
 A Pushing Approach for Data Synchronization in Cloud

to Reduce Energy Consumption in Mobile Devices
Carvalho, S.A.L.,

 #1
, Lima, R.N.,

 #2
 and Silva-Filho, A.G.

#3

#
Informatics Center of Federal University of Pernambuco

salc@cin.ufpe.br

rnl@cin.ufpe.br

agsf@cin.ufpe.br

Abstract — With the increase in smartphone sales and the use of

clouds, data synchronization is an essential activity in the mobile

applications that aim to keep data up-to-date with information

from the application server. This paper proposes an analysis of

the main approaches for data synchronization concerning

energy, which are the polling and pushing techniques. The

results show a substantial gain in terms of energy consumption

for the pushing technique when compared to the polling

technique in mobile applications. An experimental environment

based on Arduino and INA219 that allows current and voltage

acquisition of 138 samples per second was used. Results showed a

significant increase of 187% in terms of energy consumption

when the polling technique was applied, which was more

advisable than the use of the polling technique when one or more

requests in a forty minute range are not necessary to be made.

Keywords— energy consumption, energy measurement,

smartphone, polling, pushing.

I. INTRODUCTION

While the computational power of processors doubles every

two years, the capacity of batteries is doubled only every 10

years [21]. One way to make the battery last longer, is to make

it larger. An alternative to this need for greater autonomy in

the batteries is to develop techniques that reduce the

consumption to prolong the use of applications.

From 2010 to 2011 [7], there was a 58% increase in global

sales of smartphones. According to the International Data

Corporation - IDC [8], the amount of smartphones saw an

increase of approximately 39 % from 2012 to 2013. In the

third quarter of 2012 186.2 million devices were delivered

against 258.4 million in third quarter of 2013. The Samsung

devices led sales with 31.4% of the market share in 2013

against 13.1% by Apple. IDC also predicted sales for 2014 of

1 billion and 204 million devices, among which 78.9% using

the Android operating system and 14.9% using iOS [13]. A

report of CISCO [4] predicts that smartphone traffic will be

increased geometrically every year until 2015.

Devices that use Android [9] operating systems have

picked up sharply, rising from 200,000 devices activated per

day in 2010 to 1.5 million devices activated per day in 2013

and today it is the platform with more active devices [18].

Along with the growth of mobile devices, came the need

for the provision of services for these devices, solutions that

were scalable to solve this problem and the clouds allow that.

Therefore, a new research area called Mobile Cloud

Computing (MCC) was created, focused on cloud solutions

for mobile devices [6]. Clouds provide mobile devices with

some advantages such as scalability, security, economy in

device storage, when used properly, capable of providing

savings battery transferring heavy processing to the cloud and

low cost compared to the implementation on dedicated servers.

Given to the significant increase in the number of

smartphones, it was possible to identify that batteries are

crucial in the usability of these devices. A device that

discharges very fast frustrates the user, preventing from the

maximum use of the features of the device. Assuming that the

power of the batteries is not following the evolution of devices

and it is an essential item on the device, techniques are

required to reduce energy consumption to prolong the battery

ensuring the performance, usability and desired functionalities.

This work proposes an analysis of energy consumption by

comparing two main techniques, pushing and polling. These

approaches are used in data synchronization between mobile

applications and their servers in cloud to reduce energy

consumption in mobile devices.

Technically, polling consists of a device that regularly

requests a server, updates data and close connection. In the

pushing technique the device sends a request and keeps this

connection alive. Whenever there is data to be updated, the

server sends this data automatically.

This paper is organized as follows: section 2 describes

related work focusing on the percentage of gain in energy

savings of various techniques; section 3 looks into the

concepts that are relevant in order to understand the proposal

of this work; section 4 shows the components used in the

experimental environment; section 5 outlines the proposal of

the project and the methodology; section 6 presents the results

and discussions and section 7 draws the conclusion of the

study.

II. RELATED WORKS

The work presented in [19] proposes a technique that

performs switching in data transmission between Wi-Fi or 3G

taking into account the signal quality, network speed and data

size. Energy needed to perform the operation is calculated

from a model calculation of energy consumption is also

proposed by the authors. Then the transmission technology at

runtime is selected. The authors achieved a reduction in

energy consumption of 18% compared to the use of Wi-Fi

only and of 30% when compared to the use of 3G only.

The work in [17] demonstrates an approach that uses DVFS

(Dynamic Voltage and Frequency Scaling) to reduce energy

consumption. The study consists of an empirical analysis

using hardware measurement from recurring activities on

smartphones, such as data transfer by 3G and Wi-Fi, phone

call and the cell phone in idle state. The authors conclude that

the lowest frequency of CPU does not always implies less

power consumption. This result is due to the fact that lower

frequency operates for longer time while the higher frequency

operates for less time. Therefore, the authors conclude that

frequency appropriateness depends on the type of activity. At

last, concludes that by switching to the proper frequency

power saving of 30% is obtained when compared to the

profile performance.

Much of the processing and data transfer is done in screen

off mode. This mode keeps the screen disabled but continues

to perform processing. The work presented in [12] performs

an analysis of how much energy is spent in off-screen mode

and also in the on-screen mode. The impact of the use of Fast

Dormancy technique is analysed in [10] and Batching [5]. The

authors conclude that the off-screen payload of packets is

smaller than the one of on-screen. On average, 58.55% of

energy consumption corresponds to data traffic. Furthermore,

applying the techniques together can lead to 60.19% of

savings in energy consumption, 25.33% in signalling

overhead and 30.59% in channel delay.

In [16] the authors explain the technique of Fast Dormancy.

It’s characterized by a 3G connection that has an uptime after

the end of the last data transmission. This time is useful to

more data to be sent without having to re-establish another

connection. The Fast Dormancy consists of closing the

connection immediately before the end of the standard time

for closing the connection. When the data transmission is

finalized, the connection is closed.

The work in [21] finds ways to provide energy savings

using techniques known in literature as Fast Dormancy, as

processing versus transmission and processing in memory.

The technique discussed by the authors, called the separation

of transmission from processing, is to disconnect before

starting the data process. The technique reduces the active and

unused connection time. The other technique, called memory

processing, tries to eliminate some write operations on flash

memory and performing all operations in RAM. With these

techniques, the authors reach a reduction of 44.3% in energy

consumption.

In [11] a comparison between the main approaches utilizing

Pushing (C2DM, XMPP, Xtity and Urban Airship) is made.

Three variables are considered in this work, which are:

stability, response time and energy consumption. They

identified that the XMPP approach reached the best stability

and response time, but the highest energy consumption. The

Urban Airship approach reached the lowest power

consumption.

In [22] a comparison concerning energy in polling and

pushing techniques was made. The authors discuss about the

need for energy savings in smartphones and perform tests on

the Android operating system. They created two applications,

one with polling and another one with pushing. They used a

fictitious scenario. PowerTutor, a software that estimates the

energy consumption of the application, was used in the

experiments. The authors stated that the technique of pushing

is more energy efficient than the polling technique.

The works in [19], [17], [12] and [21] use known

techniques from literature and improve them to achieve

greater energy savings. The work in [22] is very similar to the

one proposed in this paper. It differs in the use of

measurement in software (or simulated), whereas this work

uses the hardware measure that is more accurate. The results

in [22] are based on only one experiment, not being statistical

relevance. The work in [22] does not specify when is better to

use polling and how much the pushing approach is better than

the polling one, when our work fills these faults. In this

present work, however, efficiency is quantified and when

traced to both techniques.

III. BACKGROUND

The pushing technique needs to keep an HTTP long

connection open and within a certain time, e.g. 15 min, so that

the server can send the updates. When time expires, the server

sends an HTTP 200 OK and it is necessary to re-establish the

connection. The pushing only works on mobile networks, not

on Wi-Fi [21]. Mobile networks are available in almost all

locations and remain active even when the phone goes into

idle state (sleep mode), however the Wi-Fi connection is

closed when entering idle state.

Google Cloud Message (GCM) is the successor for Cloud

to Device Messaging (C2DM). These technologies allow data

to be sent from a server to mobile devices without application

having to request data. The information is sent to synchronize

the data server and the mobile device. The GCM is free

regardless the amount of traffic and data size.

The GCM uses the pushing technique to update data and

provides a framework for easy handling and a scalable

infrastructure for data synchronization between server and

mobile application. The GCM has several qualities when

compared to a personal or corporate server used to

synchronize data between different applications. GCM avoids

the need for a personal online server with high availability and

eliminates the need for fixed IP in personal servers. The

personal server is used to send data to the GCM and from

there to the mobile device.

IV. EXPERIMENTAL ENVIRONMENT

In order to measure the energy consumption of the

applications on the mobile device an acquisition board,

developed by our research group was used. The experimental

environment makes use of a PS-1500 ICEL source to feed the

mobile. Adafruit integrated circuit contained in INA219[1]

was used to measure the current. An Arduino UNO[3] was

used to read the data from this integrated circuit. After reading,

data is sent through a serial port to the computer and there the

data is stored by using PCommSerial [15]. We used a

smartphone Samsung Galaxy IV with Android 4.3 Jelly Bean

that used 3G data network from the Claro provider. The figure

1 shows the experimental environment.

Fig. 1 The experimental environment

V. CASE STUDY

The proposed application is intended to track the world cup

games. It consists in showing the scores of games in the

application and update the application when there are any

changes in scores. The developed application can be seen in

Figure 2.

To build the server to simulate games and send the data to

the GCM server, a machine from the Informatics Center (CIn)

was used within the network of the Federal University of

Pernambuco (UFPE).

This server was used to simulate the games, but it can

easily be modified to rescue results from any site which

provides these data, such as Yahoo, CNN, NBC, BBC, among

others.

There are basically four components: the game server, the

GCM server, the application that uses the technique of polling

and that use the technique of pushing. The first server is

responsible for simulating the games and sends them to the

GCM server and also provides information about games to the

application using the technique of polling.

The experiments consist in the measurement of the energy

consumption of the applications. The first application

measures use the polling technique and the second one use the

pushing technique inside the GCM.

The application that uses polling sends a request to the

game server to receive updated data and the server returns the

data up-to-date to the application. The application using the

pushing technique initiates communication with the GCM

server to notify that it is waiting for data to update and then

the GCM server waits for data from the game server. The

GCM only sends messages when there is data to be updated,

not requiring mobile application to request. An active

connection is maintained, but there is no transmission of data

between the GCM and the mobile application.

To prove the gain from the proposed pushing approach, two

android applications were built: one using the pushing (using

GCM) technique and another one using the polling technique

to update the database from the application.

To feed these applications with the game data, a web

system (section 5.3) using Java was built. This system

simulates games data and sends it to the GCM server that

synchronizes data with mobile application that uses the

technique of pushing.

Fig. 2 The application running

A. METHODOLOGY

The experiment consists in performing the measurement of

each application for an hour. Each experiment was repeated

55 times to obtain a consistency in data and more accurate

statistical information.

In Figure 3, it is possible to see the flow of the

methodology developed in this work. In the first stage, the

applications were built, one application using the pushing

technique and another application using the polling technique.

In the second step, a measurement environment was built. The

INA219 integrated with the computer to receive the data, the

energy source plugged for the smartphone and an Arduino

UNO receiving data from the INA219. The measurement

environment takes and stores 138 samples of voltage and

current every second.

Fig. 3 Research flow

In the third step, the consumption measurement of the

smartphone was performed while running the application.

Each iteration was repeated 55 times and each experiment had

a one hour execution. Everything that could consume battery

during the test was disabled, such as GPS, Wi-Fi, data

synchronization, scheduled updates, among others. This was

necessary to minimize the fluctuation in energy measurement

from routine applications of the O.S., and thus do not alter the

measurement of the application.

The fourth and final step consisted of a treatment of the

collected data, calculation of the energy consumption for each

iteration of drawing graphs linking relevant data to this work.

To calculate the energy consumption, the trapezoidal rule

[20] was used to calculate the area of the electric power

graphic. The instantaneous power is calculated by P (t) = v (t)

* i (t), in which i(t) is the current and v(t) is the operating

voltage for a certain time t. The voltage data and current are

obtained by reading the INA219 circuit by Adafruit. The

microcontroller sends this data to a server computer and it

stores the data in files. Each experiment has a title with the

number of the experiment file.

B. POLLING APPLICATION

Figure 4 shows the overall flow of the application that uses

the technique of polling. After the application startup, the

games are immediately loaded from database to be viewed on

the device. After that, one thread to make HTTP requests to

update the scores. Each new score updates the database and

consequently the view on the device.

When the database is empty, the procedure Download

Teams and Download Games are executed the first time the

application runs. The first one is responsible for downloading

the name of teams and the second one to download the scores

and locations of games. A thread responsible for request the

server to check if there are data to synchronize is performed

every minute and is active while the application is running.

An Android service [2] to start the thread was used. Even

with the application in background, the service runs normally.

You must run the correct wake up procedures in the operating

system for the request not to be destroyed by the O.S. This

service is responsible for waking up O.S. every minute,

making the request, updating the database, and then updating

the view of the application.

Fig. 4 Application flow using polling

C. PUSHING APPLICATION

Figure 5 shows the application flow using the pushing

technique. After the application startup, the games are loaded

from the database to the view of the device, as occurs in the

application using polling. After that, there is a negotiation

connection with the GCM server. This connection is kept alive

by a service (android service) and even with the application

closed the service continues to run to be alerted when there is

any data to be transmitted from the GCM to the device. When

you have some data to be updated, the score of a game, for

example, the service receives this data, updates the database

and then updates the view of the application.

The pushing technique has another very striking advantage.

There is no need to keep activity on foreground to maintain

the application. It can be closed and still be updated. The

service that communicates with the GCM and updates the data

is active from the application start until kill the process or

restart the smartphone.

Fig. 5 Application flow using pushing

D. JAVA SERVER

The Java server consists of a system responsible for

simulating games of the world cup and sends this data to the

GCM. This server is also used by applications to update the

database at first access. The GCM has a delay between the

data arrival and sends this information to synchronize with the

mobile application. Even with this short delay, it’ll be

noticeable to the user when he opens the application for the

first time, because nothing will appear. To solve this problem ,

the first update of the database is made when the application is

started sending an HTTP request to the Java server that

returns the names of the teams, current scores, local games

and links URL pointing to the flag of the team.

To communicate with the GCM server, a prior registration

is required on Google platform to generate an ID to be used in

the GCM API. The server that sends the data has an ID called

ID_Sender and every mobile application also has an ID called

Android_Device_ID. With this ID is possible choose which

devices must receive the information. This work sends a

broadcast to all registered devices.

VI. RESULTS

Figure 6 shows the power dissipated by the application that

uses polling in an interval of 5 (five) minutes. Each peak of

power indicates a request. Seven clearly distinct peaks can be

seen on the graph, which indicates 7 (seven) requests. In an

interval of 5 minutes and with the application executing 1

request per minute, there should be only 5 (five) peaks, but

there are variations, such as network congestion, which lead to

the repetition of the request, imprecise thread count time,

Android O.S. that can delay the request or internal policies in

Android energy saving.

Fig. 6 Consumed power using polling

Figure 7 shows power from the application using pushing

in a range of time of approximately 5 (five) minutes. Three

distinct peaks can be seen. The first and second peaks are

easily visible between samples 6500 to 11000 and 14000 to

19000. These peaks represent data traffic to update the

database of the application, i.e. a transmission of information

between the GCM server and the mobile application. The third

peak can be seen between samples 24000 and 24500, this peak

is a keep-alive, a sign sent by the HTTP protocol to keep

connection active. The other points on the graph are noises

generated by the O.S. or maintenance of the data network.

Fig. 7 Consumed power using pushing

Figure 8 shows the figures of the total energy consumption

for all experiments. It can be clearly seen that the application

using the polling is always higher than the one pushing,

proving a substantial gain. The average consumption for the

application using polling in 447 J with a standard deviation of

41 J was calculated based on these figures. In the application

using pushing, the average consumption was of 156 J with an

average standard deviation of 15J.

Fig. 8 Energy consumption of polling and pushing approaches

Linearity in energy gain in the pushing application against

polling application can be seen in Figure 9. The average gain

is of 187%, a significant value when compared to other works

consulted. There are differences in gains because 3G network

is very fickle, may have traffic congestion and processes

running in O.S. background. This interferes in the general

consumption of the application and a statistical analysis was

needed. The standard deviation of the average gain is of 26

percentage points.

Fig. 9 Gain percentage in pushing approach

After proved the energy efficiency of the pushing approach

in the proposed case study, this paper investigated the

variables of the polling technique. Energy analysis was also

made in requests with different times. In the previous example,

the polling was applied every 1 minute interval and it was also

applied for intervals of 5, 10, 15, 20 and 30 minutes. The

results can be seen in Figure 10. The consumption figures of

the polling approach can be seen in Table I. The pushing

approach doesn’t have variations in time requests.

Fig. 10 Consumption in many requests time

With these results we can specify when to use the most

appropriate approach. If the application doesn’t need to make

more than one request in the range of 40 minutes or more, it’s

advisable to use the polling technique to be more energy

efficient. That is possible due to the fact that the pushing

approach has a long-term connection established with the

server to maintain the data synchronization awake and it also

has a stable energy consumption.

TABLE I

ENERGY CONSUMPTION FOR DIFFERENT TIME REQUESTS

Request Time /

Approach

Polling (arithmetic

mean)

Standard

Deviation

1 minute 447.86 J 41.18 J
5 minutes 298.94 J 13.12 J

10 minutes 280.63 J 14.19 J
15 minutes 245.76 J 13.94 J

20 minutes 236.35 J 37.77 J
30 minutes 183.38 J 15.76 J

40 minutes 159.38 J 11.02 J

Finally, this work proved the effectiveness of the pushing

approach for data synchronization compared to polling

technique in a case study and shows when it is better to use

polling. With this information, it is possible to choose the best

approach for data synchronization on mobile devices.

VII. CONCLUSION

Literature was examined to understand how applications

synchronize their data with their servers and try to improve

energy consumption in this area of knowledge. This work

used two techniques from literature, the polling and pushing

for data synchronization between applications. An

experimental environment based on the Arduino platform and

INA219 to get the samples was used.

In this paper two applications were built to evaluate the

energy consumption by using the two techniques. Various

measurements were performed using a real environment and

results showed an energy gain of approximately 187%

whenever using the pushing technique compared to the polling

technique in the analysed case study. A more detailed analysis

found that if an application using polling does not make more

than one request for data synchronization in the range of 40

minutes or more, it is strongly recommended to use the

polling technique for energy consumption saving.

ACKNOWLEDGMENT

To teacher Abel Guilhermino for providing the conditions

for the development of this work. The Informatics Center of

UFPE for encouraging students to do research and offer

subsidies for the development. The authors would like to

thank CNPq (Universal/472317/2013-0) and FACEPE (IBPG-

0731-1.03/12) for partial financial.

REFERENCES

[1] Adafruit Industries. ―INA219 High Side DC Current Sensor Breakout -

26V ±3.2A Max‖. http://www.adafruit.com/products/904. Mar 2014.

[2] Android Services. http://www.tutorialspoint.com/android/android_serv
ices.htm. Jan 2014.

[3] Arduino. ―Arduino Uno Board‖. http://arduino.cc/en/Main/arduinoBo

ardUno. Mar 2014.
[4] Cisco. ―Cisco Visual networking Index: Global Mobile Data Traffic

Forecast Update,‖ White Paper, Feb 2014.

[5] S. Deng and H. Balakrishnan. Traffic-aware techniques to reduce 3g/lte
wireless energy consumption. In Proc. CoNEXT (2012), pp. 181–192.

2012.

[6] N. Fernando, S. Loke, and W. Rahayu. ―Mobile cloud computing: A
survey‖. Future Generation Computer Systems, 2013, pp. 84–106.

2013.

[7] Gartner. ―Gartner Says Worldwide Smartphone Sales Soared in Fourth
Quarter of 2011 With 47 Percent Growth‖.

http://www.gartner.com/newsroom/id/1924314. 2012.

[8] Gartner. ―Record Smartphone Shipments Grow the Market 38.8% in
the Third Quarter of 2013, Making Way For A Strong Holiday Quarter,

According to IDC‖. http://www.idc.com/get

doc.jsp?containerId=prUS24418013. Nov. 2013.
[9] Google Android. ―Portal Desenvolvedores‖. http://developer.andr

oid.com/guide/components /services.html. Jan. 2014.

[10] GSM Association. ―Fast Dormancy Best Practises‖.
http://www.gsma.com/newsroom/wp-content/uploads/2013/08/TS18

v1-0.pdf. Jan. 2014.

[11] J. Hansen, T. M. Grønli, and G. Ghinea. ―Towards cloud to device
push messaging on Android: technologies, possibilities and

challenges,‖ International Journal of Communications, Network and

System Sciences, Vol. 5, No. 12, pp. 839-849, 2012
[12] J. Huang, F. Qian, Z. M. Mao, S. Sen and O. Spatscheck. ―Screen-off

traffic characterization and optimization in 3G/4G networks‖.

Proceeding in: Conference on Internet measurement Conference IMC
'12. pp. 357-364. ACM New York, NY, USA, 2012.

[13] IDC. ―Despite a Strong 2013, Worldwide Smartphone Growth

Expected to Slow to Single Digits by 2017, According to IDC‖.
http://www.idc.com/getdoc.jsp?containerId=prUS24701614. Feb. 2014.

[14] J. P. Martin-Flatin. ―Push vs. pull in Web-based network management‖.

Proceedings of the Sixth IFIP/IEEE International Symposium on
Integrated Network Management, 1999. Distributed Management for

the Networked Millennium.
[15] PcomSerial. ―Moxa PComm Lite - Serial Comm Development Tool‖.

http://www.moxa.com/product/download_pcommlite_info.htm. Mar.

2014.
[16] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen and O. Spatscheck.

Characterizing radio resource allocation for 3G networks. In

Proceedings of ACM IMC, 2010.
[17] A. G. Silva-Filho et al. ―Energy-Aware Technology-based DVFS

Mechanism for the Android Operating System‖. Proceedings of the IX

Operating Systems Workshop, Brazilian Symposium on Computational
System Engineering, Natal, Brazil, 2012.

[18] Statista. ―The Statistics Portal‖. http://www.statista.com/statistics/278

305/daily-activations-of-android-devices. Jan. 2014.
[19] S. Taleb, M. Dia, J. Farhat, Z. Dawy, and H. Hajj. ―On the Design of

Energy-Aware 3G/WiFi Heterogeneous Networks Under Realistic

Conditions‖. Published in: 27 th International Conference on Advanced
Information Networking and Applications Workshops (WAINA), 2013.

[20] E. Talvila and M. Wiersma. ―Simple Derivation of Basic Quadrature

Formulas‖ http://arxiv.org/pdf/1202.0249v1.pdf. Feb. 2012.
[21] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang and Q. Li

―Optimizing Background Email Sync on Smartphones‖. Proceeding of

the 11th annual international conference on Mobile systems,
applications, and services pp 55-68 ACM New York, NY, USA, 2013.

[22] P. C. Dinh and S. Boonkrong. The Comparison Of Impacts To Android

Phone Battery Between Polling Data and Pushing Data. International
Conference on Computer Networks and Information Technology –

ICCNIT. Bangkok, Thailand, 2013.

