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Abstract—Even though reconfigurable systems have already
proven to be an alternative to speedup embedded aligations
with reduced energy costs, because of their adaptitity and high
flexibility, their use result in a significant overthead in chip area.
Therefore, this work addresses this issue by the usef the
hardware virtualization technique, using a coarse-tained
reconfigurable array as study case. We explore twdlifferent
virtualization alternatives, achieving a reductionin area of up
96%, with marginal performance loss comparing to tke original
architecture.
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I.  INTRODUCTION

The advance of integrated circuits technology otrex
years has allowed greater transistor integrationarghones
are an example: one can find several features Bingle
electronic device. These devices are still clasdifias
embedded systems, even though they have to exeeuéezal
heterogeneous applications that present a mix pofraoand
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systems that use reconfigurable architectures where
applications should be mapped and executed on haedwith
limited area [7]. This is the main proposal of thigrk: the use

of virtualization to reduce the area of a reconiigple system,
analyzing the impact on the performance and arsaa Aase
study, we use the coarse-grain architecture tigttlypled to

the MIPS R3000 processor [8].

The rest of the paper is organized as follows. iGec2
discusses related work. Section 3presents thetectinie of the
reconfigurable data path. Section 4 describes treiware
virtualization implementation, while the resulte aresented in
Section 5. Finally, Section 6 draws the final cdesations of
this paper.

Il. RELATED WORK

In [9], using the same case study of this work,ahthors
presented a tool called ARISE, which receives a dfet
applications and gives a result the number of fanat units
and the right structure of the reconfigurable arcagsidering
the available ILP of the benchmark set. This optédi

increasingly complex and need high performance cuoimg.
However, they are also tied to a number of desggtrictions

compared to the original hardware. The disadvantdgehis
approach is that when the applications set chantes,

such as area occupation, energy consumption, Memof¥configurable array must be modified, which is atways

footprint and time-to-market constraints.

An approach that emerged as an alternative to the

aforementioned restrictions is reconfigurable cotimgu They
provide flexibility of implementation, thanks tositability to
adapt to the behavior of the target applicationseraf
manufacturing. They have already proven to be tbkatisfy
the constraints imposed by embedded systems [3][2][5].
They may be classified into two categories: coasset fine-
grained, according to the level of reconfiguratfaord and bit,
respectively).

However, in order to achieve significant performagains,
large quantities of redundant functional units arsually
necessary (in the case of coarse-grained systevh&h also
impacts the interconnections system (i.e.: increaseamount
of multiplexors). Consequently, there is a congifier increase
in the area occupied [6].

possible, since the system may have already bedoyeel.

In another study [10], the authors address thel@nolpf
area reduction by optimizing the interconnectidnsthe case
study of this particular work, the interconnectiorsse
responsible for approximately 50% of the total asEthe chip.
The work suggests the use of Omega Networks [kt¢au of
multiplexers. They present a reduction of 33% ie #nea of
the interconnection, which corresponds to 17% ef thtal
area.

Another approach to achieve area reduction is tirou
hardware virtualization (which can be applied naotlyoto
reconfigurable systems). In[7], the author clasdithardware
virtualization into three categories: Temporal piarting,
virtualized execution, and virtual machine. The ared in this
work is classified as virtualized execution.

In the case of reconfigurable systems, virtualizeelcution

In this scenario, hardware virtualization can be ansgn pe used to implement scalable and forward ctibia

interesting technique for embedded systems, péatlgufor



systems. A schedulemust be implementein the runtime
system tomap the application either spatially or terrally,

depending on the number of operators that areablailin a
particular implementation of the reconfigure architecture. A
major advantage of this approach is the possibilitythe

design space exploratioallowing the designer to explore the

relationship between am®st and performance, maximizing
gains for each particulgroject.

Examples for virtualized execution architectures &core
[12], Zippy[13], WASMI [14] and PipeRench [15]. Among the
architectures mentiong&ipeRench is the ost similar to what
is proposed in this papefhe basic principle of PiRenchis
the soealled “pipelined reconfiguratio [15]. It means that a
given kernel is broken into pieces, and these piaan be
reconfigured and executed on demand.This wa' parts of a
given kernel aremultiplexed in time and space into 1
reconfigurable logic.

The device is organized into a physical pipelinestofpes,
which representthe minimal reconfigurable hardwalerks.
Each stripe has aninterconnection network  set of
Processing Elements PE9). A stripe’s output is
strictlypipelined and connects to the next stripa \an
interconnection networfsee Fig. 1. Hardware virtualization is
achieved by allowing an application to use an uibdid
number of virtual stripeflLg].
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Fig. 1. Piperench architectuerview [16].

In opposite to the Piperench, the case study &f whirk
maintains full binary compatibility, since it doest change th

binary code prior to its executi, thanks to a binary translation

mechanism thait used together with the reconfigurable lo

as it will be explained ne. Therefore, to the best of the

authors’knowledge, there is no reconfigurable sgsthat is
completely dynamic and transparent that uses Vizaten.

Ill. CASE STUDY

Figure 2 showsthe structure of the reconfigurat
architecture employed as case study for this wdrke
reconfigurable unit is organized as a -dimensional array of
functional units, interconnected by multiplexeAs can be
observed in Fig. 2b,thdunctional units are divided in
groupsé.g. ALU, Load/Store, Multiplier). Depending on 1
delay of the functional units that belong to eachbug, more
than one operation can be executed within one atgnt

processor cycle, which corresponds to olevel in the
reconfigurable array. In this case study, accordlinthe MIPS
R3000 critical path, one reconfigurable architeztuevel
corresponds to three rows of basic ALUs in sequepce
Load/Store or one Multiplicatiof17]. Anexample of a hot spot
(Fig. 2a) #location can be seen in F 2c. One level can be
observed in more details in Figc.The structure of the array is
very similar to other coarse grain reconfiguralitehectures

This architecture has a binary translation mechnar{BT)
[18], which is implemented in hardware and operate:
parallel to the processor. At run time, the BT udétects
sequences of instructions that can be executed h&
reconfigurable architecture. This sequence is lated into ¢
configuration through the Bmechanism, and saved in 1
context memory. These sequences are indexed ¥rdgzam
Counter (PC) register. This process is very sintdahe use o
automated static tools, employed to find the beshéds of the
application and transform them to onfigurable instructions.
However, it is much simpler compared to such tosdsit car
be implemented in hardware and executed at run. A
sequence of instructions (kernel) that is transéminto be
executed in the reconfigurable array by the Binkranslation
hardware is called a configuration.

During execution, the PC of the current incomr
instruction is compared to the ones saved in & tablorder tc
check if there is a configuration with the sameueabf the
current PC. If a configuration i®und, it is fetched from th
context memory. Other reconfigurable systems work very
similar way. However, instead of having the confagions
indexed by the PC in a table, special instructionthe code
indicate where they are in the context mey.
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Fig. 2. General overview of the reconfigurable a [17].

The rest of the process works as follows: initiallglues o
the input context are fetched from the register Vilhile the
configuration bits are fetched from the context mgmThen,
that configwation is executed, taking a given number



equivalent processor cycles. Finally, results atigtem back tc
the register bank.

The number of context memory entries determines
number of configurations that can be stored in ¢batext
memory. The sig of each entry depends on the numbe
functional units that compose the reconfigurablayarThese
parameters are determined at design Each entry in the
context memory contains the following de

The input context, composed of the operands,
where it can be found references from the regfdesr
immediate values and memory point

The configuration bits, that indicate which operal
each functional unit will perform and the and
routing between them (by configuring the multiplesjs

Moreover, the following additional fields are fou

The final PC address, in order to update the PGe\
after the sequence of instructions is executedhé
array.

The number of cycles taken by the operation in
array.

IV. HARDWARE VIRTUALIZATION

In reconfigurable architectur, operations are organized
spatially, while in regular processors, they are mainly
structured in time (e.@ach instruction is executed in one cy
of the CPU). While processors can run applicatem#arge a
the memory capacity, reconfigurable architecturese
problems when the applicati mapping exceeds the size of the
reconfigurable array. With the : of hardware virtualization
techniques can overcome this limitation by exphgjtithe
reconfigurability of devicefr].

The proposed hardware Vvirtualization is applied
modifying the aforementionedreconfigurable architecture,
creating virtual pipeline evels. The main idea is to ta
advantage ofhe regularity of the architecture ato virtualize
the total number ofevels with a smeer number of physical
levels (called stage#).is doneby inserting registers in the
output context line®f each levl (refer to Figure 2c¢). These
registers store the outputs the context lines which will be
used for the next leveimaking it similar to a pipeline. From
this modification, wo ways of implementing reconfigurat
array are modeled. Whila the first model only one physical

level is used to virtualizall others, the second one uses two

physical levels.

A. One Sage Virtualization

This implementatioruse: only one physical stage, which is
equivalent toa reconfigurable array level. The outputsthis
level are connected ttheir own entr points, resulting in a
cyclic pipelinedstage, as shown in Fi3.

Each cycle stage is reconfigured to virtualize tiext
virtual level that will be executed (making it pits to run as
many levels as necessary). Thihe hardware virtualization
provides great savings in ar
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Fig. 3. Hardware virtualization with a physical st

The operation proceeds as follows: First the ragardition
of  functional units and interconnections
performed.Thereafter, the execu of the current level is
initiated.While executinghe current level, the next levis
fetchedfrom the context memory in paralAfter execution,
the registers of theontext lines store the results, which will
the input to the next virtual levthat will be processed. All
these phases occur in the same cycle.These sepspmate:
according to the number of levels.

The control mechanism of the circuit of . 3 is defined by
the fetchof the next level configurati, configuration and
execution of the auwent level. The time cyc (1) and the total
execution time (2) can beomputer by the following
equations:

TSI=Tc+7Te+Ts Q)

T1= N [TSZ 2

where:
TS1 = Execution time of atage (time cycle)
Tc = Configuration time
Te = Execution time of a level (functional uni
Ts = Setup time of register
Ttel = Total execution tim
N = Number of levels to be execu

As can be noted in (1), theonfiguration tim is part of
thestage execution time, whigas not include in the original
architecture,since in this case the configuration starts ¢
when the configuration wégstched from the context memol
Therefore, even though this approach is the onewiesent
the smallest chip area possible, esults in performance
overheagdwhich led us to develop the t-stages hardware for
the virtualization.

B. Two Stages Virtualization

A 2-stage reconfigurable (Fid) array was implemented to
solve the problem of the increasitige total execution time, as
discussed above.

The outputs of the stage dre connecteto the stage 2
inputs; while the stage Qutputs are connected the inputs of
stage 1, as observed in FigureA$ in the previous model, tl



outputs of context lines also have stage registers to store the virtualized to be executed in theo available stages.

intermediate resudt(between stages 1 an(, which results in a
2-stage cyclic pipeline.
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Fig. 5. Mapping of virtual levels in physical levels (stay

In the 2-stage modeihe execution occurs in parallel with
reconfiguration: while a stage is running, the otlsebeing
reconfiguredaccording to the next virtual lel. All levels are

Figure 5illustrates the hardware virtualization by mapg
a configuration that uses 6 levels in two physgtages.In th
first cycle, the virtual level lis configured in the stage 1
(physical level). Inte following cycle, the virtual lev 2 is
mapped into the second physical Iy, while the configuration
in the first stage is executdd. the third cycle the virtual lew
3 is configured in stagethe same physical level that mapj
the virtual level 1 beforelThis process is repeated until ther
no more virtual levels to execute.

The control mechanism operates as follows: whem-
level is executingthe previous leveoutput is stored, the level
n+1is reconfigured and the configurat bitsof level n+2 is
fetched from context memoryhes: steps occur in parallel, in
the same cycle.The time cycle @)d the totaexecution time
(4) can be computedly the following equation

TR =Te+ Ts 3

T2= N [TS2 (4)

where:
TS2 = Execution time of atage (time cycle)
Te = Execution time of a level (functional uni
Ts = Setup time of register
Tte2 = Total execution tim
N = Number of levels to be execu

In this approach, as in the original, the recornfigjon time
is shorter than the executitime of ¢ level, which justifies the
execution time of the stage in tbquatiol.

What differentiates the &age modelfrom the 1-stage
model is the reconfiguratioproces. In the 2-stage model the
reconfiguration occurs during execution, while la t-stage
model thereconfiguration and execution occur sequentii
which directly impactsthe processing time. In contrast,
second model requires twice the area, since it mpased 0
two stages.

Table | shows this procedure in more details. After
configuration was found (e.g. instruction $16), egtch clock

TABLE 1. EXECUTION STEPS
Cycle = Pr(l)lgessorgipelln'(\e/lgign WEB M(Z(I;Ik?;nn?érr Proposed Mechanisr
1 $15 $14 $I13 $12 $11
2 HE | $15 [ $14 | $13 $I2 PC founc PC founc
3 $I5 $14 $13 Fetch Con Fetch Initial Contex
4 $15 $14 Conf. Array Wait WB
5 $15 Waiting Write Bacl Wait WB || Fecth Level ]
6 Fetch Reg Fetch Reg. [fonf. Level 1 || Fetch Leve
7 Executing Executing Level 1 || Conf. Level 2 || Fetch Lev
8 Executing Executing Level 2|] Conf. Level 3 || Fetch Lev
9 Executing Executing Level 3 || Conf. Leve
10 Executing ExecutingLevel 4
11 $131 Write Bacl Write Bacl
12 $132 | $I31




cycle one level is fetched from the context memdie fetch  the best speedup results among all setups).Thedieadpns
of the next level will be performed while the prawsly fetched required 85 levels to achieve this speedup.

level is executing. Therefore, no additional delayinserted

and the performance is maintained. The same tegbrign be 45
easily adapted to other reconfigurable systems.

V. EXPERIMENTAL RESULTS
In our study we have used a SystemC model of bot 3,5

reconfigurable system and the MIPS R3000 processc &

executing the Mibench Benchmark Suite [19] to ettra § 3 -

performance results and the number of reconfigamatiemory § /

requests. A VHDL version was used to gather endegg and 25 e —
area. The experiments were performed using the E9ONmM ' <

technology. X #
As presented in Table I, four different array gstwere /i
considered to evaluate the performance. Each sé&tup 1,5 e
composed of a different number of functional uaitsl levels. 7
Setup 4 is the largest one. 1 , : : : : ,
8 16 32 64 128 256

TABLE II. DIFFERENTSETUPSFOR THE ARRAY

Setup 1| Setup2[ Setup3d Setup b Number of entries
Total #Levels 8 16 32 64 ) )
Total #Rows 24 48 96 192 = Quick == Corners ===Smoothing
#ALU | level 24 24 36 36 e Edges e BitCOUNt e J g C
#Multipliers / level | 1 2 2 2 s | g D s Dijkstra String
#Ld|St Nevel 2 6 6 6 e RjindaelE e RjindlaelD Sha
A. Performance GSMC GSMD CRC

In the virtualized model, as in the original onacte level  Fig. 6. Speedup achieved by Setup 4 for Mibench benchmark.
has a computation time equal to one cycle of tlezegssor.

Due to the insertion of the registers between thesigal stages 45

in the virtualized model, the critical path of themctional units

has changed (an increase of 0.5%). However, thay dibes 4

not cause any performance loss because even visttsriall /
increment the critical path of the reconfigurabieg is shorter 35

than the MIPS processor.

Speedup
T

Nevertheless,if this technique is used in othehitactures,
the register setup time may cause small incremiantthe
critical path, so the operating frequency may bectééd. One 25 - e
way to reduce this impact is increasing the nundiestages
(physical levels) and putting the registers evevy br four
levels, decreasing their influence in the totalcpssing time. 21 ;‘

For comparison purposes, let us consider an arigy tive

same number of functional units per level of theuSet, but 15 -
with an unlimited number of levels (referred asupdnf.).

Figure 6 presents the speedup of each benchma g 16 3 64 128 256
application, using the MIPS R3000 as baseline andidering
the Setup 4 and varying the number of entries {gardtions)
that the context memory can keep. A context menwati

Number of entries

more than 256entries has not shown significantoperdince == Quick = Corners e===Smoothing
gains, considering this benchmark set. == Edges e=—=Bitcount === JpegC
. . e | neg D e Dijkstra String
Figure 7 shows the speedup obtained for each of th ———Rjindaelf == RjindaelD Sha
application with an infinite number of levels (Setunf.). GSMC GSMD CRC

Comparing these two figures, one can be see that th. _ _
applications that benefited the most from this sefre Fig. 7. Speedup achieved by Setup Inf. for Mibench Benckmar
RjindaelD andRjindaelE, with a gain of approximately 130%

and 100% in speedup compared with the Setup 4 (wihés



2,7

2,5

g Setup 1

sl Setup 2

Speedup

2,3 /(‘_*
21 -~ b

64 128

Number of entries

Fig. 8. Average speedup.

Figure 8 presents the average speedup for each setu

256

Setup 3
Setup 4

Setup
inf.

Table 1l and the Setup Inf. In this figure we cae shat with a
unlimited number of levels, larger segments ofapplications
may be executed in the array and, consequentlyiglaeh

performance can be achieved. The average speediipe of

infinite setup was of 18% and 13% higher than S&uamd 4,

respectively.
B. Area

The virtualization technique significantly redudbs area,
since now only 2 physical levels are implementdue Table
Il shows the results in the area (gates) and tlation of
reconfigurable array compared to the MIPS R300@gssor.

(1]

(2]

(3]

[4]
(5]

(6]
(71

(8]

(10]

(11]

The Setup 3 and 4 needed an area of 161 and 3228 tim
greater than the size of the processor, respegtiVarough the
virtualization technique, this size decreased ifaaor of 10
times. These results show that the reconfigurataitactures
can save area using hardware virtualizationteclenigin
situations wherethe application mapping exceedsitteeof the
reconfigurable array, this technique allows to dregtxploit the
reconfigurability of hardware and achieve higherfgrenance

in some applications.

TABLE IIl.

AREARESULTS

Setup 1

Setup 2

Setup ¢

Setup ¢

Original | 785.743

1.621.024

4.335.68

8.671.3

60

Area (Gates) =5 oline [ 196.692

202.884

271.364

271.36]

h

Areain Original 29,2

60,3

161,3

322,5

relationto

MIPS Pipeline 7.3

7.5

10.1

10.1

Reduction (%) 75,0%

87,5%

93,7%

96,9%

VI. CONCLUSIONS ANDFUTURE WORKS

In this paper, we show the technique of hardware
virtualization applied to a coarse-grained recantidple array.
The results show that hardware virtualization ivaduable
concept. In the architecture used as case-studg, el
performancewas maintained with an area reductionpoto
96.9%. As future work, we will use omega networks f |1
optimizing the interconnections. Therefore, theoanof both
techniques will allow further reductions in thearesed by the

reconfigurable array.

(12]

(13]

(14]

(15]

(16]

(17]
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