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Abstract—In this paper, an approach is proposed to assist the 

designer in evaluating the impact of a design choice with respect 
to the Non-Functional Requirements (NFRs) in embedded 
systems. We use design metrics extracted from class diagrams and 
regression models to estimate, in the early development stages, the 
impact of software changes on NFRs. This prediction can be used 
during the first design to compare alternative design changes 
before implementation. Such an early estimation allows an 
efficient design space exploration with no penalty in the 
development time, which are crucial aspects for an embedded 
system. 

Keywords— Embedded Systems, Design Space Exploration; 
Software Metrics; Regression Analysis. 

I. INTRODUCTION 

Many core embedded functionalities such as GPS or image 
processing functions can be designed with high-level modeling 
frameworks such as Matlab which generate dedicated low-level 
code for a given platform. On the other hand, several 
components of the embedded system (including user interfaces 
and other functionalities that support the core embedded 
functions) have the same characteristics and challenges of non-
embedded software, although they must also execute in a 
constrained hardware. For those components, different module 
decompositions and interactions lead to distinct performance 
levels not only in terms of internal software quality metrics but 
mainly hardware resource consumption. 

The complexity of embedded software grows constantly, 
making the use of more abstract design strategies a necessity 
also in this domain. However, achieving tight performance 
constraints while taking the benefits of high-level design and 
programming tools is a challenge since the more abstract is the 
design the less predictable and more costly is the run-time 
behavior [1]. The evaluation of the non-functional requirements 
(NFRs) of a given software in the target platform is a time-
consuming activity. Thus, an important challenge in the 
embedded domain is to perform a thorough design space 
exploration within a stringent time-to-market.  

Experienced developers reuse knowledge from previous 
projects as a guide to decision-making during design. However, 
a less experienced software designer may not know or recognize 
the solution that leads to the best NFRs performance for a given 
hardware and spend too much time completing the evaluation 
cycle in the target platform.  

Within this context, the main goal of our research is to define 
a strategy to support a less experienced embedded software 

developer in designing a higher quality system. The strategy is 
based on providing feedback, as soon as possible and before 
system deployment, about design decisions and how they may 
impact the quality of the final system in the target platform. 

This paper presents the early part of our work that provides 
feedback about the correlation between design decisions and 
NFRs. This feedback can be used in the modeling stage to 
evaluate how a design choice affects the NFRs (e.g. energy 
consumption) thus helping the developer in building a better 
software and reducing refactoring during implementation. A 
usage example of our approach is illustrated in Fig. 1. The 
developer can explore the design space (without implementing 
and deploying actual code) until NFRs figures reach satisfactory 
levels. Then, code is implemented and implementation space 
can also be further explored, using the same principle, without 
deployment. Finally, when code is deployed in the target 
platform, a final tuning can be performed with less effort.  

In this paper we focus only on the correlation between design 
and physical metrics. We analyze software metrics extracted 
from class diagrams (design metrics), and code execution 
(hardware metrics) and apply techniques of Knowledge 
Discovery in Database (KDD) to implement a prediction method 
that receives as input a set of design metrics and try to estimate 
the hardware metrics. In other words, we try to extract 
information from previous projects (or earlier versions of the 
same project) that can help us making better design decisions. 

Fig. 1. Usage Flow of Our Approach 



The proposed technique is evaluated with 21 different 
implementations of a banking system and 12 different 
implementations of a voting system. The case studies represent 
actual distinct implementations made from the same 
specification by less experienced designers. Results show that 
the proposed technique can correlate design and hardware 
metrics and assist the designer with simple and actionable 
information. 

The paper is organized as follows: Section II discusses some 
related works. In Section III, we briefly describe the background 
information about software metrics and regression analysis. 
Section IV presents our approach based on regression analysis. 
Section V discusses experimental results and Section VI 
concludes the paper. 

II. RELATED WORKS 

A great deal of effort has been spent in the last few years to 
create useful and practical software metrics as well as cost-
effective measurement tools [2] [3] [4]. Comparatively few 
works have studied the relationship between metrics mainly 
extracted at different design levels. This might be related to the 
difficult to establish such a correlation, since metrics defined at 
different abstraction levels may actually be measuring different 
things. Still, it is intuitive that good (or bad) design metrics 
indicate that metrics extracted from the next design level will 
present similar good (or bad) evaluation.  

A major issue with software metrics though is that they must 
be used with care. This is due to several reasons such as the 
imprecision of the extraction methods, the definition of the 
metric itself, the intrinsic characteristics of the artifact used or 
even the context of the design process and organization 
developing the system. Even though a large number of metrics 
exists, use them to extract strong conclusions about the software 
is indeed a non-trivial task [5]. Hence, methods capable of 
extracting knowledge from a set of metrics are still needed. 

A few works have tried to establish a relationship between 
code metrics and physical performance of embedded systems. 
They try to characterize the cost of object-orientation in the 
embedded platform [1] [6] or modify an OO code to make it 
more efficient in a single platform [4]. Previous work has shown 
that OO code impacts the embedded system performance, but, 
to the best of our knowledge, one has still to define what is the 
exact correlation between code and (mainly) design decisions 
and physical metrics. 

III. BACKGROUND 

In this section, we review the concepts used in this work 
about software metrics, and regression analysis. 

A. Software Metrics 

The great importance of software metrics extraction is in fact 
to provide a quantitative view of software and its development 
[7]. One classification widely adopted nowadays, divides the 
software metrics into three types: process metrics, project 
metrics and product metrics. In this work, we are interested in 
the product metrics, that is, metrics that assess internal quality 
attributes of the software product.  

Product metrics describe the attributes of the software 
product at any phase of its development. Product metrics may 
measure the size of the program, complexity of the software 
design, performance, portability, maintainability, and product 
scale. They are used to assess the quality of the product, measure 
the medium or the final product, among others features. Product 
metrics can be further divided into two categories: Dynamic 
Metrics and Static Metrics. 

In this work, we are interested in static metrics at design level 
(class diagram), to allow us estimating the dynamic metrics 
(physical behavior) in embedded systems. The metrics used in 
this work are detailed below. 

1) Class Diagrams Metrics 
The metrics of class diagrams were extracted by SDMetrics 

tool [8]. The description and category of all metrics extracted 
are shown in Table I.  

TABLE I. LIST OF CLASS DIAGRAM METRICS 

Metric Category Description 
NumAttr Size The number of attributes in the class. 

NumOps Size 
The number of operations in a class. Also known as 
Number of Methods (NM) [9]. 

NumPub
Ops 

Size 
The number of public operations in a class. Aka 
Number of Public Methods (NPM) [9]. 

Setters Size 
The number of operations with a name starting with 
'set'. 

Getters Size 
The number of operations with a name starting with 
'get', 'is', or 'has'. 

Nesting Inheritance 
The nesting level of the class (for inner classes). 
Classes not defined in the context of another class 
have nesting level 0. [10] 

IFImpl Inheritance The number of interfaces the class implements. 
NOC Inheritance The number of children of the class [11]. 

Num 
Desc 

Inheritance 
The number of descendants of the class. Counts the 
number of children of the class, their children, and so 
on [12]. 

DIT Inheritance 
The depth of the class in the inheritance hierarchy 
[11]. 

CLD Inheritance 
Class to leaf depth. The longest path from the class to 
a leaf node in the inheritance hierarchy below the 
class [13]. 

OpsInh Inheritance 
The number of inherited operations. Also known as 
Number of Methods Inherited (NMI) [14]. 

AttrInh Inheritance 
The number of inherited attributes. This is calculated 
as the sum of metric NumAttr taken over all ancestor 
classes of the class. 

Dep_Out Coupling 
The number of elements on which this class depends. 
This metric counts outgoing plain UML dependencies 
and usage dependencies. 

Dep_In Coupling 
The number of elements that depend on this class. 
This metric counts incoming plain UML 
dependencies and usage dependencies. 

NumAssEl
_ssc 

Coupling 
The number of associated elements in the same scope 
(namespace) as the class. 

NumAssEl
_sb 

Coupling 
The number of associated elements in the same scope 
branch as the class. 

NumAssEl
_nsb 

Coupling 
The number of associated elements not in the same 
scope branch as the class.  

EC_Par Coupling 

The number of times the class is externally used as 
parameter type. This is the number of parameters 
defined outside this class, that have this class as their 
type [15]. 

IC_Par Coupling 
The number of parameters in the class having another 
class or interface as their type [15]. 

 

 



2) Dynamic (Hardware) Metrics 
Even though the term performance is usually related to 

execution and response time, it is reasonable to say that, in the 
mobile domain, the overall performance of an application 
includes not only the notion of time, but the efficient usage of 
hardware resources, including memory, battery, 
communication between CPU and memory, and so on.  

In this work, we use the gem5 simulator [16] configured to 
a specific platform (described in Section V) to run the system 
and extract the execution metrics. The hardware metrics 
collected in this work are shown in Table II. 

TABLE II.  LIST OF HARDWARE METRICS 

Metric Description 

Predicted Branches The number of branches that were predicted correctly. 

Missed Branches The number of branches that were not predicted correctly.

Instructions per 
Cycles (IPC) 

The ratio of total instructions executed by the total 
number of cycles for an application. Measures the 
efficiency of the pipeline mechanism. 

Instruction Cache 
Misses 

Number of misses occurring in the L1instruction cache. 

Data Cache Misses Number of misses occurring in the L1 data cache. 

L2 Cache Misses Number of misses occurring in the L2 cache (data cache).

Energy Total of energy consumed by the application. 

B. Regression Analysis 

The objective of regression analysis is to predict a single 
dependent variable (criterion) from the knowledge of one or 
more independent variable (predictor) [17]. When the problem 
involves a single independent variable, the statistical technique 
is called simple regression. When the problem involves two or 
more independent variables, it is termed multiple regression. 

In this work, we used six different algorithms for regression 
analysis, all algorithms used are from R Project [18], as follows:  

1. Linear least squares regression (LM) – This is the 
simplest linear regression technique where the target function 
is estimated by minimizing the sum of squares differences 
between actual and estimated values, called waste. Like all 
linear methods, the algorithm assumes that there is a linear 
relationship between the predictor attributes and the target 
attribute to be estimated. To apply this technique we used the 
method “lm” from package “Stats” [19]. 

2. Multivariate Adaptive Regression Splines (MARS) – 
It is a non-parametric regression technique and can be seen as 
an extension of linear models that automatically models 
nonlinearities and interactions between variables. To apply this 
technique we used the method “earth” from package “earth” 
[20]. 

3. Support vector machine (SVM) – Is supervised 
learning models with associated learning algorithms that 
analyze data and recognize patterns, used for regression 
analysis and classification. To apply this technique we used the 
method “svm” from package “e1071” [21]. 

4. Regression tree (CART) – A regression tree uses a 
decision tree as a predictive model which maps observations 
about an item to conclusions about the item's target value. 
Regression tree analysis is when the predicted outcome can be 

considered a real number (e.g. a software metric). To apply this 
technique we used the method “rpart” from package “rpart” 
[22]. 

5. Neural networks (MLP) – is a technique that can be 
used for regression and classification, which can solve 
nonlinear problems. In this work, we used a Multilayer 
Perceptron (MLP) with backpropagation algorithm. To 
minimize the error, the BFGS algorithm is used, with weight 
decay of 0.0001. It is configured so that the hidden layer had 20 
neurons, and the network training is done until 1000 iterations. 
To apply this technique we used the method “nnet” from 
package “nnet” [23]. 

6. Random Forest (RF) – Random forests are an 
ensemble learning method for classification and regression that 
operate by constructing a multitude of decision trees at training 
time and outputting the class that is the mode of the classes 
output by individual trees. In this work, we used an 
implementation of Breiman’s random forest algorithm 
contained in package “randomForest” [24]. 

IV. PROPOSED APPROACH 

As described, we intend to estimate a set of hardware metrics 
based on a set of design metrics. In this situation, we will be 
using a dataset where all values are numeric and our objective 
of mining is to predict the hardware metrics (dependent variable) 
but singularly (one at a time) from one or more design metrics 
(independent variables).  

For this aim, we propose the use of KDD strategy to correlate 
design metrics with hardware metrics in such a way that the 
designer can have a simple and fast feedback about his/her 
design. Once this correlation is established, the designer can 
provide a set of design metrics to the supporting system and 
receive the expected values for the corresponding hardware 
metrics and evaluates the effect of a decision made in modeling 
stage on the overall performance of the software in the target 
platform.  

Our approach follows the framework proposed by Fayyad 
[25] with some adaptations to the problem in hand. Summarily, 
we use several regression algorithms to create different 
predictive models for each dependent variable (in this case, 
physical metric) and then select the best predictive model for 
each metric of interest. After this process, we have one 
predictive model for each dependent metric. Those selected 
predictive models can be used then to evaluate a new design 
version, as shown in Fig. 1. 

Among the many regression techniques available in the 
literature, we initially chose the six techniques described in 
Section II: LM, SVM, CART, MLP, MARS and RF. We 
decided to choose more than one algorithm, because depending 
on the data, an algorithm can achieve better results than others.  

Data needs to be stored and formatted appropriately so that 
data mining algorithms can be applied. In this stage, we include 
all metrics of all implementations in a single dataset. Thus, 
independent variables and dependent variables are joined into a 
single line (registry), as shown in Fig. 2. In our case, each row 
in the dataset contains the metrics of each application in its 
entirety. In Fig. 2, IV´s are the independent variables (class 



diagrams metrics) shown in Table I and DV’s represent 
dependent variables (hardware metrics) shown in Table II, 
which we want to predict. Thus, each line of our dataset 
represents one set of metrics. 

 To select the best algorithm for each metric, we use the ten-
fold cross-validation technique [26]. In this technique (depicted 
in Fig.3), the original sample is randomly partitioned into ten 
equal size subsamples. Then a single subsample (out of the ten 
defined) is retained as the validation data for testing the model, 
and the remaining nine subsamples are used as training data. The 
cross-validation process is then repeated ten times, with each 
one of the 10 subsamples used exactly once as the validation 
data. Then, results from the folds can be averaged (or otherwise 
combined) to produce a single estimation. 

The Root-Mean-Square Error (RMSE) - the square root of 
the variance of the residuals - is used to measure the error. 
RMSE indicates the absolute fit of the model to the data or, in 
other words, how close the observed data points are to the 
models predicted values. In Equation 1 ܺ௢௕௦ሾ௜ሿ	is observed value 
and	ܺ௣௥௘ௗሾ௜ሿ is predicted value at time ݅.If the main purpose of 
the model is prediction, the RMSE is the most important 
criterion for fitness [27].  

ܧܵܯܴ ൌ 	ඨ
∑ ሺܺ௢௕௦ሾ௜ሿ െ 	ܺ௣௥௘ௗሾ௜ሿሻ

ଶ௡
௜ୀଵ

݊
 (1) 

Therefore, our approach runs a cross-validation for each 
hardware metric of interest (DV), with each design metric (IV). 
For all combinations, all regression algorithms are attempted 
and create corresponding predictive models. The predictive 
model representing the best combination (lowest RMSE) of 
these parameters is then selected, as depicted in Fig. 4. Only one 
(the best) predictive model for each hardware metric is saved in 
the end. 

V. PRELIMINARY RESULTS 

A. Experimental Setup 

As an experimental setup, we used two sets of applications. 
Each set comprises different Java implementations of the same 
specification. The first specification is a simple banking system, 
which is composed of 21 implementations. The second 
specification is an electronic voting system for collegiate, which 
is composed of 12 implementations.. 

These applications were chosen for three reasons. First, they 
represent different types of implementations. The banking 
system is a typical CRUD application, whereas the voting 
system is mostly a reactive application. Second, for both 
applications we had access to the different implementations that 
represent distinct design and coding decisions over a single 
specification. Finally, the implementations were made by 
students with different levels of knowledge in OO design and 
programming. Thus, the available implementations really 
present distinct design quality attributes. 

  For each implementation, design metrics are extracted from 
the class diagram and physical metrics are extracted from the 
simulation of the application in the target platform. The 
embedded target platform configured in the gem5 simulator is 
an ARMv7 Cortex-A15 CPU of 1.0 GHz with 64 KB of cache 
L1 (32 KB I-cache, 32 KB D-cache) and 1MB of cache L2. 
During simulation, all implementations are executed using the 
same set of input stimuli, that is, all implementations perform 
the same operations (from the user point of view) when 
hardware metrics are collected. Input stimuli were defined in 
such a way that more than 90% of code coverage is achieved in 
all implementations, meaning that the whole code is in fact 
executed.  

After all data collected and stored in data registries as shown 
in Fig.2, we evaluated our framework with two different setups. 

Fig. 3.  10-fold Cross Validation  

...

Fold 1 Fold 2 Fold 3 Fold 10Training Set

Validation Set

% % % %

Final Accuracy = Average (Acc 1, Acc 2, ...)

Validation
Accuracy:

Fig. 4.  Flowchart of Proposed Approach  

IV1 IV2 ... IVi DV1 DV2 ... DVj

Fig. 2. Input Pattern 



First (setup A), we considered only the banking system for 
training and prediction (simulate evolutions of this application). 
In the second setup (setup B) we used the metrics of both 
applications together to evaluate the accuracy of our framework 
when submitted to different types of application. 

B.   Experimental Results 

In this section, we present the preliminary results of our 
study with two case studies. 

1) Setup  A 
Following Harrell [27] one needs 10-20 observations per 

parameter (independent variable) estimated to be able to detect 
reasonable-size effects with reasonable power. Our case study 
currently consists of 21 implementations of one application. Due 
to this relatively small number of implementations, we can use 
only one design metric at a time as independent variable or our 
approach would not have statistical significance. 

In this case study, the input data for the regression algorithms 
is composed of 20 design metrics and 7 physical metrics and 
there are 21 data registries, one for each implementation of the 
bank system. In this case, 1,200 predictive models are created 
for a single hardware metric. i.e., for each training step we use 6 
different algorithms, 20 different design metrics, and each 
training is divided into ten folds. As a result, 7,200 predictive 
models are created, but just seven are selected at the end, one for 
each hardware metric. As mentioned, the model selected for 
each estimated metric is the one with smallest RMSE. 

Table III presents the results for this setup: the best 
combination of one design metric (first column) with one 
regression algorithm (second column) that results in the best 

predict model for one specific hardware metric (third column). 
The last column shows the normalized RMSE, obtained after the 
ten-fold cross validation. From Table III , one can observe that 
Coupling Metrics (Dep_Out and Dep_In) and the number of 
operations (NumOps) have a large influence on non-functional 
requirements in this case. 

 Fig. 5 shows how all design metrics correlate to a single 
physical metric (branch prediction in this case). In the figure, 
the error rate obtained for the best algorithm selected for each 
design metric is shown. The figure shows that not all design 
metrics correlate well to the physical metrics. Note also that the 
error displayed for each selected metric could be even worse if 
it had been another algorithm used. However, one can notice 
that a set of design metrics indeed correlates to physical ones 
and this information can be analyzed by the designer to choose 
the best strategy without the burden of deployment or 
simulation on the target platform. 

2) Setup  B 
In this setup, both applications described before were used 

in the experiment, i.e., 21 implementations of the banking 
system plus 12 implementations of the voting system. The idea 
behind this setup is to analyze the performance of our 
framework for different applications. Table IV  shows the 
corresponding results.  

As expected, the error rate increased compared to the results 
shown in Table III. However, the error has not increased much 
considering that we are estimating a non-functional 
requirement from a UML abstraction. For example, estimate the 

 

Fig. 5.  Results of Predicted Branches for Setup A 

TABLE IV. RESULTS FOR SETUP B 

Design Metric Algorithm Hardware Metric NRMSE 
NumAssEl_sb CART L2 Misses 2.90% 

NumAnc RF Predicted Branches 5.19% 
NumAssEl_sb RF Missed Branches 0.57% 

NumAnc MLP IPC 0.9% 
AttrInh SVM Icache Misses 3.7% 

NumAnc RF Dcache Misses 6.02% 
CLD SVM Energy 6.15% 

TABLE III.  RESULTS FOR SETUP A 

Design Metric Algorithm Hardware Metric NRMSE
Dep_In SVM L2 Misses 0.32% 

Dep_Out MARS Predicted Branches 1.66% 
NumOps LM Missed Branches 0.34% 
NumOps MARS IPC 0.37% 
Dep_Out LM Icache Misses 1.5% 
NumOps SVM Dcache Misses 1.04% 

DIT SVM Energy 0.94% 
 

Fig. 6.  Results of Predicted Branches for Setup B 



power consumption of an application from a class diagram with 
an error rate of 6%, for many cases can be of great significance, 
resulting in a shorter design. 

Fig. 6 shows the relation and error rates between all design 
metrics and one hardware metric (branch prediction in this 
case). It demonstrates that for different datasets there will be 
different metrics which will relate better with specific NFRs. 
For this reason, it is very unlikely that a static metric will 
correlate always (directly or inversely) with a hardware metric 
that is dynamic. 

These results are supported by our initial study where we 
tried to find correlations between design metrics and hardware 
that were applicable for different applications and was not 
always possible. However, with the framework presented in this 
paper is possible to find the best metrics that correlate with each 
other and create predictive with a low error rate models. 

VI. CONCLUSIONS AND FUTURE WORK 

We have presented a strategy to assist a less experienced 
designer in implementing a higher quality embedded system. 
The proposed approach is based on the use of KDD process to 
estimate physical metrics from design metrics. Based on a set of 
design and hardware metrics, the predict model is trained using 
regression analysis. Then, the impact on hardware platform of 
any alternative design can be quickly analyzed by extracting the 
new design metrics, feeding the predict model with them and 
checking the expected hardware metrics. The process was 
implemented and validated with two case study for 21 distinct 
implementations of a banking system and 12 distinct 
implementations of a voting system. 

It is important to note that the framework is not limited only 
to the prediction of hardware metrics from design metrics, it is 
possible to estimate code metrics from design metrics or 
estimate hardware metrics from code metrics, etc.  

Current work involves the inclusion of other applications in 
the training set as well as additional regression algorithms. At 
last, we are envisioning the construction of a complete design 
space exploration framework that includes a rich set of training 
algorithms and a user-friendly interface with automatic data 
(metrics) extraction and prediction. Such framework could be 
the foundation of a semi-automatic design space exploration tool 
for embedded software.  
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