectures is very large, as 
many of its components can be parameterized to better meet 



design goals: routers, arbiters, buffers, flow controllers, among 
others. However, the experience acquired through the 
development of many commercial and research-oriented NoCs 
allowed the identification of a few mechanisms that are 
adequate for a wide variety of NoC configurations, and so they 
were adopted widely. For example, sophisticated routing 
algorithms generate more overhead to the overall and do not 
significantly reduce communication latency when compared 
with simple deterministic routers such as XY. Wormhole 
switching [5] is another example of a mechanism that was 
widely adopted in NoCs because it does not require large 
capacity buffers (which in turn means lower power and area 
overhead of the routers, a top priority among NoC designers).  

In this paper, we also adopt such widely used architectural 
patterns and consider NoCs with mesh topology, wormhole 
switching and XY deterministic routing. In this paper, we focus 
on one particular architectural construct that provides a flow 
controller based on priority preemptive virtual channels. By 
assigning priorities to packets, and by allowing high priority 
packets to preempt the transmission of low priority ones, we 
are able to use response-time equations in order to analyse the 
schedulability analysis of the traffic inside the NoC [6]. Figure 
1 shows the internal structure of a NoC router using such 
architecture. In each input port, a different FIFO buffer stores 
flits of packets arriving through different virtual channels (one 
for each priority level). The router assigns an output port for 
each incoming packet according to their destination. A credit-
based approach guarantees that data is only forwarded from a 
router to the next when there is enough buffer space to hold it.  

 

 

 

Figure 1.  NoC architecture with detail of the router structure 

At any time, a flit of a given packet will be sent through its 
respective output port if (i) it has the highest priority among the 

packets being sent out through that port and (ii) the next router 
in its route has enough space in its buffer. If the highest priority 
packet cannot send data because it is blocked elsewhere in the 
network, the next highest priority packet can access the output 
link. The identified architecture is therefore able to provide 
guaranteed throughput (GT) to traffic of higher priority, and 
also provides means to calculate upper latency bounds to best-
effort (BE) traffic, as the priority ordering clearly shows when 
a packet will be blocked. Its approach to guarantee throughput 
is more efficient than time-division multiplexing (TDM), as 
used in many NoC. Priority preemptive arbitration does not 
unnecessarily reserves resources, so low priority traffic can 
always use the NoC if there are no requests from GT flows. 

III. COMPUTATIONAL MODEL 

In this paper we will be using fixed priority scheduling for a 

multi-core system. The scheduling strategy used will be 

partitioned scheduling, where no migration of tasks is allowed 

[9]. We consider that each task in the system has a periodic 

behaviour, and is composed of two parts, described by: (i) 

computation time, (ii) followed by communication time. This 

way, we define that each task in the system executes its 

defined computation time in the allocated processor. After its 

processing time, the task is able to send data through the NoC. 

The second part of the task’s behaviour is optional, since not 

every task in the system is required to communicate with other 

tasks. Using this behaviour for the tasks of the system, we are 

able to represent both task computation and communication 

using response-time equations, which enables the analysis of 

the system in order to verify if deadlines are missed. This 

representation and analysis is presented in [10] and is 

discussed as follows. 

Tasks in the system are represented by the tuple 

  =(  ,   ,   ,   ). The task period (  ) is the minimum time 

interval between two consecutive releases of the referenced 

task. The task's computation time (  ) represents the processor 

time needed for a task to complete its execution. A task 

deadline (  ) is the time window where the task's results will 

be valid, considered to be equal to the tasks period in this 

paper. After a task complete its execution, it will start the 

communication activities described by   . 
As described earlier, the communication scheme used in 

this paper will be wormhole switching [5] with the minor 

exception that instead of multiple communication flows 

(communication produced by a single process) sharing the 

same virtual channel, every communication flow will have its 

own virtual channel with the same priority of the task that 

generates the flow. Therefore, in order to define the priorities 

for the tasks in the system, and consequently the priority of the 

communication flows, we adopt the rate monotonic algorithm 

[7] – an optimal algorithm, among fixed priority algorithms, 

based on the period of the tasks. The restriction related to the 

definition of priorities is due to the characteristics of the 

system. That is, the actual period for a communication flow is 

based on the period of the task. In terms of priority definitions, 

both should have the same relation in the overall system 

architecture. 
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The communication flow ci related to a task is composed by 

a set of properties represented by the tuple 

  =(  ,   ,   ,   
 ,   

 ) where    stands for the communication 

latency,    represents the minimum period between two 

consecutive packets releases on the communication flow 

(equal to the sender tasks period),    is the deadline for the 

communication flow    (equal to the sender tasks deadline). In 

this model   
  represents the release jitter for the 

communication flow and   
  represents the interference jitter 

that denotes the maximum deviation from the period between 

the successive transmissions of packets.  

In order to verify that the timing characteristics of the 

application model under the NoC-based architecture, we have 

to calculate the worst-case latencies for both tasks and 

communication flows. First we calculate the worst-case 

latency for the task execution, which is used as input to 

calculate the worst-case latency of the communication flows 

of the system. Moreover, in both cases we have to check if no 

deadline is violated upon the completion of the execution of 

the task or the transmission of the communication flow. Both 

evaluations are done analytically, using the equations 

presented in this section. 

In the first step we obtain the worst-case response-time for 

the execution of the tasks executing in each core using 

classical response-time analysis [6] (Equations (1) and (2)). 

The use of response-time analysis enables the exact 

representation of the worst-case response-time for a task and, 

at the same time, checks if the task meets its deadline.  

 

 ( )                                   (1) 

 

    ( )              (2) 

 

In Equation (1),    is the interference caused by higher 

priority tasks, which is calculated by Equation (3). 

 

   ∑ ⌈
 ( )

  
⌉         ( )                     (3)  

 

Where hp(i) stands for the set of all flows with a priority 

higher than the flow being analysed. 

 

In the second step a priority window analysis [6] for the 

communication flow is performed. This communication flow 

follows the execution of the respective task that generates the 

flow. The result from the previous analysis is used as input 

(parameter   
  in Equation 4) for this equation. In terms of the 

equation, we assume that the response-time for the task (   in 

Equation 2) corresponds to the release jitter of the 

communication flow. The priority window result will include 

the worst-case response time and therefore will result in the 

total worst-case response-time for both execution and 

communication of the task. To calculate the priority window 

we will use the following equations. 
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IV. HEURISTICS FOR TASK MAPPING 

Heuristics are relevant pieces of information to solve a 

specific problem, usually enabling an evaluation of the current 

state of a possible solution. In this work we are concerned 

with different factors that affect the temporal behaviour of the 

system model described in the previous section. Each of these 

factors is refined into a numeric value in order to provide 

grounds for the evaluation of the solution. In the following 

sub-sections we discuss different heuristics that are able to 

guide the task mapping process. 

 

A. Utilization balance between cores 

 

In the seminal paper by Lyu and Layland [7], it was proven 

that the rate monotonic model ensures task scheduling without 

deadline misses up to a given bound based on processor 

utilization. Thus any utilization balance between cores that 

achieve this bound for each core will automatically ensure that 

no deadline miss happens. Even if the utilization balance does 

not achieve the utilization bound in each core, it will reduce 

the deadline miss possibility by not letting cores get 

overloaded. 

In order obtain a numeric value that measures how well 

balanced the systems processors are, the statistic measure of 

standard deviation is utilized. A lower standard deviation 

value represent that the core utilization will be closer to a 

homogeneous distribution. The utilization standard deviation 

is given by the following equation. 

 

   
∑ (     )
 
   

 
              (6) 

 

Where    stands for the utilization of the core i,    stands 

for average core utilization and n stands for the number of 

cores in the system. 

 

B. Quantity of deadline misses 

 

Using an exact feasibility analysis, such as response-time 

analysis, it is possible to obtain the number of deadlines a 

given task distribution has missed. This is a straightforward 

measure since it uses the response-time analysis described 

previously, and used to check if the whole system is 

schedulable.  

However, changes between task distribution sets may 

cause subtle improvements that cannot be detected by this 

heuristic during mapping. This heuristic fails to detect the 

possibility of future improvements on its resulting mapping, 

since an improved mapping can be achieved with the same 

amount of deadlines missed. For example, a task set may take 

more cycles of the heuristic mapping algorithm in order to 

reduce the number of deadline misses on a task set. 

 

C. Network stress 



 

The stress imposed on the network by a given task 

disposition will affect the temporal behaviour of the system 

directly, where overloaded routers will possibly result in 

communication flows missing deadlines. 

The router utilization behaviour differs from the CPU 

utilization behaviour because, while the total CPU utilization 

will always remain the same for the same task set, the 

utilization sum of all routers will vary according to the task 

distribution between the cores in the same task set. Due to this 

property, the use of the standard deviation of the router 

utilization (  ) alone would not be able to provide a satisfying 

evaluation – the router utilization could be balanced but all 

routers in the NoC would be overloaded. Therefore, the 

maximum router utilization among all routers in the system 

(    ) was included in the analysis. The follow equation was 

created to calculate the network stress measure. 

 

                                     (7) 

 

Utilizing the max router utilization along with the average 

deviation of the router utilization will imply in the reduction 

of the max router utilization along with the improvement of 

the utilization balance. The way this equation was specified, it 

will give a higher importance to the max utilization reduction 

because overloaded routers will quite possibly result in 

deadline misses, utilizing the homogeneity of the utilization 

distribution among all routers in the system as a untie criteria. 

V. TASK MAPPING USING GENETIC ALGORITHMS 

According to [8], the idea behind the genetic algorithm is to 

evolve a population of solutions to a certain problem using 

operators inspired on genetic variety and natural selection. 

Genetic algorithm uses an analogy to evolutionary biology in 

order to move inside the solution space. This approach 

assumes that every solution on the solution space may contain 

traces of the optimal solution and that the quality of a given 

solution is directly related to how close a solution is to the 

optimal solution. Considering each solution as an individual, 

with the given solution mapped in its genetic code 

(chromosome) and a measure of how close this solution is to 

the optimal solution (factor known as fitness). 

The algorithm starts with the creation of a random 

population, a set of n individuals representing n distinct 

solutions to the given problem. Each individual belonging to 

this population will be evaluated in order to identify its fitness. 

After the identification of the population fitness, the 

reproduction process takes place, where the fitter individuals 

will have a higher chance to reproduce. 

The reproduction process consists in dividing each 

individual chromosome in k points, separating the 

chromosome in k+1 parts. A new individual will be created 

inheriting chromosome parts from both parents in an 

alternating manner. This process will continue between 

individuals in the current population until there are enough 

new individuals to fill a new population that will then 

substitute the current population. After the new population is 

created, an evaluation of its individuals fitness will begin and 

the cycle will continue until the stop condition defined by the 

developer is achieved. In order to enhance the efficiency of the 

algorithm, some additional notions are used: 

 Elitism: has the objective of preserving the fittest 

individuals in a given population, copying these 

individuals to the new population. This practice aims to 

preserve good sets of genes in the population, although, 

it may cause unwanted effects. Copying high fitness 

individuals to the new population will, in time, reduce 

the genetic variety of the population, increasing the 

similarity of the population to the elite individuals in 

each cycle. In order to restrict this effect, usually, only 

one individual (the fittest) will be taken from the old 

population; 

 Mutation: this practice consists in causing random 

variations in some individuals of the new population. 

The mutation occurrence will be dictated by a mutation 

chance value (measured through a percentage). The 

mutation aims to inject genetic variety to a population 

in order to avoid that the population becomes stagnated 

(all individuals sharing most of the genetic traits). A 

high mutation chance may compromise the algorithm 

convergence, nullifying the result of the reproductions. 

The mutation chance must be calibrated to avoid 

population stagnation without compromising the 

algorithm convergence.  

In order to address the problem of task mapping using a 

genetic algorithm, the chromosome has to be modelled in a 

way that it represents a solution to the problem. For this work, 

the chosen chromosome is composed of an array of (task, 

processor) pairs with one fix position for each task in the task 

set. The array is ordered by task so any position on a given 

chromosome will represent the same task on any other 

chromosome. After the chromosome is modelled, certain 

aspects of the genetic algorithm have to be adjusted for task 

mapping: 

 Reproduction: the chromosome previously 

discussed was modelled in a way that it is guaranteed 

that, at any given position in one gene represents the 

exactly same task at the same position in another 

gene. During reproduction, three random points are 

chosen, both participant genes are divided in the 

chosen points and a new individual is created with 

alternated parts from each one of the participants. 

 Elitism: elitism was used in the developed algorithm, 

and it preserves only the fittest individual of the 

population. 

 Mutation: the mutation procedure was defined as a 

reallocation of a random task to a new random 

processor. The newly resulted mapping is evaluated 

in both utilization balance and network stress criteria. 

If the new mapping gets worst in both criteria, the 

mapping is restored and a new task reallocation is 

attempted. Since the mutation is focused on 

improving the solution, a high mutation probability 

was chosen (25%). 



 Fitness: one or more of the previously discussed 

heuristics evaluates the fitness measure of the 

population individuals. 

 Stop condition: the stop condition utilized was an 

arbitrary number of generations produced by the 

algorithm. 

 Population size: after tests of convergence and 

stagnation considering the population for the task set 

used in this paper (described in the next section), the 

size chosen for the population was of 100 individuals. 

VI. EVALUATION 

In order to evaluate the genetic algorithm using the 
heuristics described earlier, we used a synthetic task set 
composed of 78 tasks. From the 78 tasks that compose the task 
set, 39 have relevant computational time (producing occupation 
on the cores) and 39 tasks have no relevant computational time, 
but are used to communicate with the tasks with relevant 
computational time, therefore generating communication 
flows. This particular task set was designed to impose certain 
difficulties on the task mapping process, including: 

- Chunky tasks: the task set has tasks generating 75% of 
core occupation. This forces the algorithm to isolate 
them in a given core, since the presence of other tasks 
on the particular core have a very high probability of 
generating deadline misses. 

- High CPU demand: provided a set of 12 cores, the 
average core utilization reaches 74.58%. 

With this task set, we analysed each heuristic (described in 
Section IV) for the task mapping over a 4x3 (12 cores) NoC-
based architecture. In the evaluation for each heuristic, we 
executed 10 runs of the genetic algorithm generating 350 
cycles of reproductions (generating new populations, where 
each population is composed of 100 individuals). 

The evaluation results are displayed in bar graphics 
(Figures 2, 3, 4 and 5), dividing the deadline misses into task 
deadline misses and flow deadlines misses. The bars for task 
and flow deadline misses were pilled up with the objective of 
providing a total deadline misses scale for comparison. Each 
bar (total of 10) represents a run for the genetic algorithm. 

 

A. Results for the utilization balance between cores heuristic 

 

Figure 2 presents the results obtained for the heuristic of 
utilization balance between cores. Looking at the results, we 
can see that the mapping results produced a higher number of 
flow deadline misses in comparison to the task deadline misses. 
Although this heuristic produced a higher number of flow 
deadline misses in its test, the flow deadline misses number 
was in average only 15% higher than the task deadline misses. 
Considering that the heuristic does not take flows in 
consideration during the mapping process, this cannot be 
considered a bad result. The computation balance imposed by 
this heuristic, in itself reduces the core overload that makes the 
core tasks have more spare processing time. This causes them 

to finish the computation earlier, therefore releasing their flows 
earlier, giving the communication flows more time to arrive to 
their destination. On this heuristic, the best result achieved a 
schedulability of 92% of all.  

 

Figure 2. Test results for the utilization balance between cores heuristic 

 

B. Results for deadline misses quantity 

 

Figure 3 presents the results obtained for the heuristic based 
on deadline misses. This heuristic attacks directly the 
schedulability problem and, as predicted, it achieves the lower 
number of deadline misses, achieving 94,9% of total 
schedulability. However, this heuristic is more computationally 
demanding when compared to the others. In order to obtain 
more beneficial changes (that may not generate a lower number 
of deadline misses in each iteration) this heuristic should be 
combined with other heuristics capable of tackling 
communication flows. 

 

Figure 3. Test results for the deadline misses quantity heuristic 

 

C. Results for network stress 

 

Figure 4 presents the results obtained for network stress. 
This heuristic showed a high result of deadlines missed, but a 
balanced number of deadlines missed for both tasks and flows. 
It would be expected that the heuristic showed a higher number 
of task deadlines missed, since it ignores altogether the 
execution of the task. However, by ignoring task execution will 
cause overloaded cores and these cores will result in tasks 
missing their deadline by so much that their generated flows 
will be release late enough to miss their deadlines upon release. 
This heuristic also showed a wide interval variation on its 
results. The explanation comes from the balance condition 
presented on cycles (not letting the core get overloaded on the 
first swap), where the slightest interaction with another 
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parameter (which could be considerate a interaction with 
another heuristic) can improve the results of an isolated 
heuristic. On its bets results, this heuristic obtained a 78,2% of 
both task and flow schedulability. 

 

Figure 4. Test results for the network stress heuristic 

 

D. Results for the combination of different heuristics 

 

Figure 5 presents results obtained by combining different 
heuristics discussed before. In order to achieve better results 
during the mapping process, we tested several combinations for 
the heuristics described previously. The best results were 
achieved with a combination (at several stages) from all the 
aforementioned heuristics.  

Firstly a filter was added on the cycle function using the 
network stress and occupation balance heuristics. This filter 
prevents the cycle function to provide new states that do not 
improve the occupation balance or lower the network stress. 
Therefore, the cycle function will keep generating new states 
without returning until an improvement is made in one of these 
factors.  

After a new state is reached, the evaluation function will 
focus its evaluation on the deadline misses, giving more 
importance to the deadline misses quantity. This combination 
of heuristics resulted in a 100% task schedulability and 94,9% 
flows schedulability. Showing an improvement on comparison 
to the best results from the heuristics discussed before.  

 

Figure 5. Test results for the combination of heuristics 

 

VII. CONCLUSIONS AND FINAL REMARKS 

The communication between tasks is a factor that impacts 

directly over the real time temporal behaviour of a multi-

processor system. By using a NoC-based architecture, as the 

one described in this paper, it is possible to use schedulability 

analysis in order to check if both tasks and flows are 

schedulable in the system. This is used as the basis to check 

different task mapping heuristics based on genetic algorithm.  

The results provided by the experiments showed that the 

approach used in this paper is a viable approach to deal with 

the mapping problem. Although it did not provide a full 

schedulable mapping, it came really close to full schedulability, 

which is a good result considering the high CPU occupation 

provided by the task set (fixed-priority in a partitioned 

scheduling system) and the presence of chunky tasks.  

The implementation process highlighted a specific area 

where this approach could be improved. The execution time 

had an average of 30 minutes per run. The schedulability 

analysis used to implement the quantity of deadlines missed 

heuristic was the culprit. This is not a problem, since the 

analysis is off-line, but should be taken into consideration in 

case of a possible online task mapping. 

Moreover, the system model uses a notion of partial 

dependence, where the release of a communication flow 

depends on the task finishing its execution. However, the 

execution start time for the task that will receive this 

communication does not depend on the communication flow 

arrival. To simulate this dependence, a deadline was given to 

the communication flows. This model could be improved to 

provide a full dependence notion that would increase its 

analysis. Although, it should be mentioned that this alteration 

would demand a more complex schedulability analysis 

increasing even more its computational demand. 
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