
Potential of using a reconfigurable system on a

superscalar core for ILP improvements

Marcelo Brandalero, Antonio Carlos Schneider Beck

Universidade Federal do Rio Grande do Sul

Instituto de Informática - Av. Bento Gonçalves, 9500

Campus do Vale - Porto Alegre, Brasil

{mbrandalero, caco}@inf.ufrgs.br

Abstract — As technology scaling reduces pace and energy

efficiency becomes a new important design constraint, superscalar

processor designs seem to be reaching their performance limits

under the area and power constraints. As a result, new

architectural paradigms have to be developed. This work proposes a

new architecture for x86 processors, based on a traditional

superscalar design coupled to a reconfigurable array. The

architecture explores the fact that few basic blocks are responsible

for most of the instructions that execute on the processor, and

performs a mapping of these basic blocks into a configuration for

the reconfigurable array. The configuration encodes the

dependencies between the instructions, so that when a loop is

executed multiple times, fetch, decode and dependency checks on

the instructions are bypassed, thus improving instruction

throughput. Our study of the potential of the architecture shows

that performance gains of up to 2.5 times with respect to a

traditional superscalar can be presented.

Keywords — x86; instruction-level parallelism; reconfigurable

architectures;

I. INTRODUCTION

The growing demand for more performance on computer
systems has been challenging processor designers to develop
solutions that reach beyond traditional architectures. Energy
efficiency is finally becoming a first order design constraint for
all market segments: embedded systems need to present low
power to preserve battery life, general-purpose processors are
designed with strict thermal dissipation power limitations and
even processors for high-end servers are being optimized for
energy efficiency to fit in the Green Computing concept. This
power limitation restricts the use of some architectural
solutions that optimize performance. Besides, technology
scaling, which has been one of the major drivers for
performance improvements over the last 20 years, is reaching
its limits. Improved performance and energy efficiency must
come, therefore, from technological advances in processor
microarchitecture [1] [2] [3].

The key to achieving more performance is to efficiently
exploit on chip the parallelism available from software. One
fundamental form of parallelism is Instruction Level
Parallelism (ILP), which reflects how often processor
instructions can be executed concurrently. Even though there is
an upper bound to the amount of ILP available from

applications, given by data dependencies which are a natural
part of any computation [4], this bound can hardly be reached
by modern processor designs, as it comes to a point at which
the marginal increases in area and power do not make up for
the gains in performance. As some studies suggest,
performance of single-threaded applications will increase very
little in the following decades, due to the aforementioned
discussion [3].

In order to improve performance and reduce energy
consumption, most modern processors employ methods to
reuse parts of computation that were previously performed.
Recent generations of Intel processors, for instance, have been
employing a method to exploit recurring loops in code. The
Loop Stream Detector (LSD) [5][6] is an instruction cache for
loops, located inside the processor pipeline. On the first loop
execution, the cache is filled with the instructions; on the
subsequent executions, the instructions are streamed directly
from this cache. By skipping the first pipeline stages,
performance gains are achieved. Figure 1 illustrates this
concept. In the Core2 microarchitecture, the LSD was placed
after the fetch stage; in the Core i (Nehalem) microarchitecture,
it was placed after the decode stage. Our system aims to take
this approach one step further and caches the entire dynamic
scheduling of the instructions in the loops, i.e. its dependencies,
register allocations and order of execution within the basic
block.

Figure 1. Loop Stream Detector in the (a) Core2

architecture and the (b) Core i architectures, and (c) the

approach proposed in this work.

To exploit this concept, we consider the use of
reconfigurable systems, because they have already been shown
to be a promising approach to improving both performance and
energy efficiency for a variety of applications [7]. A
reconfigurable system employs, along the processor, a circuit
whose function can be dynamically modified, such as a Field
Programmable Gate Array (FPGA) or an array of functional
units. This circuit implements the hotspots in code (i.e. code
that is frequently executed, such as loops) using combinatorial
logic. These code sequences can then be executed on the
circuit, providing energy savings by eliminating intermediate
registers and dependency-checking between instructions.

In this work, we present a new microarchitecture for x86
processors that uses the ideas of the Loop Stream Detector and
reconfigurable computing, targeted towards improved
performance as well as energy savings. We use the micro-ops
generated by the x86 instruction decoder as input to a binary
translation mechanism, which performs the mapping of the
micro-ops into a configuration for a reconfigurable array. By
caching decoded instructions ahead on the pipeline, the need to
fetch and decode instructions for the same code sequence is
eliminated, providing performance gains and energy savings.
The proposed mechanism excels over the LSD because cached
configurations also store the dependencies between
instructions, avoiding the need to repeatedly check for them
when a loop executes.

This paper proceeds as follows. In section 2, a review of
work regarding instruction level parallelism and reconfigurable
computing, as well as characteristics of x86 processors is
presented. In section 3, we present the proposed organization
for the system, providing a brief overview of the reconfigurable
system. Section 4 presents results on its potential for
performance improvements, comparing the results achieved
with the performance of a traditional superscalar architecture.
Section 5 discusses further work to be done on the architecture
and concludes this paper.

II. RELATED WORK

Early studies on instruction level parallelism have
determined there are upper bounds on the amount of
parallelism available from applications. Wall [4] presents a
study on these limits for a given set of applications and an
architecture. It is shown that the limits of ILP could be as high
as 50 instructions per cycle; on a real processor, however, this
bound is much stricter than that. We conduct later on this paper
an experiment similar to the one of Wall, but considering also
the possibility to execute multiple dependent ALU instructions
in one cycle. This is made possible by replacing traditional,
sequential code execution with combinatorial logic.

With respect to reconfigurable computing, vast literature
has been produced [8]. It is a concept that fills a gap in
computation: it is typically unfeasible to achieve high
performance and simultaneously provide flexibility. Hardwired
solutions, such as application-specific integrated circuits
(ASICs), provide high performance but need to be totally
redesigned for each different application. Microprocessors, on
the other hand, serve a wide variety of applications but lack the
performance provided by an ASIC. Reconfigurable systems

can be configured at runtime to better suit the application to be
run; better performance is achieved than with microprocessors,
while still providing a higher flexibility than with ASICs. A
simple example of a reconfigurable system is one composed of
a microprocessor coupled to an FPGA, which the processor can
program and use for execution. A survey on aspects of
reconfigurable computing is presented by Compton and Hauck
in [9]. System classification with respect to processor coupling,
reconfiguration times and granularity of the execution units are
discussed in their work, but no experimentation is performed.

Most studies on reconfigurable computing express the need
to determine critical parts of computation that are to be mapped
into hardware during the application development phase. This
approach is named static discovery, and requires the use of
special compilers. Using methods such as binary translation
[10] [11], it is possible to perform this mapping dynamically at
runtime. This way, backwards binary compatibility can be
achieved, which is a key design issue when further developing
an architectural family, and one of the reasons behind the
success of the x86 architecture.

Our interest lies within systems that allow the dynamic
discovery of instructions, because they maintain binary
compatibility with code already deployed. Lysecki, Stitt and
Vahid [12] present one of the first works in the field, defining a
new design named warp processor, in which an application
binary's critical regions are dynamically determined at runtime
and mapped into a custom hardware circuit in an FPGA. The
hardware must include a special processor that runs a
simplified CAD algorithm to perform the mapping of critical
regions to the FPGA. Clark et al. [13] present the use of the
Configurable Compute Accelerator (CCA), a specialized unit
that optimizes the execution of critical computation sections
determined from an application's dataflow graph. The CCA is
organized as a matrix of functional units, since this is a natural
way of exploring both instruction level parallelism and the
propagation of data between functional units. The paper
discusses ways to integrate the reconfigurable fabric into the
processor and presents performance results when using static or
dynamic subgraph discovery.

Beck et al. [7] [14] present the use of a coarse-grained
reconfigurable array tightly coupled to a MIPS processor.
Performance improvements of up to 2.5 times were achieved,
while presenting energy reductions and maintaining backwards
compatibility with respect to the MIPS code. This approach
requires the underlying ISA to provide simple instructions,
such as the one provided by MIPS. For the proposed system to
work with other architectures, extensions have to be made. On
Fajardo et. al. [15], a two-level binary translation system is
used to transform x86 code into MIPS code and then optimize
it for execution on the reconfigurable array. The goal of that
system is to provide support for multiple architectures with
binary compatibility, and therefore presents no performance or
energy gains.

As for the x86 architecture, we address three of its
characteristics that are explored by our system. X86 is a CISC
architecture (Complex Instruction Set Computing), meaning
that multiple low level operations, such as memory accesses
followed by arithmetic operations, can be encoded within a

single instruction. In contrast with RISC instructions (Reduced
ISC), CISC instructions are hard to pipeline, because they are
usually variable length, each of them performs a different
number of operations and operands can reside in memory. To
cope with it, x86 processors use a scheme in which CISC
instructions are decoded into multiple RISC-like instructions,
named micro-ops [16]. Because each micro-op represents a
single operation, these are not only simpler to pipeline, but also
simpler to map into a reconfigurable array.

One characteristic feature of some families of x86
processors is the presence of a trace cache. A trace cache works
similarly to an instruction cache, but rather than caching
instructions that are sequential in memory, a trace cache stores
entire sequences of basic blocks that appeared sequentially
during program execution. When a branch terminating a basic
block is biased towards an address, the basic block
corresponding to that address is cached on the subsequent
block of the trace cache. This way, higher instruction
throughput to the decode stage is provided [17]. On the
Pentium 4, this concept was further extended such that the trace
cache stored micro-ops rather than regular instructions [18];
this way, it alleviates work of the decode unit when executing
the same basic block multiple times.

On the latest editions of x86 processors, another
characteristic feature has been added. The Loop Stream
Detector (LSD) [5] [6] is a mechanism that detects small,
recurring loops in code. In case of the Nehalem (Core i)
microarchitecture, this mechanism stores the micro-ops that
correspond to a loop in a small memory inside the processor
pipeline, after the decode stage. When a loop is detected by this
mechanism, the fetch and decode pipeline stages are disabled
and the instructions are fetched from this new memory, saving
time and providing energy savings.

III. PROPOSED ARCHITECTURE

Our architecture exploits the fact that short, recurring loops
are very common in software. As shown in [7], there are
applications in which a few dozen basic blocks cover more
than 90% of the instructions that execute on the processor.
When executing these basic blocks, data dependencies are
continuously checked between the instructions, even though
the same instructions are executed over and over again. In [19],
it is shown that these dependency checks are responsible for an
average 25% of the energy consumed in processor cores.

Figure 2 presents an overview of the behavior of the system
proposed in this work. The blocks on the upper part of each
figure represent the typical stages that compose the pipeline for
superscalar processors, namely fetch, decode, dispatch, issue,
execution and commit. When a basic block is executed for the
first time (Figure 2a), after it is fetched from memory its
instructions are decoded and executed as usual on the processor
pipeline. At the same time, the decoded instructions are fed
into a binary translation (BT) mechanism that performs the
mapping of the micro-ops into a configuration for the
reconfigurable array. This configuration is stored in the
configuration cache. When the same basic block is executed
again (Figure 2b), the configuration is read from the

configuration cache and the basic block is executed on the
reconfigurable array. This way, all the logic required to access
memory, decode instructions, execute register renaming and
dependency checking can be disabled. Instructions continue to
stream from the reconfigurable array until a branch instruction
with target address outside that basic block is executed. As
shown in Figure 1, this mechanism replaces the Loop Stream
Detector.

In the next section, we describe in details how the
reconfigurable array works, and next we give details of the
microarchitecture of the system.

A. Reconfigurable Array (RA)

A general overview of the array organization, as proposed
in [7], is presented in Figure 4. The array consists of a matrix
of functional units, in which each instruction is allocated to one
cell. In this matrix, columns represent parallel execution
whereas lines represent sequential execution, or the flow of
time. Each level represents one processor cycle; the latencies of
the functional units are implementation-dependent. In the
figure shown, up to three sequential ALU operations may be
performed in one cycle, and up to four ALU operations can be
scheduled to each line. Similarly, up to two loads or stores may
be performed per cycle and one multiplication operation. An
instruction depending on a value produced previously can only
be allocated on a row above that of the instruction producing
the value.

The input context of the array consists of buses connecting
every register to the inputs of the functional units on the first
level. Multiplexers are responsible for choosing the appropriate
input to each functional unit. Inside each level, multiplexers are
also present, and may select as input to each functional unit any
of the results on the line below. On the output context,
multiplexers select the correct values produced on the last level
of the array to be written back to the register bank.

Figure 2. Execution on the system when a) a basic block is

executed for the first time and b) when the basic block is

already stored in the configuration cache.

The array has the potential to speed up applications, when
compared with a traditional superscalar architecture. Two are
the reasons. First, it potentially eliminates functional unit
contention, because the operation of each functional unit and
the data propagation between them can be modified for each
basic block executed. Second, multiple dependent ALU
operations can be performed in the same processor cycle,
unlike traditional architectures. Because of the flexibility
provided, the use of a RA on general purpose systems can
increase the average performance for every application, unlike
the use of an ASIC.

B. Coupling the RA to the x86 processor

The microarchitecture of our system is composed of the
x86 processor, with the RA tightly coupled to the pipeline as
another functional unit. Our model of the superscalar pipeline
is based on the architectural simulator we used in our
performance evaluations, Multi2Sim [20]. The
microarchitecture is shown in Figure 3. This model for the x86
pipeline is composed of 6 stages: instruction fetch, decode,
dispatch, issue, write-back and commit. On the fetch stage, x86
instructions are read from the instruction cache and passed on
to the decode stage. On the decode stage, complex x86
instructions are decoded into micro-ops and put in a queue for
the dispatch stage. At the same time, these instructions are fed
into a binary translation mechanism, which performs a
mapping of the micro-ops into a configuration for the RA.
Once a branch instruction is found, the translation is terminated
and the configuration is saved in the configuration cache,
which replaces the trace cache. With this replacement, we
expect the area overhead due to the addition of the

configuration cache to be minimal. The configurations are
indexed by the memory address of the first instruction in the
basic block.

Execution of the micro-ops generated in the decode stage
proceeds normally through the dispatch, issue, writeback and
commit stages. On the dispatch stage, false dependencies
between micro-ops are eliminated and the micro-ops are fed
into the reorder buffer, as well as onto two queues: one for
micro-ops performing memory accesses and one for all other
operations. On the issue stage, a certain number of operations
are executed on the functional units, considering the true data
dependencies and the availability of the functional units. On
the writeback stage, results are written to the register file or
data cache. Finally, on the commit stage, the instructions are
removed from the reorder buffer as soon as they are confirmed
to be non-speculative.

When a branch instruction is executed and its target address
is a basic block which is already in the configuration cache,
then the fetch, decode and dispatch stages are disabled and the
configuration is loaded to the array. The input operands are
fetched from the register file or data cache, the instructions are
placed in the reorder buffer and executed. When the
instructions are confirmed to be non-speculative, they are ready
to commit and are removed from the reorder buffer.

IV. SPEEDUP POTENTIAL

We present a study on potential of the proposed system for
performance improvements. The goal is to compare the
performance of the microarchitecture proposed in this work
with that of a typical x86 processor. To achieve this goal, we
chose a set of benchmarks and estimated the average number of
instructions executed per clock cycle (IPC) for each application
in the suite for both architectures.

As our benchmark suite, we chose MiBench [21] because it
covers a variety of applications, both control- and data-
oriented. Each of the benchmarks was compiled on a Linux
operating system using gcc v4.4 with -static, -O3 and -m32
flags. The benchmarks were executed on two simulators: one
modeling the x86 processor (Multi2Sim [20]) and the second
modeling our system.

Figure 4. Overview of the reconfigurable array.

Figure 3. Overview of the microarchitecture.

Table 1. Different setups considered for the RA.

Parameters
Setups

1 2 3 4 5 6

ALU op. latency

(cycles)
1 1/2 1/3 1/3 1/3 1/3

Mem. ops. per

cycle
Unlim. Unlim. Unlim. 4 2 1

To evaluate the potentials of our architecture, we developed

a simulator for the architecture which extended the Multi2Sim
simulator. The extended simulator implements an instruction
scheduler for the RA. We executed the applications on
Multi2Sim, which generated an execution trace of micro-ops
for each application. This trace is fed into our simulator which
reads entire basic blocks from the trace and schedules them for
execution. The simulator assumes there is an infinite amount of
functional units available, and that every instruction can be
executed on the RA; this way, instructions are scheduled based
on true data-dependencies only, and we can get an upper bound
on the potential of using the array for performance
improvements. We considered multiple setups, in which two
parameters were varied: the latency of each ALU instruction
(i.e.: how many dependent ALU instructions can be executed
in one cycle), and the number of memory operations that can
be executed per cycle. These setups are presented in Table 1.

In Table 2, the average IPC observed for each benchmark
executing on the RA is presented, under the six setups. In this
experiment, only one basic block can be executed at a time on
the RA, thus ignoring speculative execution. For setups 1 to 3,
one can notice the increase in IPC that is obtained when
allowing multiple ALU operations to be executed per cycle. An
average of 10% increase in IPC is observed when allowing up
to three ALU instructions to be executed per cycle. Little
benefit should be expected from expanding this value further.
As for setups 4 to 6, one can notice the huge impact of
allowing only a small number of memory operations to execute
within the same clock cycle. When comparing setup 5 with 3,
average IPC goes down 15% and when comparing setup 6 with
3, the average decrease is of 30%. This table provides a good
insight into the memory behavior of each application, as well
as into the amount of computation they perform. However, it is
not suitable for comparison with a superscalar architecture,
since we model in this experiment only the execution unit,
rather than the entire processor pipeline. Also, the assumptions
made for each system are different.

To compare our results with execution on the superscalar
processor, we change a few assumptions about both systems in
order to put them on the same baseline for comparison. First,
since our simulator does not consider memory access latency,
we configured Multi2Sim such that every memory results in a
cache hit. Second, Multi2Sim, as most superscalar processors,
performs speculative execution. On the previous experiment,
only one basic block could execute at a time, therefore ignoring
speculative execution. We must consider additional setups in
the RA on which multiple basic blocks may be executed
simultaneously. Because we ignore reconfiguration times on
the RA and work with execution traces, we also configured the
branch prediction scheme on Multi2Sim to always hit.
Multi2Sim was configured to issue up to 4 memory

instructions and 4 non-memory instructions per cycle; to match
this, the RA setup taken as base for this comparison was setup
4, with 4 memory instructions per cycle and up to three
dependent ALU operations per cycle.

Figure 5 presents a comparison of the results on the RA and
on the superscalar simulators, considering the aforementioned
discussion. The average IPC values obtained for execution on
the RA were normalized with respect to IPC from execution on
Multi2Sim (superscalar); values higher than one indicate,
therefore, performance gains over the superscalar model. As
can be seen, for most applications no gain is provided when
only one basic block is allowed to execute at a time. This is
expected, because the superscalar processor is executing
multiple basic blocks simultaneously. As we increase the
amount of speculation performed on the array, by increasing
the amount of basic blocks executed at a time, performance
gains start to show up. When speculating up to two basic
blocks, 8 out of 20 applications already present performance
gains, with an average normalized IPC value for the entire
benchmark set of 1.07. As we further increase the amount of
BBs speculated from 3 till up to 5, the average normalized IPC
values are of 1.32, 1.53 and 1.68. When speculating up to 5
BBs, all applications present performance gains, with some
applications, such as susan and jpeg decoder, performing twice
as fast as the superscalar processor. It should be noted that
considering the reorder buffer on the superscalar simulator was
taken large (100+ positions), and assuming basic blocks take an
average size of 13 micro-ops for the tests performed, then the

Table 2. IPC for each benchmark executing on the RA,

considering the six different setups.

Benchmarks
Array (different setups)

1 2 3 4 5 6

adpcm enc 1.67 1.71 1.71 1.71 1.69 1.56

adpcm dec 1.69 1.76 1.76 1.76 1.71 1.54

basicmath 2.24 2.47 2.51 2.49 2.33 1.95

bitcount 1.94 2.26 2.27 2.27 2.25 2.09

blowfish enc 1.86 2.02 2.07 2.06 2.00 1.74

blowfish dec 1.88 2.04 2.09 2.08 2.01 1.75

CRC32 1.85 2.02 2.02 2.02 1.95 1.64

Dijkstra 1.32 1.42 1.43 1.42 1.42 1.39

FFT 2.47 2.71 2.76 2.73 2.50 2.02

FFT inv 2.38 2.63 2.67 2.65 2.48 2.06

gsm enc 2.69 3.02 3.12 2.97 2.66 2.16

gsm dec 1.63 1.72 1.73 1.73 1.67 1.53

jpeg enc 2.35 2.46 2.46 2.32 2.14 1.72

jpeg dec 4.25 4.34 4.35 4.08 3.38 2.19

patricia 2.19 2.39 2.45 2.42 2.24 1.84

qsort 2.21 2.36 2.39 2.34 2.19 1.82

stringsearch 1.90 2.24 2.29 2.28 2.18 1.95

susan corners 3.84 4.35 4.48 3.89 3.14 2.14

susan edges 5.96 6.92 7.21 5.31 3.74 2.28

susan smoothing 2.69 2.94 2.95 2.93 2.90 2.38

Average 2,45 2,69 2,73 2,57 2,33 1,89

consideration that up to 5 basic blocks can execute
simultaneously on the RA is a reasonable assumption for this
comparison.

V. CONCLUSION

In this work, we presented a new architecture for x86
processors which aims to improve overall performance for all
applications and provide energy savings. On our preliminary
study, performance gains of up to 2.5x for some applications
may be achieved, with an average gain of 1.68x. Currently, we
are working on a prototype for the system, which will be used
to take area and power estimations. We shall then analyze
performance, area and power and compare all parameters with
the superscalar architecture, in order to evaluate
implementation tradeoffs.

VI. REFERENCES

[1] M. J. Flynn and P. Hung, “Microprocessor Design Issues: Thoughts on
the Road Ahead,” IEEE Micro, vol. 25, no. 3, pp. 16–31, May 2005.

[2] K. Olukotun and L. Hammond, “The future of microprocessors,” Queue,
vol. 3, no. 7, p. 26, Sep. 2005.

[3] S. Borkar and A. A. Chien, “The future of microprocessors,” Commun.
ACM, vol. 54, no. 5, p. 67, May 2011.

[4] D. W. Wall, “Limits of instruction-level parallelism,” ACM SIGPLAN
Not., vol. 26, no. 4, pp. 176–188, Apr. 1991.

[5] M. Dixon, P. Hammarlund, S. Jourdan, and R. Singhal, “The Next
Generation Intel® CoreTM Microarchitecture,” Intel Technol. J., vol. 14,
no. 3, pp. 8–28, 2010.

[6] Intel, “Intel 64 and IA-32 Architectures Optimization Reference
Manual.” Intel, p. 660, 2014.

[7] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, “Transparent
reconfigurable acceleration for heterogeneous embedded applications,”
in Proceedings of the conference on Design, automation and test in
Europe - DATE ’08, 2008, p. 1208.

[8] A. C. S. Beck and L. Carro, Dynamic Reconfigurable Architectures and
Transparent Optimization Techniques. Springer, 2010, p. 225.

[9] K. Compton and S. Hauck, “Reconfigurable computing: a survey of
systems and software,” ACM Comput. Surv., vol. 34, no. 2, pp. 171–210,
Jun. 2002.

[10] E. R. Altman, D. Kaeli, and Y. Sheffer, “Welcome to the opportunities
of binary translation,” Computer (Long. Beach. Calif)., vol. 33, no. 3,
pp. 40–45, Mar. 2000.

[11] A. C. S. Beck, C. A. L. Lisba, and L. Carro, “Adaptable Embedded
Systems,” Nov. 2012.

[12] R. Lysecky, G. Stitt, and F. Vahid, “Warp Processors,” ACM Trans.
Des. Autom. Electron. Syst., vol. 11, no. 3, pp. 659–681, Jul. 2006.

[13] N. Clark, M. Kudlur, S. Mahlke, and K. Flautner, “Application-Specific
Processing on a General-Purpose Core via Transparent Instruction Set
Customization,” in 37th International Symposium on Microarchitecture
(MICRO-37’04), 2004, pp. 30–40.

[14] A. C. S. Beck, M. B. Rutzig, and L. Carro, “A transparent and adaptive
reconfigurable system,” Microprocess. Microsyst., vol. 38, no. 5, pp.
509–524, Jul. 2014.

[15] J. Fajardo, M. B. Rutzig, L. Carro, and A. C. S. Beck, “Towards a
multiple-ISA embedded system,” J. Syst. Archit., vol. 59, no. 2, pp. 103–
119, Feb. 2013.

[16] J. L. Henessy and David A. Patterson, Computer Architecture: A
Quantitative Approach, 5th ed. Morgan Kaufmann, 2011, p. 856.

[17] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low latency
approach to high bandwidth instruction fetching,” pp. 24–35, Dec. 1996.

[18] I. C. Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Desktop
Platforms Group, “The Microarchitecture of the Pentium 4 Processor.”

[19] D. Folegnani and A. Gonzalez, “Energy-effective issue logic,” in
Proceedings 28th Annual International Symposium on Computer
Architecture, 2001, pp. 230–239.

[20] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: a
simulation framework for CPU-GPU computing,” in Proceedings of the
21st international conference on Parallel architectures and compilation
techniques - PACT ’12, 2012, p. 335.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), 2001, pp. 3–14.

Figure 5. IPC for different benchmarks executing on the RA, considering speculation, normalized with respect to

execution on superscalar processor.

