Designing Self-Adaptive Embedded Real-time Software
Towards System Engineering of Self-Adaptation

Franz Josef Rammig, Stefan Grosbrink, KatharinhlSéad Yuhong Zhao
University of Paderborn
Heinz Nixdorf Institute
Paderborn, Germany
{franz, s.groesbrink, katharina.stahl, zhao}@upb.de

Abstract— Upcoming interlinked embedded systems will be
confronted with unexpectedly changing environments,which
makes online adaptation without manual interferencenecessary.
There is a need for appropriate system architectureand novel
design approaches. In this paper, we discuss genkrmncepts of
self-adaptive real-time systems. Furthermore, speit system
engineering techniques solving two important aspestof such a
paradigm are presented. We discuss how the necegsifor
adaptation can be identified using Online Model Cheking and

how self-adapting safety guards can be designed by means of

Artificial Immune Systems. Finally, we present an approach to
integrating these techniques into an wunderlying pldiorm
architecture based on mixed-criticality virtualization.

Keywords— Cyber Physical Systems, Self-adapting Softwar

Online Model Checking, Artificial Immune Systems, Dger
Theory, System Virtualization, Mixed-criticality Sgsms

I. INTRODUCTION

Upcoming systems of systems can be seen as a fabric
embedded systems that are interwoven either dimtioa
dynamically. The situation of dynamically creatiogdeleting
communication links further complicates the sitoati The
German “Industry 4.0” research program may be wmedn
example. In this vision, the entire fabricationqass is treated
as an interlinked system of various productionssitentrolled
at various levels of abstraction, influenced by epupos
dynamic parameters (prices, availabilities, redmomet,
environmental conditions, ... etc.), dynamically nmekiand
cancelling contracts with suppliers and customdysing
influenced by sophisticated logistics systems. Théans that
even the detailed control of some local machiney rbe
influenced by some unexpected parameters origmdtiom
some remote location, which never have been exgeamien
this piece of software has been designed. Consédyuere
have to deal with embedded systems that must be tabl
continuously adapt to changing environments, wiéads to

Currently a dramatic shift in the nature of embellde self-evolving software. From this point of vieself-adapting

software can be observed. For many years, embextifrdare
was characterized by more or less fixed sets oficgtipns,
managed by a real-time operating system (RTOS) twisc
carefully tailored in such a way that it exactlyves the needs
of the applications, avoiding as much as possitWeradundant
service. In the beginning, even changing envirorimérave
been neglected. The user did serve as a kind efigent filter
being responsible to adapt the modified environntenthe

fixed embedded system. Even when embedded systeams w

designed in a more adaptive manner, this adaptaimnplace
off-line under control by human experts. Howevenbedded

systems are reactive by nature. This becomes evere m

evident in the case of Cyber Physical Systemsvjhjch are
closely linked to both, the physical environmentd atihe
cyberspace. Such systems are embedded into endniem
which are predictable only to a certain degreed@al with this
not fully predicable behavior of the environmemgdasolution
might be to include adequate reactions to each imabtp
behavior of the environment into the applications ahe
operating system. This, of course, may result innamense
waste of resources. If the vast majority of imafieasituations
will never occur, all the reactions coded-in to dilanthese
situations are overhead, which cannot be avoideduse it is
unknown beforehand which situations are those tharelled
in reality. The situation becomes even more corafdid when
the embedded systems are directly interlinked withaman
interference (i.e. without intelligent interface).

embedded systems are not some academic theory but a

necessity for upcoming highly interlinked systems.

When such self-evolving components form a fabrisedf-
evolving structure, some emergence of the totateaysof
systems may be the consequence. This implies tigiteering
techniques have to be developed that allow for fabye
designing such systems, for efficiently implemegtihem, and
for continuously supervising them. In this paper will
concentrate on the aspects of detecting the neethémge and
on continuously supervising self-adapting systekive will
argue from an operating system point of view. Ithbaof the
two discussed aspects, sequences of system catisteebe the
adequate granularity of monitoring system behavidrs
addition, we will present our solution to use sgste
virtualization via a real-time-capable hypervisa a unified
platform for self-adapting embedded real-time saftv

The rest of the paper is structured as fatow Section |l
some basic principles of self-adapting systemsd@seussed.
In Section Ill it is described how our Online Modghecking
technique can be applied to proactively identifgdeto adapt
the currently
approach for continuous system supervision is piesein
Section IV. Section V deals with real-time-capable
virtualization concepts. In Section VI a summaryd aan
outlook are given.

running software system. An AlS-based

Il. SELF-ADAPTING SYSTEMS
A. General Concepts of Self-adapting Software

Adaptability means that such a software systeay evolve
at run-time, coping with changing
information provided by the respective environme8elf-
adaptive systems are becoming of increasing irtteires
research. It seems to be natural to use closeddoafol as
the basic paradigm to address the aspect of safftation. A
well-known model for applying closed-loop controldoftware
is the MAPE architecture [2]. HereM” stands for “Monitor”
(the current behavior), A" for “Analyze” (the monitored
behavior), P" for “Plan” (updates), andE" for “Execute”
(the planned updates). A couple of researchersectrated on
this closed-loop point of view for self-adaptingfta@re. For
an excellent overview about the relevant litergtigee [3].
Dealing with real-time systems, however makes éessary to
refine these concepts, see subsecti@ II.

We are restricting ourselves to software systerhere the
entire software environment is composed of weliobaf
components with highly standardized interfaces. &gsume

that the considered embedded systems are permanentl e vare systems as well.

connected to the Internet, which serves as provider
information and services, including a worldwide kedr of
such components. The adaptation process then nesthes
replacing currently running components or addingnjgonents

requirements andy

Assuming a strict component-oriented software emvirent,
any adaptation means deletion, insertion, or repfent of

components. Furthermore, we assume that for conmp®ne

there may exist various profiles. All profiles ofcamponent
share the same principal functionality, howeverearntifferent
emands of resources and providing different quédivels of
the principal functionality. Usually less resoudmmanding
profiles provide some lower quality. In a real-tisyestem, any
modification of the set of applications to be exedumeans to
perform an acceptance test. If this acceptancefadst the

entire set of components has to be re-arrangedudh &
manner that the resulting task set will becomeiliéasin our

approach, we make use of the various profiles of

components to find a feasible configuration, whprovides
maximal overall quality. Algorithmically this is afyalent to

solving a Knapsack problem.

(4) In the case of dynamically adapting systemy, kind of

change may result in malign operation. Biologicedamisms
therefore feature highly sophisticated protectioechanisms,
especially the immune system. Higher organisms |
mammals have an immune system, whigltadaptable by its

th

ike

own. Comparable concepts are needed for self-adppti

Besides using our Orilituzlel
Checker not only for triggering adaptations butoafor
verifying the resulting system [8], we are applyisgecial
Artificial Immune Systems (AIS) as adaptive safgtard. We
selected a special kind of AIS [9] based on thecalted

to existing software solutions by components thdigth cases Danger Theory [10]. This aspect will be discusseection

are extracted from this virtual market place.

In [4] we have identified four prerequisites fotigmns where
a fully automatic environment is the intent:

(1) First of all, a continuously and automaticatlgcessible
market of software components, which follow somsctst
standards, must exist. Within the scope of thisspawe will

not discuss this aspect; we just assume that suofar&et
together with the appropriate access mechanisnstsexVork
into this direction is being done, e.g. in the &bdrative
Research Center On-the-Fly Computing at the Uniyersf

Paderborn [5], funded by the German Science Foiordat

(2) Obviously, a technique is needed that allowsdentifying
the necessity of adaptation. In [6], Carlo Ghezad &his
coauthors argue that online verification might begaod
approach for this purpose. If a model of the respec
environment is part of the entire model of the ddered
system, online verification can identify situatiombere the
observed real environment no longer matches itsemdd
Section 11l we will discuss how we are using ourno@nline
Model
Checking with sliding initial states [7] for thisipose.

(3) Whenever the necessity of an adaptation has ideatified
it has to be carried out. We are coping with reéaktsystems.
Therefore, we are working on a fully automatic dd#pn
approach being integrated into a real-time opegatystem as
underlying engine.

V.

Finally, an adequate architecture for a systemfglat is
needed. We have to deal with primary services, hatie
intended behavior of the embedded system and sagpaodes.
Those include all the services needed for adaptatiod
supervision. Making use of mixed criticality virtization
seems to be an adequate solution. In Section V Wesheortly
describe our approach for such a platform.

B. Real-time-aware System Engineering

Checking mechanism based on Bounded Mod

Parameter exchange
network \ Unpredictable with remote nodes
delay (facts and objectives)
ﬁ ——
local

/| cpu \
[data \

| |
‘\ Adaptation Agent "‘

O O O Parameters used for
Autonomous Agents hard real-time local
actions

Parameters used for cognitive
local prediction-making
actions

Parameters used as
assumptions about
global facts and
objectives

secondary primary
parameters

Fig. 1. Global Architecture of Interwoven Self-adapting ®yss

We are dealing with highly distributed systemskéid over
networks, which are not real time capable (therimdg. On the
other hand, we are dealing with real-time-critiapplications.

As a means to overcome these contradicting presertie
follow a layered approach. We consider a systenbdoa
network of agents, being clustered into distributechputing
nodes (see Fig. 1). Such an agent locally acts asrdedded
real-time system, providing real time capable s®wilike
closed loop applications. For this purpose, it isedaly
connected to its local sensors and actuators atesses a set
of local variables. Global variables can be acakssgy via
channels, which are not real time capable by naifiirerefore,
each local agent must include some intelligencdeal with
assumptions about these global variables to bd aalil up-to-
date. In addition, an agent must be able to revise
assumptions. Whenever an agent observes a misinetivhen
its assumptions and the actual data received wdan#iwork
some adaptation has to take place.

I1l. IDENTIFICATION OF NEED FOR ADAPTATION

Online Model Checking is in the context of this warot
used as a means of verification but to identifyations where
the present model of the environment is no longarsistent
with the currently sensed values. That is, we asstirat the
behavior of the component would be still correcthwiespect
to the previous environment, which implies thatidt the
changing environment, which leads to the violationcase of
a violation, the online model checking mechanism icdiorm
the underlying operating system. The generated
counterexample then can be converted into a webydae a
problem solving alternative component.

A. Online Model Checking
To apply online model checking, we need to have the

We follow a model-based approach. To enable amgdel of the component including a model of theiremment

adaptation control loop, the respective model aiss to
include a model of the environment (compare [3JhisT
consists of the local environment, which is sensgthe local
sensors and influenced by the local actuators urehrtime
constraints (local parameters), but also the emi#vork to
which the local agent is connected (global pararaet&Vhen
these parameters describing the environment aréngiout of
some predefined constraints, the respective modethe

environment is no longer valid and therefore theleh@f the
application may no longer satisfy predefined reguients. If
S0, some adaptation is needed. Thus, in our systgyneering
approach, we are following a concept where thetoaction of

software is becoming a highly dynamic on-line pescénstead
of creating a fixed release of a software systerhasesult of
an off-line engineering process, a continuouslyhang flow

of releases is generated. In this sense, we imtespif-adapting
systems as self-agile systems. Providing fully anatiic on-line
agile programming requires to dramatically redmigt the

supported area of systems and the methods to liechdp our

case, we restrict ourselves to software systenisfotlaw a

as well as the property to be checked at hand prdyerties of
interest in our context are inconsistencies betweka

modelled environment and the values sensed from the

environment that cannot be handled correctly by dbtual
version of the component. Such a property can gersariant
or non-trivial linear temporal logic formula (i.esafety or even
liveness property). Both the safety checking anekness-
checking problem can be transformed into forwaethability
analysis [12] [13]. Online model checking is in@&sx® a type
of simplified Bounded Model Checking (BMC) [14] Wit
sliding initial states, applied at runtime.

We require that the current statfeofthe component under
test is monitored and stored in a (ring) bufferirtme to time
during the system execution. The left hand partFiof. 2
illustrates the basic idea [7] of our online modélecking
mechanism. Whenever the online model checkerggdred, it
tries to take a new (concrete) state, sayfrem the buffer
periodically. It then goes to search for a potémieor state in
a partial state space of the system model staftimg the

strict component-based approach: we assume thae enticorresponding abstract stdte= o(s), where the functiom(s)

software system to be composed of well-defined aomapts
with well-defined and highly standardized interfa.cAny kind
of adaptation then means removing, adding, or exgihg
such components. Such a coarse-grained granulasitits in a
substantially reduced scope of potential alterestivPer
computing node, the entire process (primary apgdioa and

maps each concrete stateasthe implementation level to the
corresponding abstract state at the model level. In each
checking cycle only finite (transition) steps, sténe next k
steps, starting from the observed state are scaiméus way,
the state space to be explored is reduced draratioad the
state space explosion problem is avoided. Our igdal figure

adaptation process) can be implemented using a dmixeoOut whether there exists an error path startingnfreome

criticality, real-time-capable virtualization syste The
primary (hard real-time) applications can be graupe be
executed by a high criticality virtual machine (VMyhile the
adaptation services run on a lower criticality VM.

At our university, we have extended the adaptatiomtrol
loop to a two-level one [11]. The lower level, edll
“Reflective Operator” executes the adaption itséif. our
system architecture, it runs on a dedicated (fre@)tVM. The
upper level, called “Cognitive Operator” takes cafelong
term strategic planning of adaptions (somehow coaipa to
the “Plan” activity in the MAPE architecture). lins under no
or soft real-time constraints and may be executedr even
lower criticality VM. In Section V we will discusespecially
how to integrate online model checking and AlS-daself-
diagnosis into such a virtualized system architectu

observed state to the unsafe region, i.e. a setrof states. If
the property being checked is violated, it imptiest the actual
reality might not conform to the modelled enviromhany
more, recall that we assume the behavior of thepoment
being correct.

There are many ways to improve the performanceniifi®
mode checking (see [15]). Among them, we can spged
online model checking algorithm by reducing the kload of

the online model checker. For this purpose, we rieexktend
the original set §of error states to become F' 5 ¥F, V...V

Fn by offline backward reachability computation uprtdime

steps as shown on the right hand part of Fig. 2.

The offline computed unsafe region might also sexve
characterize a component in the repository of dcaidi
components. For this purpose, the counterexamphergted

by the online model checker in case of a propeidiation is
converted into a query for a component, which does
contain the respective unsafe region.

> @ < Coffine backward exploratian 1

I online forward exploration

extended
error states
™~ error states

we| [T ES

[/

|~

Fo VvV RV FRVFRV Fo

Runtime Exesution Trace

Fig. 2. Online and Offline Process of Online Model Checking

For a more detailed description of our online madhecker
mechanism, please refer to [8].

B. Observation Granularity

A failure can be malign according to Kopetz [16]yowhen
being passed to the outside. This can happen @%based
system only under control of the OS, via a systeth @ll
other failures are benign. As we are considerifyg @$-based
systems, any implementation of an application basnhtain a
sequence of system calls. Whenever a system caldaked,
we can monitor the state information of the implatagon
and its actual environment. Therefore, the sequehaystem
calls of an application is the appropriate levefjatnularity. As
system calls happen anyhow during the system erecut
online verification can be integrated as part & glystem call
handler of an RTOS, by this causing no additiorahtext
switch overhead and the necessary information beiadgable
without crossing address space borders. In thisesemline
model checking becomes an RTOS service as shotig.i3.

VM 3

take ‘
Online Safety
Guardin

VM 1 VM 2

$1 Buffer

. L

Online Model
: Checker

Trigger model

System call checking
Handler A

System call S.C. :
Handler

¢ response

System call
Handler

put take

Application
Execution Trace

Trigger safety
guarding

">

(== —-— - H
Safety guarding response
— o — —

Fig. 3. Online Model Checking and Safety Guarding as OS/i&s via
System Calls

IV. SELF-ADAPTING SAFETY GUARDS

A. Online Model Checking

In the context of this paper, Online Model Checkiagused
primarily as means to identify the need for onladaptation
of application programs. In addition, it is perfgcpplicable
for checking the correctness of the resulting safesafter an
adaptation. As this approach is covered in previpapers,
e.g. [8], it will not be further discussed here.

B. Artificial Immune Systems

To realize self-adapting safety guards, the opmgasiystem
requires mechanisms to cope with dynamic behavior ta
monitor system behavior at run-time. Safety guads then
responsible for identifying of potentially maliciousystem
states caused by autonomous adaptation. Our sgéetyds
depend on a knowledge base of normal system bahavio
which has to be generated at run-time without aregefined
design-time system model. Incorporated directlyo irthe
operating system, again via the system call interfgee Fig.
3), the safety guards continuously update this kedge base
of system behavior.

We use the principle of the Artificial Immune Sywste
Danger Theory to implement these safety guards th&
operating system. So-called Dendritic Cells buiidthe core
of this population-based approach used to monitod a
evaluate the system behavior. One DC is respondiie
profiling the behavior of one task or a specific ®&nel
property by the sequence of its system calls. icaorently a)
builds up a local knowledge base of normal behawfothe
component it is monitoring and b) performs locahdé&or
evaluation, using a Suffix Tree-based pattern-match
algorithm. In accordance to Danger Theory, on téphis
pattern matching, system-wide input signals supff@tDCs’
local evaluation. These signals are provided byRarOS
health monitor. The following input signals areided:

(1) Safe signal: indicates that no threat has hdentified in
the system.

(2) PAMP (“pathogen associated molecular pattesignal:
indicator that a known threat has been localized.

(3) Danger signal: indicates a potential danger ttuéocal
behavior deviations.

(4) Inflammation signal: general alarm signal.

The evaluation of a DC is combining the result tsf Iocal
analyzing method with these system-wide signals.

Each DC continuously receives the values of thgstem-
wide signals indicating either safe, suspiciousdangerous
system state based on specific thresholds assigrtbe input
signals and thereby classifies the local behavibe general
alarm signal can be raised to inform the DCs alpmténtial
risk situations. Such a risk situation may be teiggl either
due to inconsistencies between the model and thétyre
identified by online model checking, or becausadsdptation.

V. VIRTUALIZATION

A. Concepts for Real-time-capable Virtualization

As an evolutionary approach, we propose to follostem
virtualization, as for example realized by our réale
multicore hypervisor Proteus [17]. A hypervisors@lknown
as virtual machine monitor) allows the sharing dife t
underlying hardware among multiple isolated virtoglchines
(VM). Multiple existing software stacks of operaisystem
(OS) and application tasks are combined to a systém
systems. Proteus can act as a basic OS itselfdier @0 host
tasks directly in a bare-metal manner. Virtualizatis a well-
suited architecture for CPSs, primarily due to tdljiees such
as integration of legacy code, scalability, andhgmarent use
of multi-core processors, cross-platform portapilitand
isolation of applications, especially for open sys$, in which
subsystems may be added or removed at runtimeer8yst
virtualization provides a natural way to supportxeda
criticality by consolidating systems of differentiticality
levels into separated VMs.
criticality levels (e.g. safety-critical, missiomiecal and
subsystems of minor importance) has been identifgedne of
the core foundational concepts for CPSs [18]. CBdsst
their goals and behavior at runtime according tangies of
the environment or corrections received from a éiglevel.
This results in varying resource usage patternsthacheed
for a dynamic resource management. Proteus comisiaies
resource partitioning and dynamic reallocationesfaurces.

In previous work, the Flexible Resource ManagerMFhRas
been developed in our group [19] and was recemthpted to
system virtualization [20]. The FRM approach asssirtiet
components are available in various profiles, whiate
functionally equivalent, but differ substantiallyegarding
nonfunctional properties, especially resource nmegoents.
Such implementation alternatives exist for exaniplease of
optimization applications (relax optimality for lewresource
consumption) or control applications (variable freqcy).
Profiles define minimum and maximum resource regagnts
for tasks and VMs: resource allocation is only jjaeswithin
this range.

System virtualization implies resource managemeuaisibns
on two levels and a FRM component is added to Iblo¢h
hypervisor and the OS. The hypervisor assigns ressuto
the VMs and the OSs assign the obtained resouccéisetr
tasks. The OS-FRMs inform the Hypervisor-FRM abtihg
dynamic resource requirements and utilizations. Th
Hypervisor-FRM's resource allocation among the Vis
based on this information. The Hypervisor-FRM imhar the
OS-FRMs about the assigned resources, which faefiteach
OS-FRM to manage its resource share. The dynaniictsing
by the FRMs between profiles on task level and & I¢vel
implements the dynamic resource management. Incpkant,
reserved but temporarily unused resources can bsegato
other tasks/VMs. If resources were reallocated foom entity
to another one and the lending entity later needwem
resources than left, a resource conflict occurs lzal to be
solved in real-time. To achieve this, an acceptarest

precedes each profile switch. Such a switch is@edeif and
only if a feasible reconfiguration to a fallbacknfiguration is
identified, which fulfills the worst-case requirents of all
entities, and if the time required performing this
reconfiguration does not lead to a deadline miss.

So far, our work focused on the management of éseurce
computation time and showed that the actual digiobh of
bandwidth follows closely the desired bandwidthgere in
case of varying execution times and mode changes,
underlining the effectiveness of our approach iplamenting
an adaptive resource allocation [21].

B. Resulting implementation architecture

The above-mentioned virtualization concepts serge aa
unified platform to implement self-adaptive systenihe
basic idea is to run the primary hard real-timexsagrouped
into one VM under highest criticality. This inclusleany
access to primary (hard real-time) parameters amel t

The coexistence of mixednonitoring of system calls needed to link online delo

checking and safety guarding. Access to secondary
parameters, i.e. accessing global information viaetwork,
can be assigned to a lower criticality virtual miaeh As the
tasks on this machine highly depend on the avdiiialof
messages from remote nodes, we make use of theanityna
bandwidth assignment feature of our virtualizatmmcept;
i.e. this virtual machine becomes scheduled withedain
fraction of the available processor bandwidth omien
needed. The online model checker and the safetydigarun

on an additional VM. Communication in between the
respective application and these services is cledrdy the
cross-VM communication service of the hypervisorn A
additional VM is reserved for strategic activitigacluding
replacing/modification components when a necessify
adaptation has been identified. Again, by making ot the
dynamic bandwidth assignment capabilities of our
virtualization concept, whenever necessary we &iga as
much bandwidth as possible to this VM after haveeg all
other tasks running on all other VMs of the systntheir
least resource-hungry profile.

C. Results

The approach is currently integrated into our tgaé multi-
core hypervisor Proteus and our real-time operasiyggfem
ORCOS for 32-bit multi-core PowerPC 405 architegsurA
low memory footprint and a high configurability chaterize

Proteus. A configuration with the base functioryaliéquires

11 kilobytes and a configuration with all functidrfaatures
requires 15 kilobytes. The interrupt latencies #redexecution
times for synchronization primitives, hypercall Héers,
emulation routines, and virtual machine contexttslvare all
in the range of hundreds of processor cycles. Brdcwith a
clock speed of 300 MHz, a virtual machine contexttch
takes 1.3us. Virtualization increases the interrupt lateritige
additional latency is 0.ps for a programmable timer interrupt
and 0.3us for a system call interrupt.

Proteus supports both, full virtualization and para
virtualization without relying on special hardwasepport.

The implementation of the FRM requires para-viitzgtlon,
since the OS-FRMs have to pass
hypervisor. The requirement to modify the guest @S
outweighed by the advantages in terms of efficienaeg-time
flexibility, and cooperation of hypervisor. A spgci
advantage of para-virtualization for real-time sys$ is the
possibility to apply dynamic real-time schedulingaithms.

Moreover, para-virtualization's replacement of peged

instructions by hypercalls speeds up the executicaverage
by 39%.

We tested the integration of online model checking rather
abstracted emulation framework, just to enable sdimst

rough analysis (see [22]). In this experiment, OFSG@th the
application to be online checked runs on a QEMU-ated

Power PC405 on top of Ubuntu 12.4 LTS LINUX (whitia

replace the hypervisor in this experiment). The ehathecker
became just an application running on Linux, whilspecial
communication helper modeled the cross-VM commuitina
service of the hypervisor. This experiment showadkdr
communication overhead with respect to the sizethwf
transferred state information. The absolute valnea® GHz
Intel P4 was in the low millisecond range, a valbat will

dramatically be lower in case of a real hypervisased
implementation.

VI. SUMMARY AND OUTLOOK

In this paper, we are addressing some system-earijige
aspects of upcoming highly adaptable and self-nyouif
embedded
platform aspects and two activities needed for-aé#ptation:
how Online Model Checking may be applied as a means
identify necessary module replacements/additiond bhow
Artificial Immune Systems can be used for onlindea
guarding. Both activities are carried out at thangitarity of
system calls.

There are numerous open questions to be answetiédweh
visionary self-adapting real-time systems can becoeality,
e.g.: (1) How to organize a market for componehit tan be
handled in a fully automatic manner? (2) How toamige a
repository of available components such that it lbamqueried
automatically? (3) How to fully automatically comta model
checker’'s counterexample into a query for a probdeiaing
component? (4) How to
environment such that it can run under real-timestraints?
Currently we are working on some of these questions

ACKNOWLEDGMENT

Part of the work described in this paper has baered out
within CRC 614 “Self-Optimization in Mechanical
Engineering” funded by the German Science Foundatod
project AIS (Autonomous Integrated Systems), fundsd
edacentrum, Hannover, Germany.

REFERENCES

[1] M. Broy, A. Schmidt, “Challenges in Engineering @y#hysical

Systems”, IEEE Computer Vol. 47 no. 2, Feb. 20p4,79-72

information to the

real-time software. We are concentratimg o

implement a self-adaptation

[2] J.0. Kephart, D.M. Chess, “The vision of autonocomputing”, IEEE

Computer 36(1), pp. 41-50, 2003

[3] Y. Brun, et al., “Engineering self-adaptive systetheough feedback
loops,” in Proc. of Software Engineering for Selfigfptive Systems, ser.
LNCS 5525, B. H. C. Cheng and et al., Eds. Sprin2@®9, pp. 48-70.

F. Rammig, L. Khaluf, N. Montealegre, K. Stahl, ¥hao, “Organic
Real-time Programming — Vision and Approaches tdwaiSelf-
Evolving and Adaptive Real-time Software”, in Pré&h IEEE SEUS
2013, ,17.-18. Jun. 2013 IEEE

Z. Huma, C. Gerth, G. Engels, and O. Juwig, “Towaath automatic
service discovery for uml-based rich service desioms,” in Proc.
ACM/IEEE 15th International Conference on Modelv@n Engineering
Languages and Systems (MODELS'12), ser. LNCS. §prir2012.

R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. avitlola, “Self-
adaptive software needs quantitative verificatibnuatime,” Commun.
ACM, vol. 55, no. 9, pp. 69-77, Sep. 2012.

F. J. Rammig, Y. Zhao, and S. Samara, “On-line rhatiecking as
operating system service,” in Proceedings of the IHP WG 10.2
International Workshop on Software Technologies Eonbedded and
Ubiquitous Systems, ser. SEUS’09. Springer-Ver2§9, pp. 131-143.

Y. Zhao and F.-J. Rammig, “Online model checking dependable
real-time systems,” in 16th IEEE ISORC, China, IEE®mputer
Society. IEEE Computer Society, April 2012, pp. 4541.

F. Rammig and K. Stahl, “Online Behavior Classtfica for Anomaly
Detection in Self-x Real-Time Systems”. in Proch SEEE SORT,
2014, ,9. Jun. 2014 IEEE.

U. Aickelin and S. Cayzer. “The danger theory atsdapplication to
artificial immune systems”. CoRR, 2008.

L. Gausemeier, F.J. Rammig, W. Schéfer (Eds), ‘Gresilethodology
for Intelligent Technical Systems,” Springer-Verlagieidelberg,
Germany, Jan. 2014.

Orna Kupferman and Moshe Y. Vardi, “Model checkinf safety
properties,” Form. Methods Syst. Des., 19(3):29%-32ctober 2001.
ISSN 0925-9856

Viktor Schuppan, “Liveness checking as safety chrerlo find shortest
counterexamples to linear time properties,” PhDsityeETH Zurich,
2006.

A. Biere, A. Cimatti, E. M. Clarke, O. StrichmamaY. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58,58-149, 2003.

M. Qanadilo, S. Samara, and Y. Zhao, “Acceleratordine model
checking,” 6th Latin-Am. Symp. on Dependable CoyADC), 2013

H. Kopetz, Real-time systems: design principles fiistributed
embedded applications, ser. Kluwer interntl. seimegngineering and
computer science: Real-time systems. Kluwer Acadétbl., 2011.

D. Baldin, T. Kerstan, “Proteus, a hybrid Virtualon Platform for
Embedded Systems”, in: Analysis, Architectures aAddelling of
Embedded Systems, 14. - 16. Sep. 2009 IFIP WG Spibnger-Verlag

S. Baruah, H. Li, and L. Stougie. “Towards the desof certifiable
mixed-criticality systems”,in Proc. IEEE Real-Timieechnology and
Applications Symposium, 2010

19] S. Oberthirr, L. Zaremba, and H. S. Lichte, “Flexibtesource

management for self-x systems: An evaluation,” incBedings of the

2010 13th IEEE International Symposium on ObjechmPonent,

Service-Oriented Real-Time Distributed Computing rigbops, ser.

ISORCW’10. Washington, DC, USA: IEEE CS, 2010, ppl0.

S. Groesbrink, S. Oberthur, D. Baldin, “Towards ptite Resource

Management for Virtualized Real-Time Systems”, #th WS on

Adaptive and Reconfigurable Embedded Systems (CRE\2@12),

S. Groesbrink, L. Almeida, M. de Sousa, S.M. Psftéifowards

Certifiable Adaptive Reservations for Hypervisosed Virtualization,”

in Proceedings of the 20th IEEE RTAS, April 2014

[22] K. Sudhakar,Y. Zhao, F.J. Rammig, “Efficient Inteion of Online
Model Checking into a Small-Footprint Real-time @qieg System”. in
Proc. 5th IEEE SORT 2014, , 9. Jun. 2014 |IEEE.

(4]

(5]

(6]

(7]

8l

19

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[20]

[21]

