
Revealing the secrets of RUN and QPS: new trends

for optimal real-time multiprocessor scheduling

Ernesto Massa†, George Lima‡, Paul Regnier‡

†State University of Bahia and UNIFACS,
‡Federal University of Bahia

Salvador, Bahia, Brasil

Email: esmneto@uneb.br,{gmlima,pregnier}@ufba.br

Abstract—Until recently there has been a common belief that
optimal multiprocessor real-time scheduling algorithms neces-
sarily incur a high number of task preemptions and migrations.
New scheduling algorithms have shown that this is not the case.
In this paper we explain why two of these algorithms, RUN
and QPS, achieve optimality with only a few preemptions and
migrations. We also compare these two algorithms, exhibiting
their similarities and differences. By putting RUN and QPS side-
by-side, we bring about their fundamental properties and help
in the understanding of the multiprocessor real-time scheduling
problem.

I. INTRODUCTION

The problem of optimally scheduling a set of n preemptible

independent real-time tasks on m identical processors has

extensively been studied. By optimal scheduling we mean

producing a correct schedule (no missed deadlines) whenever

it is possible to do so. When task deadlines are equal to

their inter-release times (implicit deadlines), it is well known

that this problem can be optimally solved by enforcing the

execution of all tasks within short time intervals. The amount

of execution in each interval is then assigned to system

tasks following some fairness criteria [1]. Several approaches

employ this principle e.g., [1]–[8]. As a side effect, excessive

overhead is usually found in terms of task preemption and

migration.

Notably RUN (Reduction to UNiprocessor) [9] and QPS

(Quasi-Partition Scheduling) [10] are two optimal scheduling

approaches which employ different principles to obtain opti-

mality. Both of them partition the system packing tasks into

groups and each group is managed by servers, using the well

known EDF policy [11] as an underline scheduling algorithm.

A server can be thought of as a proxy entity which schedules

their client tasks. If the packing produces up to m task groups,

each of which requiring less than 100% of a processor, the

system is feasibly scheduled by EDF in each processor. In

this case, no task needs to migrate during its execution and

the system behaves like partitioned-EDF [12]. Otherwise, RUN

and QPS provide their own mechanisms to effectively deal

with task migration, which is illustrated with the following

example:

Example I.1. Consider a 2-processor system with three tasks,

τ1, τ2, and τ3. Tasks τ1 and τ2 are periodically released every

3 time units and require 2 time units of execution. Task τ3

requires 4 time units and its period is 6. All tasks are first

released at time 0. Tasks deadlines are equal to their periods.

Following the notation used in this paper, these tasks are

represented as τ1: (2, 3), τ2: (2, 3), and τ3: (4, 6). As each task

requires an execution rate of 2/3, it is clear that any correct

schedule for this example implies some task migration. In a

nutshell, RUN and QPS deals with such a system as follows.

RUN transforms the multiprocessor scheduling problem into

one or more uniprocessor scheduling problems. It is strongly

based on the duality principle. Roughly speaking, if one knows

when a task should not execute, then the derivation of when it

must execute is straightforward. As each task requires 2/3 of

a processor, it leaves out 1/3 unused. That is, each primal task

τi is associated to a dual task τ∗i requiring 1/3 of a (virtual)

processor and keeping the same deadlines. A correct schedule

of the dual tasks can be obtained by using EDF on a single

(virtual) processor (see Figure 1). By the duality principle, the

schedule for the primal tasks can be obtained. When a dual

task is executing on the virtual processor, there are exactly

m = 2 dual tasks not executing. The primal tasks related to

these dual ones can then be chosen to execute.

QPS partitions the set of 3 tasks into two groups, {τ1, τ2}
and {τ3} say, and explicitly deals with what exceeds 100% of

the former group. As it requires 4/3 of processing resources

(i.e., more than one processor) and contains at least two tasks,

QPS schedules them onto two processors by ensuring the

parallel execution of τ1 and τ2 during 1/3 of the time. More

specifically, QPS guarantees that 1/3 of processing resources

are reserved to execute τ1 on a processor; another 1/3 is

reserved to τ2’s execution on the same processor as τ1’s;

whereas 1/3 of the time both τ1 and τ2 are executed in parallel.

Task τ3 is allocated to a single processor and receives 2/3 of

processing resources.

The explanation above would still apply when the three

tasks were servers that aggregate other tasks, as it would

be clearer shortly. Although RUN and QPS employ distinct

mechanisms, as can be seen by the generated schedule in

Figure 1, they share similarities, which are not explicit at

first glance. By delving into the underline principles of RUN

and QPS we contribute to the better understanding of the

multiprocessor scheduling problem since such principles are in

the core of the good performance of these algorithms. Since

experimental comparison between RUN and QPS has been



Dual schedule on one

virtual processor
τ∗1 τ∗2 τ∗3 τ∗1 τ∗2 τ∗3

Primal schedule on two

real processors
τ3

τ2

τ2

τ1

τ3

τ2

τ2

τ1

Figure 1. Possible schedule for tasks τ1: (2, 3), τ2: (2, 3) and τ3: (2, 3) on
two processors. RUN applies the duality principle: whenever a dual task τ∗i is
executing on the virtual processor, the other real tasks are selected to execute
on real processors. QPS partitions the system into {τ1, τ2} and {τ3}, and
enforces the parallel execution of τ1 and τ2 during 1/3 of the time whereas
τ3 is statically allocated on a single processor and does not migrate. Enforced
parallel execution is indicated by the dashed rectangles.

previously carried out [10], we chose to focus in this paper

on the relation between these two algorithms, which has not

been addressed up to now.

II. TERMINOLOGY AND BASIC CONCEPTS

A. Assumptions and Notation

Let Γ be a set of n tasks scheduled on a set of m
identical processors. Each task τ in Γ releases a (possibly

infinite) sequence of jobs, or workloads. A job is a sequence

of instructions with a worst-case execution time, a release

time and a deadline. A correct schedule is the one such that

all released jobs are completely executed, they do not start

executing before their release times, they finish execution no

later than their deadlines, and they do not execute at the same

time on more than one processor.

In this paper we assume that all tasks release their jobs

periodically, i.e., we focus on the periodic task model. This

is because our main objective is to explain the scheduling

principles behind RUN and QPS. Since RUN was designed

for periodic tasks, we also limit the description of QPS for

the same task model. Moreover, we restrict our explanation

to systems of n tasks that require 100% of m processors.

This is not a restriction of RUN or QPS since a fully utilized

system can be thought of as an under utilized system with

added dummy tasks. This assumption, however, makes the

description of RUN and QPS easier for the our purposes.

In order to represent possible task aggregations into servers,

the concept of task for RUN and QPS is slightly more

generic than what is commonly found elsewhere. A task τ
is characterized by its rate, denoted R(τ), which represents

the fraction of a processor it requires, and it is called a fixed-

rate task. When τ releases a job at time r with deadline at time

d, its execution time c equals R(τ)(d − r). That is, c is no

longer fixed but explicitly depends on τ ’s job deadline. Note

that under the usual task model, d−r is constant and so this is a

particular case of our task model. For example, a periodic task

τ with initial release time r0 = 0, period T and execution time

c, is represented as a fixed-rate task where R(τ) = c/p and the

set of all release instants of the jobs of τ is {rk = kT, k ∈ N}.

budget of σ

0 0.8 1.2 2 2.2 2.6 3 3.4 4 4.4 4.8 5.2 5.6 6

1.2

0.6

0.8

0.4

0 1 2 3 4 5 6

J1,1 J2,1 τ ′ J2,1 J1,2 τ ′ J1,2 J2,2 J1,3 τ ′ J1,3 τ ′ J2,2

J1,1 J1,2J2,1 J1,3, J2,2

Figure 2. Budget management and schedule for an EDF-server σ with client
set equal to Γ = {τ1: (0.8, 2), τ2: (0.6, 3)} and R(σ) = 0.6. Ji,k is the

kth job of τi. Task τ ′ represents the concurrent execution of other tasks or
servers.

If Γ is a task set, we use R(Γ) =
∑

τi∈Γ R(τi) to denote the

total rate of tasks in Γ.

We assume that jobs can be preempted at any time during

their execution. When preempted in a processor, a job can

resume its execution on another processor. There is no cost

associated with preemption or migration. It is also assumed

that a task can only release a new job after the deadline of its

previous job.

B. Servers

As mentioned earlier, both RUN and QPS packs tasks into

servers. The type of server considered is called fixed-rate EDF

servers [9]. Instead of formally defining servers, we illustrate

the mechanism they provide.

A server reserves processing resources for a set of tasks, or

even other servers, which are called its clients. It thus regulates

the execution of its clients, scheduling them by EDF. The set

of deadlines of a server contains all deadlines of its clients

and a server releases a new job at any time which is also a

release instant of some of its clients. If the accumulated rate

of a set of tasks Γ is equal to R(Γ) 6 1, a server σ with rate

R(σ) = R(Γ) can schedule Γ in a way that no deadline is

missed (for a formal proof refer to [9]).

Figure 2 provides some illustration. A server σ has rate

equal to 0.6, which corresponds to the accumulated rate needed

to execute their clients, R(τ1) + R(τ2). At time 0, the server

releases its job with deadline at time 2 and workload equal

to 0.6 × 2 = 1.2. Once σ is scheduled by the system, their

clients jobs are executed following EDF. At time 2 a new

server job is released, but now with workload equal to 0.6 since

the time interval between release time and deadline is equal

to 3−2 = 1. As can be seen, a server is actually an execution

proxy. If the server rate was equal to 1, its schedule decisions

would be the same as EDF running on a single processor.

C. Standard scheduling approaches for multiprocessors

We now call attention to the need of additional preemption

points for achieving optimality in scheduling multiprocessor

real-time systems. Consider again example I.1. If some usual



greedy scheduling algorithm (e.g., EDF) is in place, the system

is not schedulable. It would choose two tasks, τ1 and τ2, to

execute from time 0 until 2 wasting processor resources during

[2, 3). This means that one needs to preempt either τ1 or τ2
in some point during [0, 2) allowing for the execution of τ3.

The standard strategy used by several scheduling algo-

rithms is based on the proportional execution and deadline

propagation. A classical approach is known as Proportional

Fairness approach (PFair) [2] according to which quantum-

based windows are defined and tasks are scheduled within

short time intervals so as to emulate a fluid schedule. Each task

executes proportionally to their rates within the intervals. More

efficient versions of PFair [7] can be obtained if task deadlines

are propagated to create scheduling windows. Within each

window tasks execute proportional to their rates according to

some fairness criterion [1]. Applying this strategy to Example

I.1, this means that all tasks execute 2/3 during time windows

[0, 3) and [3, 6). This creates the necessary preemption point

at times 1 and 4, which leads to the same kind of schedule

given in Figure 1. The problem is that the interval between any

two deadlines may be arbitrarily short, causing the propagation

of small scheduling windows throughout the system, greatly

affecting performance.

Deadline propagation is indeed an effective synchronization

mechanism for creating the necessary preemption points. RUN

and QPS, nevertheless, restrict deadline propagation to some

parts of the system. This is achieved by the way these

algorithms partition the system and encapsulate the entities

to be scheduled into servers. Moreover, RUN and QPS do

not employ proportional execution of tasks (or fairness) to

generate preemption points. In the next sections we provide

details about the mechanisms used by RUN and QPS to

achieve good performance.

III. THE RUN ALGORITHM

RUN first carries out an off-line transformation of the

multiprocessor system and uses the information from this

transformation to generate the schedule on-line. In the off-

line phase, RUN carries out a series of DUAL and PACK

operations for iteratively reducing the number of processors

in a multiprocessor system until an equivalent uniprocessor

system is obtained. The PACK operation transforms low-rate

tasks (or servers) into a set of high-rate servers. The DUAL

operation creates the corresponding dual servers which require

less processing resources than their primal ones. By carrying

out both operations in a systematic way, RUN reduces both

the number of entities to be scheduled (by packing) and the

number of processors considered (by duality).

The DUAL operation on a (primal) server σ creates a (dual)

server σ∗, by computing R(σ∗) = 1 − R(σ). All deadlines

of σ are also deadlines of σ∗. Hence, the execution time of

σ∗ during any time window represents the idle time of σ
in that window and vice-versa. Also, the execution of σ∗ in

the dual system induces the non-execution of σ of the primal

system and vice-versa. The reduction carried out by RUN was

EDF(1)

second
reduction:

σ
∗(1/7)
1 σ

∗(2/14)
2 σ

∗(5/7)
3

one processor

first
reduction:

σ
(6/7)
1 σ

(12/14)
2 σ

(2/7)
3

dual
tasks: τ

∗(2/7)
1 τ

∗(2/7)
2 τ

∗(2/7)
3 τ

∗(4/14)
4 τ

∗(4/14)
5 τ

∗(4/14)
6 τ

∗(2/7)
7

real
tasks: τ

(5/7)
1 τ

(5/7)
2 τ

(5/7)
3 τ

(10/14)
4 τ

(10/14)
5 τ

(10/14)
6 τ

(5/7)
7

two processors two processors

Figure 3. RUN off-line allocation phase for Example III.1, which needs
two reduction levels. DUAL and PACK operations are indicated by arrows
and horizontal lines, respectively. Solid rectangles indicate the number of
processors used by task clusters.

illustrated in Figure 1. We now make use of a slightly more

complex example to give more details about the algorithm.

Example III.1. Consider a set of seven periodic tasks all

initially released at time 0. Let τ1, τ2, τ3, τ7 be in the form

(5, 7) and τ4, τ5, τ6 be defined as (10, 14).

During the off-line phase, the PACK operation does not

group any system tasks because they have individual rate

greater than 0.5 and RUN packs tasks to be scheduled by

servers which cannot have rate greater than 1. The DUAL

operation can be applied and it creates seven dual tasks

τ∗i : (2, 7), i = 1, 2, 3, 7 and τ∗i : (4, 14), i = 4, 5, 6. Applying

the PACK operation on these dual tasks, they can be grouped

together as follows: Tasks τ∗1 , τ∗2 and τ∗3 can be associated to

a server σ1; τ∗4 , τ∗5 and τ∗6 to a server σ2; and τ∗7 to server

σ3. This grouping actually creates virtual clusters {τ1, τ2, τ3},

{τ4, τ5, τ6} and {τ7}. This is because the scheduling of server

σi induces the schedule of its clients, which by duality is

converted to the schedule of their primal servers (or simply

tasks here).

As the server rates sum more than one (R(σ1) = R(σ2) =
6/7 and R(σ3) = 2/7), a second reduction level is needed.

Carrying out the DUAL operation this time creates the dual

system σ∗
1 , σ∗

2 , and σ∗
3 , which can be scheduled on a single

processor since R(σ∗
1) = 1/7, R(σ∗

2) = 2/14 and R(σ∗
3) =

5/7. This ends the off-line phase.

Note that there are two virtual systems, one at the first

reduction level with two processors obtained by the first

reduction, and another at the second reduction level with a

single processor, the result of the second reduction. The former

is composed of servers σ1, σ2, and σ3 and their client tasks

obtained by duality of the real tasks τi, i = 1, 2, . . . , 7. The

latter virtual system is made of servers σ∗
1 , σ∗

2 , and σ∗
3 . During

the on-line phase, all virtual and real systems are scheduled.

An interesting aspect is that virtual clusters {τ1, τ2, τ3},

{τ4, τ5, τ6} and {τ7} have total rates respectively equal to

2 + 1/7, 2 + 1/7 and 5/7. Hence, a correct schedule for the

system can be obtained if each of the first two clusters are



assigned to two dedicated processors and the fifth processor

manages the third cluster {τ7} plus the excess of the others.

RUN generates the schedule by doing exactly that.

The on-line phase is somewhat straightforward, as illus-

trated in Figure 4. As servers have all deadlines of their clients,

at time 0 the deadline of σ∗
1 is 7 (first deadline for {τ1, τ2, τ3}),

the deadline of σ∗
2 is 14 (first deadline for {τ4, τ5, τ6}), and the

deadline of σ∗
3 is 7 since τ7 is its only client. As scheduling

choices must begin at the highest reduction level (in this case,

the second one), Figure 4(a) shows that server σ∗
1 is selected

(via EDF) to execute at time 0 on the single virtual processor.

This means that its primal σ1 must not execute and servers

σ2 and σ3 are then selected to execute on the two virtual

processors at the first reduction level (Figure 4(b)). As σ1 is

not selected at the first reduction level, none of its dual clients

(τ∗1 , τ∗2 and τ∗3 ) are scheduled at time 0 and their respective

primal tasks (τ1, τ2 and τ3) are selected to execute at time 0
(Figure 4(c)).

Servers σ2 and σ3 select their highest priority clients (via

EDF), τ∗4 and τ∗7 for instance (Figure 4(d) and Figure 4(e),

respectively). By the duality principle, this means that tasks

τ4 and τ7 must not execute.

The execution of σ∗
1 ends at time 1 since its rate equals 1/7

and its nearest deadline is 7. This creates a necessary pre-

emption point. However, this preemption does not propagate

throughout the whole system. At time one, σ∗
3 is selected at the

second reduction level (Figure 4(a)) and then σ1 and σ2 occupy

both virtual processors at the first reduction level (Figure 4(b)),

scheduling respectively their dual clients τ∗1 (Figure 4(c)) and

τ∗4 (Figure 4(d)). Hence, τ1 and τ4 are the only tasks in clusters

{τ1, τ2, τ3} and {τ4, τ5, τ6} (Figure 4(c)-(d)) not to execute,

respectively. As σ3 does not execute at the first reduction level

(Figure 4(b)), its only client τ∗7 cannot be selected to execute,

implying that τ7 must execute (Figure 4(e)).

We now observe a key feature of the reduction procedure

explained above. Consider cluster {τ1, τ2, τ3} for illustration.

Its tasks require 2 + 1/7 (> 2) processing resources. That

is, their cumulative rate exceeds two dedicated processors by

1/7. This excess rate is exactly what appears at the second

reduction level as a rate of σ∗
1 . Observe that whenever σ∗

1

executes (Figure 4(a)), τ1, τ2 and τ3 also execute in parallel

(Figure 4(c)). In other words, σ∗
1 ’s rate can be interpreted as

the need for parallel execution for cluster {τ1, τ2, τ3}. Thus,

when σ∗
1 is selected to execute at the second reduction level,

RUN actually ensures that three processors are assigned to its

cluster {τ1, τ2, τ3}. The mechanism to ensure this behavior is

the duality principle associated to the virtual clustering.

Although not applying duality, QPS also manages this need

for parallel execution of groups of tasks, as will be clearer in

the next section.

IV. THE QPS ALGORITHM

Like RUN, QPS partitions the system off-line and generates

the schedule on-line. However, QPS allows for partitions

containing sets of tasks with accumulated rate greater than

1 as long as it is lower that 2. Also, QPS requires that what

Schedule of dual servers
σ∗
1 , σ∗

2 and σ∗
3 on one

virtual processor

σ∗
1 σ∗

1σ∗
2σ∗

3 σ∗
3

(a) Second reduction level virtual scheduling

The schedule of σ∗
1 , σ∗

2 and σ∗
3

induces the schedule of their
primals σ1, σ2 and σ3

on two virtual processors

σ1 σ1 σ1

σ2 σ2

σ3 σ3 σ3

(b) First reduction level virtual scheduling

While selected to execute,

σ1 schedules the client set

of dual tasks {τ∗1 , τ
∗
2 , τ

∗
3 }

τ∗1 τ∗2 τ∗3 τ∗1 τ∗1 τ∗2 τ∗3

The schedule of τ∗1 , τ∗2 and τ∗3
induces the schedule of
real tasks τ1, τ2 and τ3
on two dedicated real processors

and on a portion of a third

real processor

τ1 τ1 τ1 τ1

τ2 τ2 τ2 τ2

τ3 τ3

(c) Scheduling of the real task cluster {τ1, τ2, τ3}

While selected to execute,

σ2 schedules the client set

of dual tasks {τ∗4 , τ
∗
5 , τ

∗
6 }

τ∗4 τ∗5 τ∗5 τ∗6

The schedule of τ∗4 , τ∗5 and τ∗6
induces the schedule of
real tasks τ4, τ5
and τ6 on two dedicated

real processors and on a portion of

a third real processor

τ4

τ5 τ5 τ5

τ6

(d) Scheduling of the real task cluster {τ4, τ5, τ6}

While selected to execute, σ3

schedules its only client τ∗7
τ∗7 τ∗7 τ∗7

The schedule of τ∗7 induces

the schedule of real task τ7
on a portion of a processor

τ7 τ7

(e) Scheduling of the real task cluster {τ7}

Figure 4. The schedule generated by RUN for Example III.1. Gray and white
boxes represent the real and virtual task/server execution, respectively.

exceeds 1 on a given partition set be lower than the rate of

each element in that partition. We note that if the excess rate

was not less than the rate of some task on a partition set,

it would always be possible to find a better partitioning by

re-allocating such a task. This kind of partitioning is called

quasi-partitioning [10]. There are a number of heuristics in

line with such quasi-partition requirements that can be used

as implementation procedure, as the First-Fit Decreasing Bin-

Packing for instance.

We return to Example III.1 for an illustrative description

of QPS using a possible way of quasi-partitioning the system.

The reader interested in a more formal description may refer to

[10]. The seven tasks of the example must be assigned to the



five processors available. The system can be quasi-partitioned

as Γ1 = {τ1, τ2}, Γ2 = {τ3, τ4}, Γ3 = {τ5, τ6}, Γ4 = {τ7}
and Γi assigned to processor i = 1, 2, . . . , 4. At this stage,

processor 5 is still empty. As the execution rate of the former

three sets is 10/7, each of them is clearly not schedulable

on a single processor. QPS manages the execution of such

sets, called major execution sets, using what is called QPS

servers, which actually are four fixed-rate EDF servers. Minor

execution sets, namely those that do not require more than one

processor, are managed by local EDF on the processors they

are assigned to.

If Γ is a major execution set, x = R(Γ) − 1 is what

exceeds the capacity of a processor. In this case, Γ is bi-

partitioned into two subsets Γ = Γa ∪ Γb and QPS servers

σM , σS , σA and σB are created to manage the execution of

these tasks. σA is dedicated to serve tasks in Γa at a rate

of R(σA) = R(Γa) − x and σB is dedicated to serve tasks

in Γb at a rate of R(σB) = R(Γb) − x. σM and σS can

serve any task in Γ at a rate of R(σM ) = R(σS) = x. At

any time, all QPS servers associated with Γ share the same

deadlines. σA and σB are called dedicated servers associated

to Γa and Γb, respectively, and σM and σS are called master

and slave servers, respectively. Servers σA and σB respectively

deal with the non-parallel execution of Γa and Γb, while σM

and σS deal with their parallel execution. Whenever σM is

scheduled to execute, σS also executes, which explains their

names. Also, whenever σM and σS execute, one task from Γa

and one task from Γb execute in parallel; the choice of which

executes on behalf of σM or σS is only a matter of efficiency.

As R(σA)+R(σB)+R(σS) = 1, σA, σB and σS can execute

on a single processor. Server σM , meanwhile, executes on a

different processor.

Using our illustrative example and considering major ex-

ecution sets Γ1, Γ2 and Γ3, we proceed as follows. QPS

servers σM
i , σS

i , σA
i and σB

i , with rates equals to R(σM
i ) =

R(σS
i ) = 3/7 and R(σA

i ) = R(σB
i ) = 2/7, are associated

to Γi, i = 1, 2, 3. Masters and slaves servers schedule any

client in their respective major execution set and masters are

allocated to a different processor from their associated slave

and dedicated servers. For example, σM
1 can be exported to

execution set Γ4 making Γ4 = {σM
1 , τ7} a major execution

set. This in turn requires the creation of σM
4 , σS

4 , σA
4 and

σB
4 , and master servers σM

2 , σM
3 and σM

4 can be allocated to

the empty processor 5. The final server allocation becomes as

illustrated in Figure 5.

The whole procedure for partitioning the system and for

defining QPS servers explained above can be carried out off-

line.1 During the on-line phase, servers and tasks are scheduled

according to the following rules: (a) visit each processor in

order reverse to that of its allocation to select via EDF the

highest priority server/task; (b) if a master server is selected

on a processor when applying (a), select also its corresponding

slave server; (c) for all selected servers, select their highest

1When sporadic tasks are being considered, QPS servers are activated on-
line. This is to accommodate the fact that not all tasks are always active.

σ
M(3/7)
2 σ

M(6/14)
3 σ

M(1/7)
4

processor 5

σ
M(3/7)
1 τ

(5/7)
7

processor 4

τ
(5/7)
3 τ

(10/14)
4 τ

(10/14)
5 τ

(10/14)
6 τ

(5/7)
1 τ

(5/7)
2

processor 2 processor 3 processor 1

Figure 5. QPS off-line allocation phase for Example III.1. Allocated proces-
sors are represented by boxes and the arrows indicate the processor hierarchy.
Processors with two entities are allocated to the major execution set bi-
partitions.

processor 5 σM
2 σM

4 σM
3 σM

4 σM
2

σM
1 σM

1
τ4 τ6 τ4

τ2 τ2

processor 4 σA
4 σB

4 σS
4 σB

4 σB
4 σS

4 σB
4 σA

4

σM
1

τ7 τ7 σM
1

τ2 τ2

processor 1 σS
1 σA

1 σS
1 σA

1 σB
1 σB

1 σA
1 σS

1 σA
1 σS

1

τ1 τ2 τ2 τ1

processor 2 σS
2 σA

2 σB
2 σB

2 σA
2 σS

2

τ3 τ4 τ4 τ3

processor 3 σA
3 σS

3 σB
3

τ5 τ6

Figure 6. The schedule generated by QPS for Example III.1. Task executions
are represented by gray boxes. Servers are positioned on the top of their
clients.

priority client to be executed; (d) dispatch all selected tasks

to execute.

The processor visiting order in rule (a) is needed because

the selection of a master implies the selection of its slave,

as stated in rule (b). From Figure 5 this is clear because the

servers to be selected on processors 4 to 1 depend on which

server was selected in processor 5. Rule (c) is for recursively

seeking for tasks, which are the ones to actually be dispatched

for execution, as stated in rule (d).

The schedule generated by QPS using rules (a)-(d) is

illustrated in Figure 6. The allocation shown in Figure 5 was

considered. Processor 5 was the last one to be allocated and

so it is visited first. Note that σM
2 is selected by EDF on this

processor and this activates the selection of σS
2 on processor 2.

Server σA
4 is chosen on processor 4. Its highest priority client

(by EDF) is σM
1 , enforcing the selection of σS

1 on processor 1.

Following the client chain for all selected servers, the actual

tasks are dispatched. It worth observing that tasks executing

on processor 5 belong to different clusters (recall Figure 5).

V. DISCUSSION

RUN and QPS use similar strategies but implement different

mechanisms, as will be clear in this section.



A. The Role of Servers

Both algorithms partition system tasks encapsulating par-

titioned elements (tasks or servers) into servers. Inner-server

scheduling is provided very like it is in an uniprocessor system.

The choice of using fixed-rate EDF servers, which are actually

EDF schedulers with limited budget, is natural since EDF is

a single-processor optimal algorithm.

Moreover, servers provide higher level entities on which

multiprocessor scheduling rules apply. Interestingly, when

tasks are packed into up to m servers, both RUN and QPS

converges to partitioned EDF. In the case of QPS, since only

major execution sets are subject to multiprocessor scheduling

rules (QPS servers), parts of the system may be scheduled

with no task migration.

B. Virtual Clustering

Multiprocessor scheduling rules for RUN are fundamentally

based on the duality principle. If there are only k processors

and k + 1 entities to be scheduled, the selection of the entity

that does not execute is straightforwardly obtained by duality.

This is basically what is illustrated in Figure 1. When this is

not the case, like in Example III.1, RUN groups k+1 tasks into

clusters as illustrated in Figure 3 so that their scheduling is

possible via duality. What exceeds the capacity of k processors

is then exported to be executed in the context of another server

on another processor. In turn, this excess rate is exactly the

portion of processing resources reserved to execute all tasks

in the clusters execute in parallel. This is illustrated in Figure

4. The schedule of σ1 in interval [0, 1), for instance, defines

that all tasks in cluster {τ1, τ2, τ3} must execute in parallel

in this interval. At all time σ1 is not scheduled, only two of

these tasks should execute, e.g., during [1, 7). And the schedule

decisions in this case follow the duality principle applied to

dual tasks {τ∗1 , τ
∗
2 , τ

∗
3 }.

The way QPS clusters the system can be seen as the

particular case of RUN, restricting k = 1. That is, QPS

manages the schedule of 2 entities to be scheduled on a single

processor and exports what exceeds 1 as a reserve of another

processor. The two entities are defined as the result of bi-

partitioning a major execution set. Figure 5 clearly shows this

clustering. Unlike RUN, which manages the parallel execution

of servers via dual scheduling, the parallel execution of these

two entities are enforced in QPS by the master/slave servers

relation, as illustrated in Figure 6.

C. Deadline Propagation

Another important characteristic observed in both algo-

rithms is related to the provided isolation between clusters.

This explains the superior behavior of both RUN and QPS in

terms of preemption and migrations when compared to stan-

dard scheduling approaches (see [9], [10]). Figure 4 illustrates

this effect for RUN, where task deadlines in cluster {τ1, τ2, τ3}
(Figure 4(c)) cause preemptions that are not propagated to

cluster {τ4, τ5, τ6} (Figure 4(d)). The same observation is

noticed for QPS in Figure 6 as for processors 2 and 3, for

instance.

D. Practical relevance

Due to their non-standard infra-structures, RUN and QPS

may be seem as not practical approaches. The hierarchies due

to both the reduction of RUN and the master/slave relationship

in QPS indeed require special implementation data structures

at the operating system level. However, very low overhead has

been found in an implementation of RUN [13], which shows

that RUN execution overhead is actually comparable to those

found in partitioned EDF. Being RUN an optimal algorithm,

this result is indeed very appealing. Due to the similarities

between RUN and QPS, similar performance behavior is

expected for QPS.

VI. CONCLUSION

We have provided an informal and intuitive description

of RUN and QPS, two recently published multiprocessor

scheduling algorithms. Key aspects of these algorithms have

been identified and their main similarities and differences have

been pointed out. We believe that the information provided

in this paper contributes to better understanding the design of

optimal and efficient scheduling algorithms for multiprocessor

real-time systems.

REFERENCES

[1] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “DP-FAIR: a
simple model for understanding optimal multiprocessor scheduling,” in
Euromicro Conference on Real-Time Syst., 2010, pp. 3–13.

[2] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Pro-
portionate progress: a notion of fairness in resource allocation,” in ACM

Symp. on the Theory of Computing. New York, NY, USA: ACM, 1993,
pp. 345–354.

[3] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving optimal real-
time scheduling on multiprocessors,” in Euromicro Conference on Real-

Time Syst., 2008, pp. 13–22.
[4] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time schedul-

ing algorithm for multiprocessors,” in IEEE Real-Time Syst. Symp., 2006,
pp. 101–110.

[5] S. Funk, “LRE-TL: An optimal multiprocessor algorithm for sporadic
task sets with unconstrained deadlines,” Real-Time Systems, vol. 46,
no. 3, pp. 332–359, 2010.

[6] A. Easwaran, I. Shin, and I. Lee, “Optimal virtual cluster-based multi-
processor scheduling,” Real-Time Syst., vol. 43, no. 1, pp. 25–59, 2009.

[7] B. Andersson and E. Tovar, “Multiprocessor scheduling with few
preemptions,” in IEEE Embedded and Real-Time Computing Syst. and

Applications, 2006, pp. 322–334.
[8] B. Andersson and K. Bletsas, “Sporadic multiprocessor scheduling with

few preemptions,” in Euromicro Conference on Real-Time Syst., 2008,
pp. 243–252.

[9] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “Run: Optimal
multiprocessor real-time scheduling via reduction to uniprocessor,” in
IEEE Real-Time Syst. Symp., 2011, pp. 104–115.

[10] E. Massa, G. Lima, P. Regnier, G. Levin, and S. Brandt, “Optimal
and adaptive multiprocessor real-time scheduling: The quasi-partitioning
approach,” in Euromicro Confer. on Real-Time Syst., 2014, pp. 291–300.

[11] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in IEEE Real-Time Syst.
Symp., 1990, pp. 182–190.

[12] S. K. Baruah, “The partitioned edf scheduling of sporadic task systems,”
in IEEE Real-Time Syst. Symp., 2011, pp. 116–125.

[13] D. Compagnin, E. Mezzetti, and T. Vardanega, “Putting run into pratice:
implementation and evaluation,” in Euromicro Conference on Real-Time

Syst., 2014, pp. 75–84.


