
Early estimation of NFRs for Embedded System Using
Design Metrics

Andrws Vieira, Pedro Faustini, Luigi Carro, Érika Cota
PPGC - Informatics Institute - Federal University of Rio Grande do Sul (UFRGS)

Porto Alegre, Brazil
{andrwsvieira, phafaustini, carro, erika}@inf.ufrgs.br

Abstract—In this paper, an approach is proposed to assist the

designer in evaluating the impact of a design choice with respect
to the Non-Functional Requirements (NFRs) in embedded
systems. We use design metrics extracted from class diagrams and
regression models to estimate, in the early development stages, the
impact of software changes on NFRs. This prediction can be used
during the first design to compare alternative design changes
before implementation. Such an early estimation allows an
efficient design space exploration with no penalty in the
development time, which are crucial aspects for an embedded
system.

Keywords— Embedded Systems, Design Space Exploration;
Software Metrics; Regression Analysis.

I. INTRODUCTION

Many core embedded functionalities such as GPS or image
processing functions can be designed with high-level modeling
frameworks such as Matlab which generate dedicated low-level
code for a given platform. On the other hand, several
components of the embedded system (including user interfaces
and other functionalities that support the core embedded
functions) have the same characteristics and challenges of non-
embedded software, although they must also execute in a
constrained hardware. For those components, different module
decompositions and interactions lead to distinct performance
levels not only in terms of internal software quality metrics but
mainly hardware resource consumption.

The complexity of embedded software grows constantly,
making the use of more abstract design strategies a necessity
also in this domain. However, achieving tight performance
constraints while taking the benefits of high-level design and
programming tools is a challenge since the more abstract is the
design the less predictable and more costly is the run-time
behavior [1]. The evaluation of the non-functional requirements
(NFRs) of a given software in the target platform is a time-
consuming activity. Thus, an important challenge in the
embedded domain is to perform a thorough design space
exploration within a stringent time-to-market.

Experienced developers reuse knowledge from previous
projects as a guide to decision-making during design. However,
a less experienced software designer may not know or recognize
the solution that leads to the best NFRs performance for a given
hardware and spend too much time completing the evaluation
cycle in the target platform.

Within this context, the main goal of our research is to define
a strategy to support a less experienced embedded software

developer in designing a higher quality system. The strategy is
based on providing feedback, as soon as possible and before
system deployment, about design decisions and how they may
impact the quality of the final system in the target platform.

This paper presents the early part of our work that provides
feedback about the correlation between design decisions and
NFRs. This feedback can be used in the modeling stage to
evaluate how a design choice affects the NFRs (e.g. energy
consumption) thus helping the developer in building a better
software and reducing refactoring during implementation. A
usage example of our approach is illustrated in Fig. 1. The
developer can explore the design space (without implementing
and deploying actual code) until NFRs figures reach satisfactory
levels. Then, code is implemented and implementation space
can also be further explored, using the same principle, without
deployment. Finally, when code is deployed in the target
platform, a final tuning can be performed with less effort.

In this paper we focus only on the correlation between design
and physical metrics. We analyze software metrics extracted
from class diagrams (design metrics), and code execution
(hardware metrics) and apply techniques of Knowledge
Discovery in Database (KDD) to implement a prediction method
that receives as input a set of design metrics and try to estimate
the hardware metrics. In other words, we try to extract
information from previous projects (or earlier versions of the
same project) that can help us making better design decisions.

Fig. 1. Usage Flow of Our Approach

The proposed technique is evaluated with 21 different
implementations of a banking system and 12 different
implementations of a voting system. The case studies represent
actual distinct implementations made from the same
specification by less experienced designers. Results show that
the proposed technique can correlate design and hardware
metrics and assist the designer with simple and actionable
information.

The paper is organized as follows: Section II discusses some
related works. In Section III, we briefly describe the background
information about software metrics and regression analysis.
Section IV presents our approach based on regression analysis.
Section V discusses experimental results and Section VI
concludes the paper.

II. RELATED WORKS

A great deal of effort has been spent in the last few years to
create useful and practical software metrics as well as cost-
effective measurement tools [2] [3] [4]. Comparatively few
works have studied the relationship between metrics mainly
extracted at different design levels. This might be related to the
difficult to establish such a correlation, since metrics defined at
different abstraction levels may actually be measuring different
things. Still, it is intuitive that good (or bad) design metrics
indicate that metrics extracted from the next design level will
present similar good (or bad) evaluation.

A major issue with software metrics though is that they must
be used with care. This is due to several reasons such as the
imprecision of the extraction methods, the definition of the
metric itself, the intrinsic characteristics of the artifact used or
even the context of the design process and organization
developing the system. Even though a large number of metrics
exists, use them to extract strong conclusions about the software
is indeed a non-trivial task [5]. Hence, methods capable of
extracting knowledge from a set of metrics are still needed.

A few works have tried to establish a relationship between
code metrics and physical performance of embedded systems.
They try to characterize the cost of object-orientation in the
embedded platform [1] [6] or modify an OO code to make it
more efficient in a single platform [4]. Previous work has shown
that OO code impacts the embedded system performance, but,
to the best of our knowledge, one has still to define what is the
exact correlation between code and (mainly) design decisions
and physical metrics.

III. BACKGROUND

In this section, we review the concepts used in this work
about software metrics, and regression analysis.

A. Software Metrics

The great importance of software metrics extraction is in fact
to provide a quantitative view of software and its development
[7]. One classification widely adopted nowadays, divides the
software metrics into three types: process metrics, project
metrics and product metrics. In this work, we are interested in
the product metrics, that is, metrics that assess internal quality
attributes of the software product.

Product metrics describe the attributes of the software
product at any phase of its development. Product metrics may
measure the size of the program, complexity of the software
design, performance, portability, maintainability, and product
scale. They are used to assess the quality of the product, measure
the medium or the final product, among others features. Product
metrics can be further divided into two categories: Dynamic
Metrics and Static Metrics.

In this work, we are interested in static metrics at design level
(class diagram), to allow us estimating the dynamic metrics
(physical behavior) in embedded systems. The metrics used in
this work are detailed below.

1) Class Diagrams Metrics
The metrics of class diagrams were extracted by SDMetrics

tool [8]. The description and category of all metrics extracted
are shown in Table I.

TABLE I. LIST OF CLASS DIAGRAM METRICS

Metric Category Description
NumAttr Size The number of attributes in the class.

NumOps Size
The number of operations in a class. Also known as
Number of Methods (NM) [9].

NumPub
Ops

Size
The number of public operations in a class. Aka
Number of Public Methods (NPM) [9].

Setters Size
The number of operations with a name starting with
'set'.

Getters Size
The number of operations with a name starting with
'get', 'is', or 'has'.

Nesting Inheritance
The nesting level of the class (for inner classes).
Classes not defined in the context of another class
have nesting level 0. [10]

IFImpl Inheritance The number of interfaces the class implements.
NOC Inheritance The number of children of the class [11].

Num
Desc

Inheritance
The number of descendants of the class. Counts the
number of children of the class, their children, and so
on [12].

DIT Inheritance
The depth of the class in the inheritance hierarchy
[11].

CLD Inheritance
Class to leaf depth. The longest path from the class to
a leaf node in the inheritance hierarchy below the
class [13].

OpsInh Inheritance
The number of inherited operations. Also known as
Number of Methods Inherited (NMI) [14].

AttrInh Inheritance
The number of inherited attributes. This is calculated
as the sum of metric NumAttr taken over all ancestor
classes of the class.

Dep_Out Coupling
The number of elements on which this class depends.
This metric counts outgoing plain UML dependencies
and usage dependencies.

Dep_In Coupling
The number of elements that depend on this class.
This metric counts incoming plain UML
dependencies and usage dependencies.

NumAssEl
_ssc

Coupling
The number of associated elements in the same scope
(namespace) as the class.

NumAssEl
_sb

Coupling
The number of associated elements in the same scope
branch as the class.

NumAssEl
_nsb

Coupling
The number of associated elements not in the same
scope branch as the class.

EC_Par Coupling

The number of times the class is externally used as
parameter type. This is the number of parameters
defined outside this class, that have this class as their
type [15].

IC_Par Coupling
The number of parameters in the class having another
class or interface as their type [15].

2) Dynamic (Hardware) Metrics
Even though the term performance is usually related to

execution and response time, it is reasonable to say that, in the
mobile domain, the overall performance of an application
includes not only the notion of time, but the efficient usage of
hardware resources, including memory, battery,
communication between CPU and memory, and so on.

In this work, we use the gem5 simulator [16] configured to
a specific platform (described in Section V) to run the system
and extract the execution metrics. The hardware metrics
collected in this work are shown in Table II.

TABLE II. LIST OF HARDWARE METRICS

Metric Description

Predicted Branches The number of branches that were predicted correctly.

Missed Branches The number of branches that were not predicted correctly.

Instructions per
Cycles (IPC)

The ratio of total instructions executed by the total
number of cycles for an application. Measures the
efficiency of the pipeline mechanism.

Instruction Cache
Misses

Number of misses occurring in the L1instruction cache.

Data Cache Misses Number of misses occurring in the L1 data cache.

L2 Cache Misses Number of misses occurring in the L2 cache (data cache).

Energy Total of energy consumed by the application.

B. Regression Analysis

The objective of regression analysis is to predict a single
dependent variable (criterion) from the knowledge of one or
more independent variable (predictor) [17]. When the problem
involves a single independent variable, the statistical technique
is called simple regression. When the problem involves two or
more independent variables, it is termed multiple regression.

In this work, we used six different algorithms for regression
analysis, all algorithms used are from R Project [18], as follows:

1. Linear least squares regression (LM) – This is the
simplest linear regression technique where the target function
is estimated by minimizing the sum of squares differences
between actual and estimated values, called waste. Like all
linear methods, the algorithm assumes that there is a linear
relationship between the predictor attributes and the target
attribute to be estimated. To apply this technique we used the
method “lm” from package “Stats” [19].

2. Multivariate Adaptive Regression Splines (MARS) –
It is a non-parametric regression technique and can be seen as
an extension of linear models that automatically models
nonlinearities and interactions between variables. To apply this
technique we used the method “earth” from package “earth”
[20].

3. Support vector machine (SVM) – Is supervised
learning models with associated learning algorithms that
analyze data and recognize patterns, used for regression
analysis and classification. To apply this technique we used the
method “svm” from package “e1071” [21].

4. Regression tree (CART) – A regression tree uses a
decision tree as a predictive model which maps observations
about an item to conclusions about the item's target value.
Regression tree analysis is when the predicted outcome can be

considered a real number (e.g. a software metric). To apply this
technique we used the method “rpart” from package “rpart”
[22].

5. Neural networks (MLP) – is a technique that can be
used for regression and classification, which can solve
nonlinear problems. In this work, we used a Multilayer
Perceptron (MLP) with backpropagation algorithm. To
minimize the error, the BFGS algorithm is used, with weight
decay of 0.0001. It is configured so that the hidden layer had 20
neurons, and the network training is done until 1000 iterations.
To apply this technique we used the method “nnet” from
package “nnet” [23].

6. Random Forest (RF) – Random forests are an
ensemble learning method for classification and regression that
operate by constructing a multitude of decision trees at training
time and outputting the class that is the mode of the classes
output by individual trees. In this work, we used an
implementation of Breiman’s random forest algorithm
contained in package “randomForest” [24].

IV. PROPOSED APPROACH

As described, we intend to estimate a set of hardware metrics
based on a set of design metrics. In this situation, we will be
using a dataset where all values are numeric and our objective
of mining is to predict the hardware metrics (dependent variable)
but singularly (one at a time) from one or more design metrics
(independent variables).

For this aim, we propose the use of KDD strategy to correlate
design metrics with hardware metrics in such a way that the
designer can have a simple and fast feedback about his/her
design. Once this correlation is established, the designer can
provide a set of design metrics to the supporting system and
receive the expected values for the corresponding hardware
metrics and evaluates the effect of a decision made in modeling
stage on the overall performance of the software in the target
platform.

Our approach follows the framework proposed by Fayyad
[25] with some adaptations to the problem in hand. Summarily,
we use several regression algorithms to create different
predictive models for each dependent variable (in this case,
physical metric) and then select the best predictive model for
each metric of interest. After this process, we have one
predictive model for each dependent metric. Those selected
predictive models can be used then to evaluate a new design
version, as shown in Fig. 1.

Among the many regression techniques available in the
literature, we initially chose the six techniques described in
Section II: LM, SVM, CART, MLP, MARS and RF. We
decided to choose more than one algorithm, because depending
on the data, an algorithm can achieve better results than others.

Data needs to be stored and formatted appropriately so that
data mining algorithms can be applied. In this stage, we include
all metrics of all implementations in a single dataset. Thus,
independent variables and dependent variables are joined into a
single line (registry), as shown in Fig. 2. In our case, each row
in the dataset contains the metrics of each application in its
entirety. In Fig. 2, IV´s are the independent variables (class

diagrams metrics) shown in Table I and DV’s represent
dependent variables (hardware metrics) shown in Table II,
which we want to predict. Thus, each line of our dataset
represents one set of metrics.

 To select the best algorithm for each metric, we use the ten-
fold cross-validation technique [26]. In this technique (depicted
in Fig.3), the original sample is randomly partitioned into ten
equal size subsamples. Then a single subsample (out of the ten
defined) is retained as the validation data for testing the model,
and the remaining nine subsamples are used as training data. The
cross-validation process is then repeated ten times, with each
one of the 10 subsamples used exactly once as the validation
data. Then, results from the folds can be averaged (or otherwise
combined) to produce a single estimation.

The Root-Mean-Square Error (RMSE) - the square root of
the variance of the residuals - is used to measure the error.
RMSE indicates the absolute fit of the model to the data or, in
other words, how close the observed data points are to the
models predicted values. In Equation 1 ܺ௢௕௦ሾ௜ሿ	is observed value
and	ܺ௣௥௘ௗሾ௜ሿ is predicted value at time ݅.If the main purpose of
the model is prediction, the RMSE is the most important
criterion for fitness [27].

ܧܵܯܴ ൌ 	ඨ
∑ ሺܺ௢௕௦ሾ௜ሿ െ 	ܺ௣௥௘ௗሾ௜ሿሻ

ଶ௡
௜ୀଵ

݊
 (1)

Therefore, our approach runs a cross-validation for each
hardware metric of interest (DV), with each design metric (IV).
For all combinations, all regression algorithms are attempted
and create corresponding predictive models. The predictive
model representing the best combination (lowest RMSE) of
these parameters is then selected, as depicted in Fig. 4. Only one
(the best) predictive model for each hardware metric is saved in
the end.

V. PRELIMINARY RESULTS

A. Experimental Setup

As an experimental setup, we used two sets of applications.
Each set comprises different Java implementations of the same
specification. The first specification is a simple banking system,
which is composed of 21 implementations. The second
specification is an electronic voting system for collegiate, which
is composed of 12 implementations..

These applications were chosen for three reasons. First, they
represent different types of implementations. The banking
system is a typical CRUD application, whereas the voting
system is mostly a reactive application. Second, for both
applications we had access to the different implementations that
represent distinct design and coding decisions over a single
specification. Finally, the implementations were made by
students with different levels of knowledge in OO design and
programming. Thus, the available implementations really
present distinct design quality attributes.

 For each implementation, design metrics are extracted from
the class diagram and physical metrics are extracted from the
simulation of the application in the target platform. The
embedded target platform configured in the gem5 simulator is
an ARMv7 Cortex-A15 CPU of 1.0 GHz with 64 KB of cache
L1 (32 KB I-cache, 32 KB D-cache) and 1MB of cache L2.
During simulation, all implementations are executed using the
same set of input stimuli, that is, all implementations perform
the same operations (from the user point of view) when
hardware metrics are collected. Input stimuli were defined in
such a way that more than 90% of code coverage is achieved in
all implementations, meaning that the whole code is in fact
executed.

After all data collected and stored in data registries as shown
in Fig.2, we evaluated our framework with two different setups.

Fig. 3. 10-fold Cross Validation

...

Fold 1 Fold 2 Fold 3 Fold 10Training Set

Validation Set

% % % %

Final Accuracy = Average (Acc 1, Acc 2, ...)

Validation
Accuracy:

Fig. 4. Flowchart of Proposed Approach

IV1 IV2 ... IVi DV1 DV2 ... DVj

Fig. 2. Input Pattern

First (setup A), we considered only the banking system for
training and prediction (simulate evolutions of this application).
In the second setup (setup B) we used the metrics of both
applications together to evaluate the accuracy of our framework
when submitted to different types of application.

B. Experimental Results

In this section, we present the preliminary results of our
study with two case studies.

1) Setup A
Following Harrell [27] one needs 10-20 observations per

parameter (independent variable) estimated to be able to detect
reasonable-size effects with reasonable power. Our case study
currently consists of 21 implementations of one application. Due
to this relatively small number of implementations, we can use
only one design metric at a time as independent variable or our
approach would not have statistical significance.

In this case study, the input data for the regression algorithms
is composed of 20 design metrics and 7 physical metrics and
there are 21 data registries, one for each implementation of the
bank system. In this case, 1,200 predictive models are created
for a single hardware metric. i.e., for each training step we use 6
different algorithms, 20 different design metrics, and each
training is divided into ten folds. As a result, 7,200 predictive
models are created, but just seven are selected at the end, one for
each hardware metric. As mentioned, the model selected for
each estimated metric is the one with smallest RMSE.

Table III presents the results for this setup: the best
combination of one design metric (first column) with one
regression algorithm (second column) that results in the best

predict model for one specific hardware metric (third column).
The last column shows the normalized RMSE, obtained after the
ten-fold cross validation. From Table III , one can observe that
Coupling Metrics (Dep_Out and Dep_In) and the number of
operations (NumOps) have a large influence on non-functional
requirements in this case.

 Fig. 5 shows how all design metrics correlate to a single
physical metric (branch prediction in this case). In the figure,
the error rate obtained for the best algorithm selected for each
design metric is shown. The figure shows that not all design
metrics correlate well to the physical metrics. Note also that the
error displayed for each selected metric could be even worse if
it had been another algorithm used. However, one can notice
that a set of design metrics indeed correlates to physical ones
and this information can be analyzed by the designer to choose
the best strategy without the burden of deployment or
simulation on the target platform.

2) Setup B
In this setup, both applications described before were used

in the experiment, i.e., 21 implementations of the banking
system plus 12 implementations of the voting system. The idea
behind this setup is to analyze the performance of our
framework for different applications. Table IV shows the
corresponding results.

As expected, the error rate increased compared to the results
shown in Table III. However, the error has not increased much
considering that we are estimating a non-functional
requirement from a UML abstraction. For example, estimate the

Fig. 5. Results of Predicted Branches for Setup A

TABLE IV. RESULTS FOR SETUP B

Design Metric Algorithm Hardware Metric NRMSE
NumAssEl_sb CART L2 Misses 2.90%

NumAnc RF Predicted Branches 5.19%
NumAssEl_sb RF Missed Branches 0.57%

NumAnc MLP IPC 0.9%
AttrInh SVM Icache Misses 3.7%

NumAnc RF Dcache Misses 6.02%
CLD SVM Energy 6.15%

TABLE III. RESULTS FOR SETUP A

Design Metric Algorithm Hardware Metric NRMSE
Dep_In SVM L2 Misses 0.32%

Dep_Out MARS Predicted Branches 1.66%
NumOps LM Missed Branches 0.34%
NumOps MARS IPC 0.37%
Dep_Out LM Icache Misses 1.5%
NumOps SVM Dcache Misses 1.04%

DIT SVM Energy 0.94%

Fig. 6. Results of Predicted Branches for Setup B

power consumption of an application from a class diagram with
an error rate of 6%, for many cases can be of great significance,
resulting in a shorter design.

Fig. 6 shows the relation and error rates between all design
metrics and one hardware metric (branch prediction in this
case). It demonstrates that for different datasets there will be
different metrics which will relate better with specific NFRs.
For this reason, it is very unlikely that a static metric will
correlate always (directly or inversely) with a hardware metric
that is dynamic.

These results are supported by our initial study where we
tried to find correlations between design metrics and hardware
that were applicable for different applications and was not
always possible. However, with the framework presented in this
paper is possible to find the best metrics that correlate with each
other and create predictive with a low error rate models.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a strategy to assist a less experienced
designer in implementing a higher quality embedded system.
The proposed approach is based on the use of KDD process to
estimate physical metrics from design metrics. Based on a set of
design and hardware metrics, the predict model is trained using
regression analysis. Then, the impact on hardware platform of
any alternative design can be quickly analyzed by extracting the
new design metrics, feeding the predict model with them and
checking the expected hardware metrics. The process was
implemented and validated with two case study for 21 distinct
implementations of a banking system and 12 distinct
implementations of a voting system.

It is important to note that the framework is not limited only
to the prediction of hardware metrics from design metrics, it is
possible to estimate code metrics from design metrics or
estimate hardware metrics from code metrics, etc.

Current work involves the inclusion of other applications in
the training set as well as additional regression algorithms. At
last, we are envisioning the construction of a complete design
space exploration framework that includes a rich set of training
algorithms and a user-friendly interface with automatic data
(metrics) extraction and prediction. Such framework could be
the foundation of a semi-automatic design space exploration tool
for embedded software.

ACKNOWLEDGMENT
This work was supported in part by FAPERGS and CNPq.

REFERENCES

[1] A. Chatzigeorgiou and G. Stephanides, "Evaluating Performance and
Power of Object-Oriented Vs. Procedural Programming in Embedded
Processors," in 7th Ada-Europe International Conference on Reliable
Software Technologies, London, 2002.

[2] Michael L. Cook, "Software Metrics: An Introduction and Annotated
Bibliografy," Software Engineering Notes, vol. 7, no. 2, pp. 41-60, 1982.

[3] S.R. Ragab and H.H Ammar, "Object oriented design metrics and tools
a survey," in nformatics and Systems (INFOS), 2010 The 7th
International Conference on, Cairo, 2010.

[4] J.C.B. Mattos, E. Specht, B. Neves, and L Carro, "Making Object
Oriented Efficient for Embedded System Applications," in Symposium
on Integrated Circuits and Systems Design, Florianopolis, 2005.

[5] Norman E. Fenton and Martin Neil, "Software Metrics: Roadmap," in
Proceedings of the Conference on The Future of Software Engineering,
Limerick, 2000.

[6] M.F.S. Oliveira, R.M. Redin, L. Carro, L. da Cunha Lamb, and F.R
Wagner, "Software Quality Metrics and their Impact on Embedded
Software," in 5th International Workshop on Model-based
Methodologies for Pervasive and Embedded Software, Budapest, 2008.

[7] Roger S. Pressman, Software engineering : a practitioner’s approach,
7th ed. New York: McGraw-Hill, 2010.

[8] SDMetrics, 2014. Available from http://www.sdmetrics.com/.

[9] A. Lake and C.R. Cook, "Use of Factor Analysis to Develop OOP
Software Complexity Metrics," Oregon State Univ., Corvallis, Tech.
Report 1994.

[10] Randy K. Lind and K. Vairavan, "Effort, An Experimental Investigation
of Software Metrics and Their Relationship to Software Development,"
IEEE Transactions on Software Engineering, vol. 15, no. 5, pp. 649-653,
May 1989.

[11] S.R. Chidamber and C.F. Kemerer, "A Metrics Suite for Object-Oriented
Design," IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476-493, Jun 1990.

[12] Wei Li and Sallie Henry, "Object-oriented metrics that predict
maintainability," Journal of Systems and Software, vol. 23, no. 2, pp.
111-122, Nov 1993.

[13] D.P. Tegarden, S.D. Sheetz, and D.E. Monarchi, "Effectiveness of
traditional software metrics for object-oriented systems," , Jan, 1992.

[14] Mark Lorenz and Jeff Kidd, Object-Oriented Software Metrics.: Prentice
Hall, 1994.

[15] Lionel Briand, Prem Devanbu, and Walcelio Melo, "An Investigation
into Coupling Measures for C++," , Boston, 1997.

[16] Nathan Binkert et al., "

[17] Joseph F. Hair, William C. Black, Barry J. Babin, and Rolph E.
Anderson, Multivariate Data Analysis. Upper Saddle River: Prentice
Hall, 2009.

[18] R Team. (2008) R: A Language and Environment for Statistical
Computing. [Online]. http://www.r-project.org/

[19] The R Stats Package. [Online]. http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/00Index.html

[20] Stephen Milborrow. (2014, January) Package ‘earth’. [Online].
http://cran.r-project.org/web/packages/earth/earth.pdf

[21] David Meyer and et al. (2014, March) Package ‘e1071’. [Online].
http://cran.r-project.org/web/packages/e1071/e1071.pdf

[22] Terry Therneau, Beth Atkinson, and Brian Ripley. (2014, March)
Package ‘rpart’. [Online]. http://cran.r-
project.org/web/packages/rpart/rpart.pdf

[23] Brian Ripley and William Venables. (2014, March) Package ‘nnet’.
[Online]. http://cran.r-project.org/web/packages/nnet/nnet.pdf

[24] Liaw and MatthewWiener. (2013, August) Package ‘randomForest’.
[Online]. http://cran.r-
project.org/web/packages/randomForest/randomForest.pdf

[25] Usama Fayyad, Gregory Piatetsky-shapiro, and Padhraic Smyth, "From
Data Mining to Knowledge Discovery in Databases," AI Magazine, vol.
17, pp. 37-54, 1996.

[26] Ron Kohavi, "A study of cross-validation and bootstrap for accuracy
estimation and model selection," in International Joint Conference on
Artificial intelligence, San Francisco, 1995.

[27] Frank E. Harrell, Regression Modeling Strategies. New York: Springer,
2002.

