Analysis of the impact of refactorings on the
performance of embedded systems

Heitor B. dos Reis EUlisses B. Corré} Lucio Mauro Duarte Anténio C. S. Beck
Instituto de Informaética
YUniversidade Federal do Rio Grande do Sul(UFRGS)
Porto Alegre, Brasil
{hbrfilho@inf.ufrgs.br},{caco@inf.ufrgs.br},{ ubcaea@inf.ufrgs.br },{Imduarte @inf.ufrgs.br}

Abstract— In recent years, the large growth of
embedded platforms available in the market broughta
great challenge to software developers, since thiénd of
system offers limited hardware resources, which arewer
than desktop computers. Therefore, these must be
optimally used by programmers in order to meet
expectations of end-users, such as performance, bidy
and battery life.

In this context, this work aims to study the impactof
code refactoring on the embedded devices’ performae.
This study is done by source code refactoring, aimg to
improve readability and performance without altering the
original functionality of the requirement. Three basic
refactorings were evaluated and the Mult2Sim procesor
simulator was used.

Keywords— physical metrics; Performance microprocassa
Introduction

related to the perception that, for example, aptibns

developed with object-oriented languages have @efar
memory footprint. However, this is only an assumptthat

has yet to be proven.

Thus, this work aims to present an initial stubbpat how
the programming best practices influence perforreaivore
specifically, the technique of refactoring will brudied [3] as
well as how this practice may influence the metsosh as:
memory footprint, number of CPU cycles, energy
consumption, power dissipation, etc. The refactprims done
using the features available in Eclipse IDE, angliad to
source code written in C++. The physical metricsrave
obtained from Mult2sim [4], which emulates X86 pegsors.

This work is organized as follows: Section Il prase
some basic ideas about source code refactoringaasmall
refactoring catalog; Section Ill contains a ded@ip of our
case study; in Section IV, we discuss our expertaigasults;
finally, Section V presents our conclusions and sadeas for
future work.

1. REFACTORING

The continuous growth of the use of embedded system

brings a great challenge to software developerssidering
the limited number of hardware resources thesemsbffer.
For this reason, these resources must be optiniaiyd by
programmers in order to meet end-users' expectasanh as
performance, usability, and battery life. Some epl@® of

During the process of software development marlyrizs
are inserted into source code, and bring to lighhyrtypes of
errors, which can be minimized with a proper plagnand
execution of software tests. However, the quality a0
particular application is not determined by the Hoocourrence

complex embedded system are: Smartphones, Table¥ €rrors only, butalso how the application wastbfs].

smartwatches, smartTVs, etc. These devices hawgdayable
processing capacity, with resources dedicatededabks they
were designed for [14]. Some of the limitations ttlzae

observed in these devices are directly relatedemany usage
and battery consumption.

Traditional methodologies cope with the software
developing process interactively and incrementaihgst of
times using a robust formalism throughout all tegelopment
stages, when refactorings are constantly used Rl [
According to [3] refactoring is a “transformatiothat

The evolution of software applications, as well asPreserves the behavior”. However, many times thacess

increasing its complexity, has led software engisne®

enhance the technical analysis, software design calihg

[1]. Thus, programming paradigms have been deeelayer

time to improve productivity, making the programmin
activity more natural to the developers. Howevée tmost

popular programming paradigms are still structuraad

object-oriented programming.

may be somewhat impaired because of excessivethdesre
involved in the whole process [6] or the need fastér
development (shorter time-to-market). With the advef
agile methodologies, several new software developme
practices have been successfully applied in maifffgrdnt
types of projects, in which refactoring has an int@at role.

Thus, the refactoring has as primary goal to irszethe

There are some professional guidelines suggestitg nreadability of the source code in order to fadiitathe

employing the object-oriented paradigm due to kgative
effect on the software performance (overhead)TR8js can be

maintenance task in the future. However, this alémws the
improvement of other features, such as of the sofvdesign,

the process of searching for faults or even perémea. The
refactoring process may also involve tasks suchreamoving
duplicate code, simplification of conditional logiad so on.

The concept of refactoring can be applied in varistages
of development. In the design phase, for instaihie possible
to apply refactoring patterns [7]. However, a giwgpe of
refactoring may have a greater impact than othpending on

systematically used by the class, one can makeottject a
field of the same object.

H. Pull up method
The pull up refactoring method should be appliecemvh
there is a hierarchy of classes with duplicate oashwith

duplicated behavior. Even though two duplicate mésh
would correctly work, they would increase chancels o

which point of the development stage it was appliedmyjsiakes in the future.

Examples of code refactoring [3] includiéethod Extracting,

Method Inlining, Conditional Decomposing, Hierarchy
Collapsing, Changing Unidirectional Association to
Bidirectional, Changing References to Values, Pulp

Method, Renaming, etc. There are many other typles
refactoring presented in Fowler’s refactoring aagal3], and
many more types of refactorings have been introdiuog
other authors.

In the following we enlist and explain some refaitg
techniques.

A. Method Extracting

One of the main pitfalls that may occur during
programming is code duplication. This kind of refang
replaces duplicated code fragments by method calés
allows better reuse of code, thereby improving
maintainability of the program. [3].

B. Method Inlining

This one is the opposite of the aforementionedctefang.
In this case, the source code contained in a metépldces
the method call. This makes sense, for instandégeiimethod
body is as clear as its name [3] or if the mettodallled one
time only in the whole code.

C. Renaming

This refactoring consists of renaming identifigrorder to
improve the understanding of the source code. Typs of
refactoring is usually quite simple and can be qrentd
automatically by modern IDEs.

D. Conditional Decomposing

It is used when there are complex and hard to viollo
conditional statements, with many nested if-theseel
conditionals. This kind of refactoring also helpskimg the
code more readable [3].

E. Hierarchy Collapsing

Applied in cases when the superclass and the ssda
not have many differences (i.e., the specializatainthe
subclass is not significant). Therefore, it unifiesth by
grouping attributes and methods [3].

F. Changing Unidirectional Association to Bidirectional

M. CASE STUDY

In this section we describe our case study and the
methodology of ours experiments.

Initially the idea was to implement small benchnsatkat
allow assessing the performance before and after th
implementation of changes in the code, but thisr@ggh
showed to be ineffective. Thus to verify the infiae of
refactorings in the final product, we have chosdme t
Mpeg2Decoder benchmark, which is part of Mibench
benchmark set [8].

This program has a large size and is part of aggeho
evaluate the performance of CPUs. The original nwgwas
written in C language and was converted to C++ gugn

theanalytical method for refactoring object-orientedde [9],

which also allowed us to analyze the impact of this
conversion.

A. Multi2Sm

The benchmarks were executed using the Multi2Sim [4
architectural simulator. Multi2Sim simulates the
characteristics of many hardware structures ofliftel x86
Instruction Set Architecture (ISA) [10] [11], likeumber of
pipeline stages, functional units and cache memofigach
component can be configured [9].

The Figure 1 shows the simulation flow, from where we
collect data from application execution, like numioé CPU
executed cycles, number of executed instructiond, \&lues
of instructions per cycle (IPC). In this figure wan see that a
regular source file is compiled to generate an etedie
binary file that will be passed to five differentopessor
models, simulated in Multi2Sim [4], to generate fhtgysical
metrics.

When two classes are connected in one directiod, an

classes need to use resources contained in bdtiewf, this
refactoring is needed [6].

G. Referenceto Value Changing

When there is a class with a reference to an olbjedtis
small, which does not change during execution drad is

g
3 | \
]
InverseDCTReference
01010 I:‘
10101
01010 [[systems |
10101 | —|
—
ion Display le
* e/ —
< Conf I . Conf. 5
oo helper store
L 4
e |
Physical
StorePPM i
SRRl ! ore ! ! store_sif ! ! store_tga ! ! store_yv !

Figure 2 —Class diagram Mpeg2decoder
Figure 1- Steps to obtain physical metric§l2].

The Figure 2 shows the set of the classes, in a total of 26
with 19664 lines of source code [8]. Several mstfar object

B. Methodology orientation, using the Understand tool, were exéidrom the

After choosing the benchmark (which will be desedb TeSPective software as shown in Table | [12]. Thecess of
below), the source code was analyzed to find "iaells” [3] collecting the metrics of .object orientation thrhughe tool
[7]. All simulations were performed with the samep\¢ understand can be found in [12] for more details.
characteristics, but with different sizes for thd Icache
memory (32k, 16k, 8k, 4k, 2k). Initially, the omgil C Table | - Metrics Object Orientation [12]

benchmark was simulated. Then, the same code waeted Metrics Value

to C++ and simulated again. The previous two sitiuia :

were done to evaluate the difference between using CountLine 19644

structured language and an object-oriented langugigally, CountClassCoupled 84

the foI_Iowing refactoringg were applied to t_he Ceode: CountDeclClass 26

renaming, Method Extracting and Method Inlining. Countnnut 1560
The first step to starting work was to create il ountinpu

samples of source code refactorings to apply iddidly and CountOutput 922

verifying the individual influence of each one d¢fetn. We Cyclomatic 877

havg also mixed refactorings, (i.e.: different m_arﬁaings_ were PercentLackOfCohesion 26.35

applied to the same code, such as renaming witthadet _

extracting and so on). MaxInheritanceTree 1
Eclipse Kepler IDE version 3.8 was used, with itpport CountClassBase 4

for native refactorings for C ++. Renaming was done CountClassDerived 4

automatically by Eclipse, while the other two wenade in a
hybrid manner, (i.e. using the tool with some manua

: : In Table | it can be seen through the metric
intervention). MaxInheritanceTree that the program does not egplor
C. The Benchmark Mpeg2Decoder inheritance, prioritizing compositions, which a @ipolicy

The benchmark chosen to test the refactorings Wwas t design [13]. It also has a good cohesion and aragee
Mpeg2Decoder [7], which was originally written inaBd was ~ Cyclomatic complexity.
converted to the C++ [9]. IRigure 2 one can see the basic The respective program uses the class mpeg2dec that
class diagram of the application. Not all assooiai were contains the main () function to start the taskdetoding. It
designed, and the structs have also been omittenidier to receives all necessary parameters from the comra@dy
increase the readability of the figure as well asubing on using the CommandLineArguments class. After tha, file
interesting aspects of the application. in MPEG2 format is loaded, and the various partthefimage
are decoded by GetHdr, GetVic, GetPic, GetBlk amdB&s
classes.

The storePPM, store_sif, store_tga and store_yassek
are responsible for generating the output file etdiog to the
parameters that were passed via the command lme o
simulations, we used the YUV output that genertis=e files
without a header for each component: the compooklight
is stored in files with the extension Y, and chrtogaaphy
components are stored in files with the U and V.

V. CODE REFACTORING OVERHEAD ANALISYS

In this section the results of the simulations iearout in
our research will be analyzed. In Table Il and ¢abl, data
from simulations in the original code in C languaayed in
C++ language are presented, respectively.

The metrics presented in tables Il and Il are dbsed
below:

Cycles: total number of cycles needed for the eteawof
the program.

Memory used: total occupancy of memory for program

execution.
IPC: number of instructions per cycle.

Number of instructions: the number of instructiahst
were executed.

Accesses L1: all accesses to the L1 cache memory.
Hits L1: total number of Hits in cache memory L1.
Misses L1: total number of Misses in cache memdry L
Accesses L2: all accesses to the L2 cache memory.
Hits L2: total number of Hits in cache memory L2.
Misses L2: total number of Misses in cache memdty L

Table Il - Results of simulations of the source cadlin C

an increase of 5% for the C + + language. The metimber
of instructions increased 7% with the use of the+Cr
language.

The number of Misses in the cache access is quite

significant with respect to the use of two languggspecially
when the cache size decreases.

Table Ill - Results of simulations of the source ate in C
++ language
Cache Size
32k 16k 8k 4k 2k

Cicles 3310120173 6747575343 10306245313 1819491079 27753374586
Memory 9854976 9854976 985497 9854916 9854976
used
IPC 0,1725 0,08461 0,055 0,03138 0,020p7
Number of 570934486 570934484 570934446 570934486 570934486
Instructions
Acessess 160835064 164605904 201007120 260854586 351214773

1
Hits L1 146365795 12987466 105737124 78999430 &2
Misses L1 14469269 3473124 95269996 181854756 RDEB
Acessess 42742567 91063812 205043483 386514867 564369667
L2
Hits L2 30015192 55866614 134331638 244125197 33D
Misses L2 12727375 3519719y 70711845 142389670 TR

The Figure 3 shows the increased cache miss rate as the
size of the cache decreases. Analyzing the graipholiserved
that the refactoring conversion from C to C + +a worth
for embedded systems that have a minimal amouiciacofie
memory available, since the number of cache migse€
language for this benchmark is lower.

language 600000000
Cache Size 500000000
Cicles 3034249982 661064184p 16051574634 1605397860 25117684403
Memory 9318400 9318400 931840 9318440 s3taqoo | 300000000
used
IPC 0,1752 0,08043 0,033L 0,03312 Goziny | 200000000
Number of | 531725054| 531725054 531725044 531725054 531725054
Instructions 100000000
AcessessL1| 158087599 168010760 258729996 | 258775791 346435491 0
Hits L1 146476855| 140563679 81289881 81259091 50479726 3K 16k 8k 4k 2k
Misses L1 11610744] 27456090 177440115 | 177516700 295955768 Total Misses L1 C Total Misses L1 C++
Acessess L2 3862641 74326847 370122932 370235493 538103103 Figure 3 — Misses distribution function of the varation in
the cache memory.
Hits L2 27746199| 41273808 236588873 | 236615962 321107951
Misses L2 10880216[33053039 133534059 | 133619531 216995153 In the table 1V, data are presented after the tefags
inline method, rename e Extract method were appiedhe

Analyzing the results one can observe that theadass of
9% in the C ++ version in relation to the numbecyéles for
all simulations. In the aspect of memory footprifigre was

classes store_YUV, GetPic, GetBits e Mpeg2Dec. rEselts
obtained were not significant, because the vanatio data
was very small. In comparison with the results & t
conversion from C to C ++, one can observe (inetdb) that
there was a reduction of only 2.2% for the numbfecyzles

with 32k, while this reduction was of less than fda cache
with 2k. There was no changes in the IPC, as veelllaen one
considers the memory footprint. The change in theler of
instructions is also negligible(less than 1%).

Table IV - Results of the simulations after applyig the
inline method refactoring, rename and extract methd.

application should be encouraged, since it doesafiett the
performance but facilitates the understanding @& tode.
Moreover, it can be automatically applied usingtactoring
tool such as the Eclipse IDE.

As future work, we intend to apply the same type of
experiment to other benchmarks. They should prbfgra
include inheritance and polymorphism so that weld@lso
analyze other refactorings. We plan to evaluateirtigact of

Cache Size refactorings on physical metrics considering other
32k 16k 8k 4k 2k architectures and compilers, so that we can analfzether
Cicles 3238713016| 674414110y 10535860153 18350735[40 zawaes| the effeCt of refaC_t0r|n9§ n SOftV_\Iare performam:ehfferent
Miemory SE5A5TE ST5I5T6 Sa5a57 STEITTE sasadse fOF dlfferen_t conflguratlons_,. This would give us lzetter
used understanding of the relation between code refamoand
e 1763 558356 o5 Sk 5aa0s; Physical metrics and, ultimately, lead us to deteenin which
Nomber of | orosasass’ orssas] orsasads orosasdos —— situations the use of refactoring is recommendetivanich it
et uetions 1) 17" is not. This information could help developers teigh the
Acessess 159211048 165216733 221442148 265101618 353483137 beneﬁts‘_ and dl_sadvantages_, of appl_ymg _refactorlngs
L1 depending, especially, on their non-functional regruents
regarding performance and decide whether it istwortnot to
HltS L1 146026091 136135181 106290764 79324863 46265809 . T . . T .
improve readability and maintainability in exchanfp a
Misses 13184957 29081552 115151384 185776765 307217328 pOSS|b|e decrease Of performance
L1
ﬁgessess 41823140 80650931 230609262 387585830 566024{171 References
Hits L2 29395751 45311852 159420148 2451847[70 334576069
Misses 12427389 35339079 71189114 142401060 231448102 [1] R S Pressman, Soﬂware Englneerlng, Unlted S
L2 of America: McGraw-hill, 2009.
i [2] Google Company, "Performance Tips," 2(
Regarding the effect on accesses to the cache mgemor [Online]. Available

there was also no significant change, as can beisdégure
4.

2K
4K
B Misses L1-
8K Refatoring
B Misses L1 C++
16K .
Original
32K
0 200000000 400000000

Figure 4 — Misses distribution to Original C++ and
Refactoring program.

V.

The conversion applied to the original code in Cithwits

implementation of design patterns [9] had some ohpahich

is still acceptable if the machine does not hagenall amount
of cache memory.

CONCLUSIONS AND FUTURE WORK

Our experiments demonstrated that there was nati@riin
the data analyzed for the Rename refactoring. Thereit

http://developer.android.com/training/articles/perf
tips.html#Packagelnner. [Accessed 28 08 2013].

M. Fowler, Refactoring: Improving The Design
Existing Code, United States of America: Addi
Wesley Professional, 2000.

(3]

[4] Mult2Sim, “Mult2Sim,” 30 06 2014. [Online
Available: https://www.multi2sim.org/. [Acesso er 36
2014].

[5]

S. lan, Software Engineering, 9th edition, New Y.
Pearson Addison-Wesley, 2010.

K. Beck e C. Andres, Extreme Programir
Explained, Boston: Addison-Wesley, 2004.

[6]

[71 K. Joshua, Refactoring to Patterns, United Stafi

America: Pearson Higher Education , 2004.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T.
Austin, T. Mudge e R. B. Brown, “MiBench: A fre

(8]

commercially representative embedded bench
suite,” 2001.
[9] S. Pissanetzky, “An Analytical Method

Refactoring Object-Oriented Code,” 28 08 2006.

J. L. Henessy e D. A. Patterson, Comp
Organization and Design The Hardware/Softwa
Interface, United States of America: The Mor
Kaufmann, 1998.

[10]

[11] D. F. Toledo e F. W. C. d. Oliveira, “Avaliacédo
Desempenho de uma Arquitetura hetgmea simulac
alterando a laténcia da memoria cache L2 da C
Enacomp, 2013.

[12] U.B.Corréa, A. C. S. F. Luis F.G. Millani e L. 1@,
“Quality Impact on Software PerformanceSBESC ,
2013.

[13]

[14]

C. Larman, Applying UML and Patterns:
Introduction to ObjecBriented Analysis and Design &
Iterative Development (3rd Edition), Massachus
Pearson Education, 2009.

Beck A.C.S., Lishdéa C.A.L., Carro LAdaptable
Embedded Systems, New York, Springer, 2013.

