
Performance Evaluation of Android Applications: a
Case Study

Thiago Soares Fernandes, Érika Cota and Álvaro Freitas Moreira
PPGC - Institute of Informatics - UFRGS

Porto Alegre, Brazil - Po Box 15064 - Zip 91501-970
email: {tsfernandes, erika, alvaro.moreira}@inf.ufrgs.br

Abstract—Mobile applications development is guided by the
careful attention to a number of non-functional requirements,
where a good user experience is the ultimate goal. As part of this
effort, the developer needs to efficiently use the physical resources
of the mobile device, such as CPU time and battery. However,
up until now, there is no structured method for performance
evaluation in this domain that provides actionable information
to the software developer. We present two case studies regarding
the performance evaluation process for mobile applications and
its impact on development.

I. INTRODUCTION

Performance of mobile devices and applications has in-
creased aims to satisfy the demands of users [1]. In mobile
applications, an excellent ”user experience” is the ultimate goal
for developers as the user can very easily change to another app
in the market. A number of factors define the concept of user
experience in this domain: functionality, usability, response
time, response to errors, among others. Even though the term
performance is usually related to execution and response time,
it is reasonable to say that, in the mobile domain, the overall
performance of an application includes not only the notion of
time, but the efficient usage of hardware resources, including
memory, battery, and so on.

The evaluation of computer systems regarding the sat-
isfaction of non-functional requirements has been explored
in the literature and many analysis techniques have been
reported. Such techniques are based on distinct concepts such
as benchmarking, workloads and Quality of Service (QoS).
These concepts have been established for computation plat-
forms (both embedded and non-embedded ones) and some
application domains. However, to the best of our knowledge, a
structured and effective assessment method for the evaluation
of non-functional requirements of mobile systems (comprising
the software and the target platform) has not been established
yet.

Knowing the importance of the effects of non-functional
requirements on the acceptance or rejection of an application
and assuming that such an analysis would be useful for the mo-
bile systems developers, this paper presents two case studies on
the performance evaluation in the mobile domain. In the first
study, we apply a structured performance evaluation method
to a mobile system showing the challenges and solutions for
such a task. In the second study we evaluate the hypothesis
that mobile application developers can use the results of a
performance evaluation to support their design decisions along
the development cycle.

This work is partially funded by CNPq and FAPERGS

The paper is organized as follows: Section II discusses
related works on the topic of performance evaluation in mobile
systems. Section III presents a case study of mobile application
developed on Android emulator and describes step-by-step
the evaluation process. Section IV presents the second case
study to analyze how can code interventions and metrics
affect application performance in mobile systems. Section V
concludes the paper.

II. RELATED WORK

Performance evaluation of a system (software or hardware)
aims at obtaining data related to the performance of the system
in a desired environment or execution scenario [2].

Current performance evaluation in mobile systems can be
classified into two groups: i) analysis of the resource consump-
tion and its influence on the performance of applications and
on the mobile operating system [3]–[6]; ii) performance com-
parison of mobile code produced using distinct programming
languages (and respective features) [7]–[9]. These approaches
focus on the mobile device and its components (operating
system and storage) alone. With this specific goal in mind, the
evaluation is performed without a systematic procedure for the
definition of workloads and without deeper analysis (including
statistical ones) that could lead to more generic conclusions
[2].

A benchmark suite is a collection of real and synthetic
applications used to simulate the use of one or more resources
intensively. Using the data gathered from these exercises it is
possible to generate indexes for comparing different systems
(benchmarking [2]). Android’s Play Store presents more than
70 applications classified as benchmark. These applications
provide different coverage factors that are exercised in a device
for later comparison. In general the available applications focus
on benchmarking metrics related to CPU, GPU, memory, and
data storage. The user can download these applications and
see how his device behaves with respect to a global ranking
of devices.

Academic researches use the idea of benchmarks for a
generic comparison among platforms (processors and periph-
erals) [1], [10], [11], embedded processors alone [12], [13],
or even programming languages resources used in application
development [14], [15]. Most proposed suites consider a few
aspects of the whole mobile development stack and deal with
the processor evaluation only, thus leaving several aspects still
uncovered.

For mobile systems, the term QoS is mostly associated
to the quality of the telecommunication service in terms
of performance, but also reliability and usability [16]–[19].



Hence, the term is more related to the network infrastructure
that is used by mobile applications and devices rather than to
the mobile application and/or device themselves.

III. CASE STUDY I

In this section, we present a structured evaluation of non-
functional requirements for an internet browser developed for
Android. This application was chosen for two reasons: 1) it
is present in the great majority of mobile devices thereby
being a representative case study; 2) it requires a native
implementation (as opposed to html-based applications) where
platform-specific tuning makes sense. The basic evaluation
methodology presented in [2] was adapted to the problem in
hand and the Android Emulator was used as target platform.
According to that methodology, the following steps must
be defined: objective of the evaluation, system under test,
component under study, services, metrics, parameters, factors,
workload characterization, experiments and analysis of results.
Each step is detailed below.

A. Objective

The aim of this study is to evaluate the performance of
a mobile application with the goal of using this information
to improve the overall performance of the application in a
given device. The following aspects should be used for the
performance assessment of the application: CPU time, memory
footprint, battery usage, communication demand, and the total
execution time of the application for displaying web pages.
Data related to each aspect must be collected during the
execution of the application in at least two target platforms.

B. Methodology

1) System Under Test(SUT) and Component Under Study
(CUS): The first concepts that must be defined in the eval-
uation process are the system under test (SUT) and the
component under study (CUS). The SUT in this case is the
display, in the mobile device, of web pages hosted by a local
server. This, SUT includes the device, the host, the webServer,
etc. The CUS is an Android implementation of an internet
browser that receives an address in the web, searches the page
on the server and displays it on the mobile device screen. The
CUS is the focus of the evaluation.

In this case study we used the Tint Browser 1.7.11, which
is an Android application for web browsing and is available
under open source license2. The initial structure of the appli-
cation has about 310 classes organized into 7 major packages.
The application still needs an additional external package
(TintBrowserAddonFrameworkLibrary) which consists of 19
classes.

2) Services: Services are functionalities available in the
CUS. A typical web browser has features such as addition
and manipulation of user preferences, manipulation of favorite
pages, management of downloads and page views, etc. These
features can be included in a specific browser version using
small applications called add-ons. However the main feature,
or service, of a web browser is to display web pages.

1https://play.google.com/store/apps/details?id=org.tint
2https://github.com/Anasthase/TintBrowser

3) Metrics: Metrics are criteria used to compare the per-
formance [2]. To evaluate the defined service in the CUS
we use metrics that may indicate the overall performance of
the application during execution of this functionality. In this
evaluation three metrics are used, all of which are low better
metrics, i.e. lower values indicate better performance.

1) Response time: the time in seconds (s) that the
browser takes from the beginning of its execution to
the end of loading the entire web page content.

2) CPU time: the time in seconds that the process of
viewing the webpage occupied the CPU resource.
Since the CPU may perform other tasks while loading
a webpage, this metric isolates the time taken only
by the application being evaluated.

3) Memory usage: the volume in megabytes (MB) that
the process of displaying the page used in the RAM
of the execution environment.

We note that in the original goal (Step III-A), other
metrics such as battery usage and communication demand
were mentioned. However, the Android Emulator does not
support those features. When the actual device is available,
the developer can consider including additional metrics.

Data related to the defined metrics are collected
through instrumentation of the application code. For
CPU time and memory consumption, methods available
in the Android API can be used. The CPU time can be
collected by calling android.os.Process.getElapsedCpuTime()
method whereas memory consumption can be collected
using the libraries android.os.Debug.MemoryInfo
and ActivityManager class through activ-
ity manager.getProcessMemoryInfo(process pid). This
last method provides the amount of memory released when a
process is finalized [20]. For information about the response
time, a counter is included in the code. This counter is reset
when the application calls the onCreate() method and read
when the application calls the onDestroy() method. These
methods are responsible, respectively, for the beginning and
ending of the life cycle of an Android activity.

4) Parameters: Parameters are aspects that can affect the
performance. The Android emulator allows different configu-
rations for some peripherals such as CPU type, size of the
device screen, etc. However, due to characteristics of the
emulator itself, it is known that the emulation of an Intel x86
CPU presents better performance than the ARM CPU, when
emulation is performed on an INTEL-based host processor.
This is due to the compatibility of the emulated CPU with the
architecture of the computer where the emulator is running,
and may not correctly represent the performance of a CPU
type over another. Because of this, the CPU is considered a
fixed parameter and will not be changed in the experiments.

Another important parameter for the performance of a web
browser is the network that will be used to access the pages.
The network structure influences the response time due to the
location and configuration of the server hardware that hosts a
particular web page. Aiming at controlling these aspects, all
pages of the experiments were downloaded and stored on a
local Apache server.

5) Factors: Factors are parameters that will be varied in the
performance evaluation. During performance assessment, the



Parameters FactorsEmulator Environment
CPU Type: Intel x86

Web Server: Apache version 2

RAM size (MS): 384 MB
Screen size: 4.65” Galaxy Nexus 1024 MB

Local Disk in the emulator: 128 MB Heap size (HS): 32 MB
Version of the browser application: Tint Browser 1.7.1 64 MB

No card slot OS version (AV): Android 4.0.3
Android 4.2.2

TABLE I. PARAMETERS AND FACTORS DEFINED FOR THE PROPOSED PERFORMANCE EVALUATION

values of some experimental environment factors are changed
and then the behavior of the CUS is evaluated using the defined
metrics. The factors used in this study are detailed below.

The Android emulator allows the modification of some
aspects of the target hardware only. This feature allows us
to partially evaluate the impact of hardware on the application
performance. Indeed, only CPU and memory-related metrics
can be evaluated in this environment. In our experiments, three
factors are considered: the size of the device RAM, the heap
size of Dalvik virtual machine, and the version of the operating
system.

Table I summarizes the parameters and factors defined for
the proposed evaluation.

6) Workload characterization: The chosen workload plays
a major role during performance evaluation. The workload
must be such that meaningful operating scenarios of the CUS
are exercised. However, evaluating all possible scenarios (all
possible web page contents, for instance) is normally an
impractical task. A good workload characterization (listing a
smaller number of scenarios that could be used to represent the
entire execution environment of CUS) enables the execution
and replication of the experiments in a timely manner [2].
There are techniques to classify components of a workload
for performance evaluation so that the selection of scenarios
does not affect the validity of the analysis.

We used the clustering technique [2], to group web pages
with similar resources needs or contents and reduce the number
of scenarios to be executed in the experiments. Our clus-
tering process was based on the 100 most visited websites
in 2011 according to the Alexa site3, obtained from Mobile
Web Standards 2011-05 Dataset4. From the initial list pro-
vided by Alexa, a few web pages with inappropriate content
were removed. After the filtering process, we built a dataset
containing information of CPU time and memory used to
view these websites hosted on a local server. Each site was
accessed ten times while the metrics defined in SectionIII-B3
were collected. This data set was then analyzed in the R
statistical tool [21] using the Mclust library to group the
sites according to memory consumption and CPU time. This
analysis generated four clusters represented in Fig. 1.

From the defined clusters, four pages (one for each group)
are used in the experiments:

Group 1: www.google.com.br
Group 2: www.amazon.com
Group 3: www.uol.com.br
Group 4: www.huffingtonpost.com

7) Statistical relevance: We try to reduce the influence of
external factors in the measured data by controlling as much

3http://www.alexa.com/topsites
4http://www.csg.uzh.ch/publications/data/mobilewebstandards.html

Fig. 1. Clustering representation

as possible the experimental setup. Still, some variables are
beyond control. For instance, one cannot control embedded
Android processes such as garbage collector or other internal
processes of the operating system. Similarly, intrinsic latency
of the web server is out of control. Therefore, to reduce the
noise such variables can cause in the measured data, each
experiment is repeated 30 times and the average result is
analyzed.

C. Experiments

The experiments were performed with the Android emu-
lator version 22.3. The emulator is executed in a computer
with 4 GB of RAM, Intel i7 2.3 Ghz with Ubuntu 64bit
operating system. This same computer has Apache 2 web page
server installed and was used to host the pages selected for the
experiments. As mentioned, the webpages were downloaded
and stored locally to mitigate the impact of the network
fluctuation on measured data. To perform the experiments, we
used the Android Debug Bridge (ADB), which enables the
creation of a new process in the operating system when for
each instantiation of the application.

The defined experimental setup (workload, factors and
repetitions) defines a total of 960 executions (4 groups of web
pages X 8 emulator’s settings X 30 repetitions). We used then
one technique that identifies the factors that actually affect the
performance to further reduce the number of required exper-
iments. The technique is called Experimental Design, and in
this study we used 2k Factorial Design [2], to identify the most
relevant factors that must be exercised. From Table I we have
3 factors (k=3) that became experimental design variables (MS
- Memory Size; HS - Heap Size; AV - Android version). Each
factor can affect the metrics either individually or combined
with another one. Thus, seven combinations of these factors
were evaluated. Table II presents the average impact percentage
of each factor (response time, memory usage and cpu time)
and each combination of factors in evaluated metrics. Eight



(a) Memory usage (b) Memory usage in Group 4 (c) CPU time

Fig. 2. Experimental Results

MS HS AV MS-HSMS-AVHS-AVMS-HS-AV
Response time 0,4705 1,445 97,161 0,042 0,479 0,217 0,544
Memory usage 0,215 2,122 84,05 0,500 0,061 10,614 2,435

CPU time 3,737 16,88559,926 3,982 8,081 0,406 6,981
TABLE II. EFFECT OF FACTORS ON EVALUATED METRICS

Android version Heap (MB)
Emulator 1 Android 4.0.3 64
Emulator 2 Android 4.2.2 64
Emulator 3 Android 4.0.3 32
Emulator 4 Android 4.2.2 32

TABLE III. EMULATION ENVIRONMENT SETTINGS

possible configurations of the emulator were considered but
with a lower number of repetitions (10) of each experiment.

From Table II one can notice that the operating system
is the factor that impacts the most on the performance,
followed by the heap size. Although not visible in Table II,
the effect of the heap size is specially important for pages
on Group 4, not much for the other groups of pages. Thus,
four different experimental settings for the Android emulator
were used in the experiments, as presented in Table III. These
settings represent typical phones using two different versions
of the operating system. Through this mechanism the number
of experiments reduced from 960 to 360 executions (62%
reduction), that is: [4 (groups of web pages) X 2 (emulator’s
settings) X 30 (repetitions) for page Groups 1-3 plus 1 (Group
4) X 2 (emulator’s settings) X 30 (repetitions) to Group 4].

The experiments are automated through the execution of
shell scripts and each script is executed separately so that there
is no competition for the page server. For each page view, the
emulator is started without any previous user data. The Tint
application is installed and the command to view the page is
executed. At the end of the page loading, the application is
closed and the database of resource consumption and runtime
is stored in a .csv file. Each group page is accessed 30 times.

D. Results

Figure 2 presents a sample of the results obtained from the
experiments. Each graph represents one metric that is being
evaluated and the bars indicate the value of the arithmetic mean
of 30 replicates of each experiment. The plot also presents the
dispersion index of each data set. The semi inter-quartile range
is used as dispersion index due to the nature of the data (with
the presence of outliers).

From Fig. 2(a) one can observe that the newest version
of Android used a greater amount of memory to process and
display the four groups of pages. This change is significant
because when we take into account the sampling error there is

no overlapping bars. Fig. 2(b) shows that the operating system
alone does not determine memory usage for all pages. Indeed,
using Android version 4.0.3 there is no difference when heap
size is changed. On the other hand, this difference appears
when a newer Android version is used and one can notice an
increase in memory usage directly related to the size the heap.

Results for CPU time (Fig. 2(c)) show two distinct behav-
iors. For Group 1 pages, there is a considerable reduction in
CPU time in Android 4.2.2. However, for pages in intermediate
groups, especially in Group 3, the CPU time reduction is not
significant when Android version changes. This behavior may
be related to the structure of the pages used in the experiments.

The newer Android version leads to a better response time
for the application. The reduction in the total time required to
completely display the pages is more significant on pages of
Groups 1 and 4. In this metric, pages in Group 2 also show
a significant reduction in time for version 4.2.2 in respect of
the previous operating system. However, the improvement in
response time for pages of Group 3 is not significant.

IV. CASE STUDY II

This case study evaluates whether and how performance
evaluation can guide the mobile software engineer in tuning
the app for a given device. We used the clustering data of the
case study and developed another study where the code of the
application was modified to reach desirable metric values and
the impact of these modifications was related with application
performance. This study was performed using a real device, a
Samsung Galaxy S3 GT-I9300.

A. Code Metrics

To evaluate the Tint web browser, its code was studied and
the main classes used for displaying web pages were identified
(Figure 3(a)).

Code metrics were collected from the Tint Browser Project
using the tool Understand5. In this study we use three metrics
that, in the software engineering domain, are standard indica-
tors of internal code quality:

• CountClassCoupled (CC): quantifies the number of
other classes coupled to some specified class. The
lower the better.

• MaxCyclomatic (Cyc): quantifies the maximum cyclo-
matic complexity of all nested functions or methods.
The lower the better.

5http://www.scitools.com/



(a) Original (b) Refactoring 1 (c) Refactoring 2

Fig. 3. Class diagram of Tint Browser

• PercentLackofCohesion (LC): quantifies the lack of
cohesion between the features developed for a class.
A lower percentage is better.

Then, we implemented two code interventions (called here
refactoring) aiming, respectively, at improving and worsen the
code quality with respect to the chosen metrics. Only the code
related to the main browser service being evaluated, as defined
in III-B2 is considered.

B. Code refactoring

Table IV shows the code metrics (M1, M2, and M3 as
defined above) for, respectively, the original version (VO), the
improved version (R1) and the worsen version (R2) of the Tint
Browser Project.

Class VO R1 R2
CCCycLC CCCycLC CCCycLC

BaseUIManager 25 21 94 - - - - - -
TintBrowserActivity 26 13 92 26 13 92 - - -

PhoneUIManager 18 18 84 37 21 94 - - -
BasePhoneUIManager 22 6 86 - - - - - -

SetupUI - - - - - - 10 2 82
TabAdapter - - - - - - 27 6 79

FragmentManager - - - - - - 14 5 74
HandlerManager - - - - - - 5 3 62

ActionModeEvents - - - - - - 1 2 50
PageEventsManager - - - - - - 15 6 50
HomePageManager - - - - - - 4 1 40

SharingManager - - - - - - 2 2 33
HttpManager - - - - - - 2 1 0

IntentManager - - - - - - 16 22 0
PrivateModeManager - - - - - - 7 2 0

SearchManager - - - - - - 0 2 0
URLManager - - - - - - 9 3 0

EventsManager - - - - - - 0 1 0
GeolocationsEvents - - - - - - 3 2 0

TABLE IV. CODE METRICS FOR THREE VERSIONS OF THE TINT
BROWSER PROJECT

The first refactoring (R1) stands from the common knowl-
edge that an embedded application with a small number of
classes performing all functions - low cohesion - have a better
performance than the same application developed with a larger
number of classes with a better definition of their duties - High
cohesion [22], [23]. The corresponding class diagram after this
refactoring is shown in Figure 3(b). The code interventions
assigned then all functionality of page displaying to a single
class. This modification raised the lack of cohesion of this
class from 84% to 94%.

The second refactoring (R2) dissolved the single class in a
more cohesive set of classes, with 7 fully cohesive classes,
4 classes with up to 50% of cohesion and 4 classes with
cohesion still below 84% which was the value of this metric in
the original code. The corresponding class diagram after this
refactoring is shown in Figure 3(c).

C. Performance Evaluation Results

The same performance evaluation method used in Sec-
tion III was repeated, but using a real device as target platform.
This change allowed the inclusion of the energy consumption
as an evaluation metric. All other definitions required in the
method remained the same. Metrics in the real device were
collected using LittleEye6, a tool that monitors the execution
of an application and provides information on the consumption
of CPU, memory, network, and energy used.

Figure 4 shows the energy consumption of each version
of the application during the execution of the experiment (30
executions of the application). CPU and memory usage were
also collected during the experiments but are not shown here
due to space restrictions. The figure depicts the data collected
through a 1-minute execution, which represents 5 consecutive
executions of the same version of the application and under
the same conditions.

Surprisingly, one can observe a large variation between two
consecutive executions of the application. As a consequence,
despite the impact in the code metrics, one cannot infer
the impact of code refactoring on the performance of the
application in the target device.

We implemented two simple applications to check whether
there was something overshadowing the changes arising from
interventions in the code, such as the use of Android libraries.
The first one is a Quicksort implementation using no specific
Android library. The second one is an app the simply displays
a single, fixed webpage (huffingtonpost.com) but uses Webkit
library to do this. Resulting measurements for memory usage
can be seen in Figure 5. The error bar shows the variation
of the data in sequential executions. One can observe a very
small variation in the measurement between two executions of
the Quicksort app and a much higher variation for the Webkit-
based app. Similar behaviors were observed for the CPU and
energy usage as well. These experiments pointed the Webkit
library as responsible for the variation on metrics and this
could be overshadowing the refactoring impacts on application
performance.

V. CONCLUSION

Performance evaluations shall be performed in a system-
atic way, enabling its reproduction, analysis, and use. This
paper presented a systematic performance evaluation of a
representative Android application and used this analysis to
evaluate the actual design space of a mobile application. In this
study we observed that better use of assessment to eliminate

6http://http://www.littleeye.co/



(a) Original (b) Refactoring 1 (c) Refactoring 2

Fig. 4. Energy consumption for each version of the Tint browser

Fig. 5. Variation in memory usage for Quicksort and Webkit-based apps

possible combinations of factors that do not significantly alter
the behavior of the application can make the evaluation more
efficient. We also pointed the difficulties to perform a reliable
and meaningful assessment. This study shows that performance
assessment in mobile domain is still an ad-hoc and time
consuming task. From the results, it was possible to observe
the influence of code libraries in application behavior and
difficulty for the developer to improve the efficiency of a
library-based application. We are currently working on a semi-
automatic method for performance evaluation in the mobile
domain, aiming at tackling the difficulties shown in this study
and helping the developer in tuning the application and focus
on a better user experience.

REFERENCES

[1] J.-M. Kim and J.-S. Kim, “Androbench: Benchmarking the storage per-
formance of android-based mobile devices,” in Frontiers in Computer
Education (S. Sambath and E. Zhu, eds.), vol. 133 of Advances in In-
telligent and Soft Computing, pp. 667–674, Springer Berlin Heidelberg,
2012.

[2] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley Professional Computing, Wiley, 1991.

[3] H. Kim, N. Agrawal, and C. Ungureanu, “Examining storage perfor-
mance on mobile devices,” Proceedings of the 3rd ACM SOSP Work-
shop on Networking, Systems, and Applications on Mobile Handhelds
- MobiHeld ’11, pp. 1–6, 2011.

[4] D. Kayande and U. Shrawankar, “Performance analysis for improved
RAM utilization for Android applications,” 2012 CSI Sixth International
Conference on Software Engineering (CONSEG), pp. 1–6, Sept. 2012.

[5] J. Wang, P. Yin, and H. Zhang, “Analysis and measurement on fac-
tors influencing the performance of mobile platform,” Proceedings of
2012 2nd International Conference on Computer Science and Network
Technology, pp. 116–119, Dec. 2012.

[6] D. T. Nguyen, “Evaluating impact of storage on smartphone energy
efficiency,” Proceedings of the 2013 ACM conference on Pervasive
and ubiquitous computing adjunct publication - UbiComp ’13 Adjunct,
pp. 319–324, 2013.

[7] S. Lee and J. W. Jeon, “Evaluating performance of android platform
using native c for embedded systems,” in Control Automation and
Systems (ICCAS), 2010 International Conference on, pp. 1160–1163,
Oct 2010.

[8] Y.-J. Kim, S.-J. Cho, K.-J. Kim, E.-H. Hwang, S.-H. Yoon, and J.-W.
Jeon, “Benchmarking java application using jni and native c application
on android,” in Control, Automation and Systems (ICCAS), 2012 12th
International Conference on, pp. 284–288, Oct 2012.

[9] C.-M. Lin, J.-H. Lin, C.-R. Dow, and C.-M. Wen, “Benchmark Dalvik
and Native Code for Android System,” in 2011 Second International
Conference on Innovations in Bio-inspired Computing and Applications,
pp. 320–323, IEEE, Dec. 2011.

[10] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pp. 3–14, Dec 2001.

[11] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-system analysis and characterization of
interactive smartphone applications,” in Proceedings of the 2011 IEEE
International Symposium on Workload Characterization, IISWC ’11,
(Washington, DC, USA), pp. 81–90, IEEE Computer Society, 2011.

[12] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for
evaluating and synthesizing multimedia and communications systems,”
in Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM
International Symposium on, pp. 330–335, Dec 1997.

[13] N. V. Uti and R. Fox, “Testing the Computational Capabilities of
Mobile Device Processors: Some Interesting Benchmark Results,” 2010
IEEE/ACIS 9th International Conference on Computer and Information
Science, pp. 477–481, Aug. 2010.

[14] G. Chen, M. Kandemir, N. Vijaykrishnan, and M. Irwin, “PennBench:
a benchmark suite for embedded Java,” in 2002 IEEE International
Workshop on Workload Characterization, pp. 71–80, IEEE, Nov. 2002.

[15] M. Schoeberl, T. B. Preuß er, and S. Uhrig, “The embedded Java
benchmark suite JemBench,” Proceedings of the 8th International
Workshop on Java Technologies for Real-Time and Embedded Systems
- JTRES ’10, pp. 120–127, 2010.

[16] K. Wac, “Towards qos-awareness of context-aware mobile applications
and services,” in On the Move to Meaningful Internet Systems 2005:
OTM 2005 Workshops (R. Meersman, Z. Tari, and P. Herrero, eds.),
vol. 3762 of Lecture Notes in Computer Science, pp. 751–760, Springer
Berlin Heidelberg, 2005.

[17] K. Wac, A. van Halteren, and D. Konstantas, “Qos-predictions service:
Infrastructural support for proactive qos- and context-aware mobile
services (position paper),” in On the Move to Meaningful Internet
Systems 2006: OTM 2006 Workshops (R. Meersman, Z. Tari, and
P. Herrero, eds.), vol. 4278 of Lecture Notes in Computer Science,
pp. 1924–1933, Springer Berlin Heidelberg, 2006.

[18] Y. Ye, N. Jain, L. Xia, S. Joshi, I.-L. Yen, F. B. Bastani, K. L. Cureton,
and M. K. Bowler, “A Framework for QoS and Power Management in
a Service Cloud Environment with Mobile Devices,” 2010 Fifth IEEE
International Symposium on Service Oriented System Engineering,
pp. 236–243, June 2010.

[19] Y. Ye, L. Xiao, I.-L. Yen, and F. Bastani, “Leveraging Service Clouds
for Power and QoS Management for Mobile Devices,” 2011 IEEE 4th
International Conference on Cloud Computing, pp. 235–242, July 2011.

[20] G. Android, “Dalvik Technical Information.”
[21] V. A. Bloomfield, Using R for Numerical Analysis in Science and

Engineering. Chapman & Hall/CRC, 2014.
[22] J. Mattos, E. Specht, B. Neves, and L. Carro, “Making object oriented

efficient for embedded system applications,” in Proceedings of the
18th Symposium on Integrated Circuits and Systems Design, SBCCI05,
(Florianpolis), pp. 104–109, IEEE Computer Society, 2005.

[23] M. e. a. Oliveira, “Impact of quality metrics for sw product on
embedded system properties,” in Proceedings of the 5th International
Workshop on Model-based Methodologies for Pervasive and Embedded
Software, MOMPES08, (Budapest), pp. 68–77, IEEE Computer Society,
2008.


