
Analysis of the impact of refactorings on the
performance of embedded systems

Heitor B. dos Reis F.1 Ulisses B. Corrêa 1, Lucio Mauro Duarte1, Antônio C. S. Beck1
Instituto de Informática

1Universidade Federal do Rio Grande do Sul(UFRGS)
Porto Alegre, Brasil

{hbrfilho@inf.ufrgs.br},{caco@inf.ufrgs.br},{ ubcorrea@inf.ufrgs.br },{lmduarte@inf.ufrgs.br}

Abstract— In recent years, the large growth of
embedded platforms available in the market brought a
great challenge to software developers, since this kind of
system offers limited hardware resources, which are lower
than desktop computers. Therefore, these must be
optimally used by programmers in order to meet
expectations of end-users, such as performance, usability
and battery life.

In this context, this work aims to study the impact of
code refactoring on the embedded devices’ performance.
This study is done by source code refactoring, aiming to
improve readability and performance without altering the
original functionality of the requirement. Three basic
refactorings were evaluated and the Mult2Sim processor
simulator was used.

Keywords— physical metrics; Performance microprocessors. .
Introduction

The continuous growth of the use of embedded systems
brings a great challenge to software developers, considering
the limited number of hardware resources these systems offer.
For this reason, these resources must be optimally used by
programmers in order to meet end-users' expectations such as
performance, usability, and battery life. Some examples of
complex embedded system are: Smartphones, Tablets,
smartwatches, smartTVs, etc. These devices have considerable
processing capacity, with resources dedicated to the tasks they
were designed for [14]. Some of the limitations that are
observed in these devices are directly related to memory usage
and battery consumption.

The evolution of software applications, as well as
increasing its complexity, has led software engineers to
enhance the technical analysis, software design and coding
[1]. Thus, programming paradigms have been developed over
time to improve productivity, making the programming
activity more natural to the developers. However, the most
popular programming paradigms are still structured and
object-oriented programming.

There are some professional guidelines suggesting not
employing the object-oriented paradigm due to its negative
effect on the software performance (overhead) [3]. This can be

related to the perception that, for example, applications
developed with object-oriented languages have a larger
memory footprint. However, this is only an assumption that
has yet to be proven.

Thus, this work aims to present an initial study about how
the programming best practices influence performance. More
specifically, the technique of refactoring will be studied [3] as
well as how this practice may influence the metrics such as:
memory footprint, number of CPU cycles, energy
consumption, power dissipation, etc. The refactoring was done
using the features available in Eclipse IDE, and applied to
source code written in C++. The physical metrics were
obtained from Mult2sim [4], which emulates X86 processors.

This work is organized as follows: Section II presents
some basic ideas about source code refactoring and a small
refactoring catalog; Section III contains a description of our
case study; in Section IV, we discuss our experimental results;
finally, Section V presents our conclusions and some ideas for
future work.

II. REFACTORING

During the process of software development many failures
are inserted into source code, and bring to light many types of
errors, which can be minimized with a proper planning and
execution of software tests. However, the quality of a
particular application is not determined by the non-occurrence
of errors only, but also how the application was built [5].

Traditional methodologies cope with the software
developing process interactively and incrementally, most of
times using a robust formalism throughout all the development
stages, when refactorings are constantly used [1] [3].
According to [3] refactoring is a “transformation that
preserves the behavior”. However, many times this process
may be somewhat impaired because of excessive rules that are
involved in the whole process [6] or the need for faster
development (shorter time-to-market). With the advent of
agile methodologies, several new software development
practices have been successfully applied in many different
types of projects, in which refactoring has an important role.

Thus, the refactoring has as primary goal to increase the
readability of the source code in order to facilitate the
maintenance task in the future. However, this also allows the
improvement of other features, such as of the software design,

the process of searching for faults or even performance. The
refactoring process may also involve tasks such as: removing
duplicate code, simplification of conditional logic and so on.

The concept of refactoring can be applied in various stages
of development. In the design phase, for instance, it is possible
to apply refactoring patterns [7]. However, a given type of
refactoring may have a greater impact than other depending on
which point of the development stage it was applied.
Examples of code refactoring [3] include Method Extracting,
Method Inlining, Conditional Decomposing, Hierarchy
Collapsing, Changing Unidirectional Association to
Bidirectional, Changing References to Values, Pull Up
Method, Renaming, etc. There are many other types of
refactoring presented in Fowler’s refactoring catalog [3], and
many more types of refactorings have been introduced by
other authors.

In the following we enlist and explain some refactoring
techniques.

A. Method Extracting

One of the main pitfalls that may occur during
programming is code duplication. This kind of refactoring
replaces duplicated code fragments by method calls. This
allows better reuse of code, thereby improving the
maintainability of the program. [3].

B. Method Inlining

This one is the opposite of the aforementioned refactoring.
In this case, the source code contained in a method replaces
the method call. This makes sense, for instance, if the method
body is as clear as its name [3] or if the method is called one
time only in the whole code.

C. Renaming

This refactoring consists of renaming identifiers in order to
improve the understanding of the source code. This type of
refactoring is usually quite simple and can be performed
automatically by modern IDEs.

D. Conditional Decomposing

It is used when there are complex and hard to follow
conditional statements, with many nested if-then-else
conditionals. This kind of refactoring also helps making the
code more readable [3].

E. Hierarchy Collapsing

Applied in cases when the superclass and the subclass do
not have many differences (i.e., the specialization of the
subclass is not significant). Therefore, it unifies both by
grouping attributes and methods [3].

F. Changing Unidirectional Association to Bidirectional

When two classes are connected in one direction, and
classes need to use resources contained in both of them, this
refactoring is needed [6].

G. Reference to Value Changing

When there is a class with a reference to an object that is
small, which does not change during execution and that is

systematically used by the class, one can make this object a
field of the same object.

H. Pull up method

The pull up refactoring method should be applied when
there is a hierarchy of classes with duplicate methods with
duplicated behavior. Even though two duplicate methods
would correctly work, they would increase chances of
mistakes in the future.

III. CASE STUDY

In this section we describe our case study and the
methodology of ours experiments.

Initially the idea was to implement small benchmarks that
allow assessing the performance before and after the
implementation of changes in the code, but this approach
showed to be ineffective. Thus to verify the influence of
refactorings in the final product, we have chosen the
Mpeg2Decoder benchmark, which is part of Mibench
benchmark set [8].

This program has a large size and is part of a package to
evaluate the performance of CPUs. The original program was
written in C language and was converted to C++ using an
analytical method for refactoring object-oriented code [9],
which also allowed us to analyze the impact of this
conversion.

A. Multi2Sim

The benchmarks were executed using the Multi2Sim [4]
architectural simulator. Multi2Sim simulates the
characteristics of many hardware structures of the Intel x86
Instruction Set Architecture (ISA) [10] [11], like number of
pipeline stages, functional units and cache memories. Each
component can be configured [9].

The Figure 1 shows the simulation flow, from where we
collect data from application execution, like number of CPU
executed cycles, number of executed instructions, and values
of instructions per cycle (IPC). In this figure we can see that a
regular source file is compiled to generate an executable
binary file that will be passed to five different processor
models, simulated in Multi2Sim [4], to generate the physical
metrics.

Figure 1- Steps to obtain physical metrics [12].

B. Methodology

After choosing the benchmark (which will be described
below), the source code was analyzed to find "bad smells" [3]
[7]. All simulations were performed with the same CPU
characteristics, but with different sizes for the L1 cache
memory (32k, 16k, 8k, 4k, 2k). Initially, the original C
benchmark was simulated. Then, the same code was converted
to C++ and simulated again. The previous two simulations
were done to evaluate the difference between using a
structured language and an object-oriented language. Finally,
the following refactorings were applied to the C++ code:
renaming, Method Extracting and Method Inlining.

The first step to starting work was to create individual
samples of source code refactorings to apply individually and
verifying the individual influence of each one of them. We
have also mixed refactorings, (i.e.: different refactorings were
applied to the same code, such as renaming with method
extracting and so on).

Eclipse Kepler IDE version 3.8 was used, with its support
for native refactorings for C ++. Renaming was done
automatically by Eclipse, while the other two were made in a
hybrid manner, (i.e. using the tool with some manual
intervention).

C. The Benchmark Mpeg2Decoder

The benchmark chosen to test the refactorings was the
Mpeg2Decoder [7], which was originally written in C and was
converted to the C++ [9]. In Figure 2 one can see the basic
class diagram of the application. Not all associations were
designed, and the structs have also been omitted in order to
increase the readability of the figure as well as focusing on
interesting aspects of the application.

Figure 2 –Class diagram Mpeg2decoder

The Figure 2 shows the set of the classes, in a total of 26
with 19664 lines of source code [8]. Several metrics for object
orientation, using the Understand tool, were extracted from the
respective software as shown in Table I [12]. The process of
collecting the metrics of object orientation through the tool
understand can be found in [12] for more details.

Table I - Metrics Object Orientation [12]

Metrics Value

CountLine 19644

CountClassCoupled 84

CountDeclClass 26

CountInput 1260

CountOutput 922

Cyclomatic 877

PercentLackOfCohesion 26.35

MaxInheritanceTree 1

CountClassBase 4

CountClassDerived 4

In Table I it can be seen through the metric
MaxInheritanceTree that the program does not explore
inheritance, prioritizing compositions, which a wise policy
design [13]. It also has a good cohesion and an average
cyclomatic complexity.

The respective program uses the class mpeg2dec that
contains the main () function to start the task of decoding. It
receives all necessary parameters from the command line by
using the CommandLineArguments class. After that, the file
in MPEG2 format is loaded, and the various parts of the image
are decoded by GetHdr, GetVlc, GetPic, GetBlk and GetBits
classes.

The storePPM, store_sif, store_tga and store_yuv classes
are responsible for generating the output file according to the
parameters that were passed via the command line. For our
simulations, we used the YUV output that generates three files
without a header for each component: the component of light
is stored in files with the extension Y, and chromatography
components are stored in files with the U and V.

IV. CODE REFACTORING OVERHEAD ANALISYS

In this section the results of the simulations carried out in
our research will be analyzed. In Table II and table III, data
from simulations in the original code in C language and in
C++ language are presented, respectively.

The metrics presented in tables II and III are described
below:

Cycles: total number of cycles needed for the execution of
the program.

Memory used: total occupancy of memory for program
execution.

IPC: number of instructions per cycle.

Number of instructions: the number of instructions that
were executed.

Accesses L1: all accesses to the L1 cache memory.

Hits L1: total number of Hits in cache memory L1.

Misses L1: total number of Misses in cache memory L1.

Accesses L2: all accesses to the L2 cache memory.

Hits L2: total number of Hits in cache memory L2.

Misses L2: total number of Misses in cache memory L2.

Table II - Results of simulations of the source code in C
language

 Cache Size

32k 16k 8k 4k 2k
Cicles 3034249982 6610641842 16051574634 16053978604 25117684403

Memory
used

9318400 9318400 9318400 9318400 9318400

IPC 0,1752 0,08043 0,03313 0,03312 0.02117

Number of
Instructions

531725054 531725054 531725054 531725054 531725054

Acessess L1 158087599 168019769

258729996

258775791 346435491

Hits L1 146476855

140563679

81289881

81259091 50479726

Misses L1 11610744

27456090

177440115

177516700 295955765

Acessess L2 38626415

74326847

370122932

370235493 538103103

Hits L2 27746199

41273808

236588873

236615962 321107951

Misses L2 10880216

33053039

133534059

133619531 216995152

Analyzing the results one can observe that there is a loss of
9% in the C ++ version in relation to the number of cycles for
all simulations. In the aspect of memory footprint, there was

an increase of 5% for the C + + language. The metric number
of instructions increased 7% with the use of the C + +
language.

The number of Misses in the cache access is quite
significant with respect to the use of two languages, especially
when the cache size decreases.

Table III - Results of simulations of the source code in C
++ language

 Cache Size

32k 16k 8k 4k 2k
Cicles 3310120173 6747575343 10306245313 18194940790 27753374586

Memory
used

9854976 9854976 9854976 9854976 9854976

IPC 0,1725 0,08461 0,0554 0,03138 0,02057

Number of
Instructions

570934486 570934486 570934486 570934486 570934486

Acessess
L1

160835064 164605905 201007120 260854586 351214773

Hits L1 146365795 129874665 105737124 78999830 46221810

Misses L1 14469269 34731240 95269996 181854756 304992963

Acessess
L2

42742567 91063812 205043483 386514867 564369567

Hits L2 30015192 55866615 134331638 244125197 333498872

Misses L2 12727375 35197197 70711845 142389670 230870695

The Figure 3 shows the increased cache miss rate as the
size of the cache decreases. Analyzing the graph it is observed
that the refactoring conversion from C to C + + is not worth
for embedded systems that have a minimal amount of cache
memory available, since the number of cache misses in C
language for this benchmark is lower.

Figure 3 – Misses distribution function of the variation in

the cache memory.

In the table IV, data are presented after the refactorings

inline method, rename e Extract method were applied on the
classes store_YUV, GetPic, GetBits e Mpeg2Dec. The results
obtained were not significant, because the variation in data
was very small. In comparison with the results of the
conversion from C to C ++, one can observe (in table III) that
there was a reduction of only 2.2% for the number of cycles

0

100000000

200000000

300000000

400000000

500000000

600000000

32K 16k 8k 4k 2k

Total Misses L1 C Total Misses L1 C++

with 32k, while this reduction was of less than 1% for a cache
with 2k. There was no changes in the IPC, as well as when one
considers the memory footprint. The change in the number of
instructions is also negligible(less than 1%).

Table IV - Results of the simulations after applying the
inline method refactoring, rename and extract method.

 Cache Size

32k 16k 8k 4k 2k
Cicles 3238213016 6744141109 10535869153 18359735140 27753348309

Memory
used

9854976 9854976 9854976 9854976 9854976

IPC 0,1763 0,08466 0,05419 0,0311 0,02057

Number of
Instructions

570939459 570939459 570939459 570939459 570939459

Acessess
L1

159211048 165216733 221442148 265101618 353483137

Hits L1 146026091 136135181 106290764 79324863 46265809

Misses
L1

13184957 29081552 115151384 185776755 307217328

Acessess
L2

41823140 80650931 230609262 387585830 566024171

Hits L2 29395751 45311852 159420148 245184770 334576069

Misses
L2

12427389 35339079 71189114 142401060 231448102

Regarding the effect on accesses to the cache memory,
there was also no significant change, as can be seen in Figure
4.

Figure 4 – Misses distribution to Original C++ and

Refactoring program.

V. CONCLUSIONS AND FUTURE WORK

The conversion applied to the original code in C with its
implementation of design patterns [9] had some impact, which
is still acceptable if the machine does not have a small amount
of cache memory.

Our experiments demonstrated that there was no variation in
the data analyzed for the Rename refactoring. Therefore, it

application should be encouraged, since it does not affect the
performance but facilitates the understanding of the code.
Moreover, it can be automatically applied using a refactoring
tool such as the Eclipse IDE.

As future work, we intend to apply the same type of
experiment to other benchmarks. They should preferably
include inheritance and polymorphism so that we could also
analyze other refactorings. We plan to evaluate the impact of
refactorings on physical metrics considering other
architectures and compilers, so that we can analyze whether
the effect of refactorings in software performance is different
for different configurations. This would give us a better
understanding of the relation between code refactoring and
physical metrics and, ultimately, lead us to determine in which
situations the use of refactoring is recommended and which it
is not. This information could help developers to weigh the
benefits and disadvantages of applying refactorings
depending, especially, on their non-functional requirements
regarding performance and decide whether it is worth or not to
improve readability and maintainability in exchange for a
possible decrease of performance.

References

[1] R. S. Pressman, Software Engineering, United States
of America: McGraw-hill, 2009.

[2] Google Company, "Performance Tips," 2013.
[Online]. Available:
http://developer.android.com/training/articles/perf-
tips.html#PackageInner. [Accessed 28 08 2013].

[3] M. Fowler, Refactoring: Improving The Design of
Existing Code, United States of America: Addison
Wesley Professional, 2000.

[4] Mult2Sim, “Mult2Sim,” 30 06 2014. [Online].
Available: https://www.multi2sim.org/. [Acesso em 30 06
2014].

[5] S. Ian, Software Engineering, 9th edition, New York:
Pearson Addison-Wesley, 2010.

[6] K. Beck e C. Andres, Extreme Programming
Explained, Boston: Addison-Wesley, 2004.

[7] K. Joshua, Refactoring to Patterns, United States of
America: Pearson Higher Education , 2004.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge e R. B. Brown, “MiBench: A free,
commercially representative embedded benchmark
suite,” 2001.

[9] S. Pissanetzky, “An Analytical Method for
Refactoring Object-Oriented Code,” 28 08 2006.

[10] J. L. Henessy e D. A. Patterson, Computer
Organization and Design - The Hardware/Software
Interface, United States of America: The Morgan
Kaufmann, 1998.

0 200000000 400000000

32K

16K

8K

4K

2K

Misses L1-

Refatoring

Misses L1 C++

Original

[11] D. F. Toledo e F. W. C. d. Oliveira, “Avaliação do
Desempenho de uma Arquitetura heterogênea simulada
alterando a latência da memória cache L2 da GPU,”
Enacomp, 2013.

[12] U. B. Corrêa, A. C. S. F. Luís F.G. Millani e L. Carro,
“Quality Impact on Software Performance,” SBESC ,
2013.

[13] C. Larman, Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design and
Iterative Development (3rd Edition), Massachusetts:
Pearson Education, 2009.

[14] Beck A.C.S., Lisbôa C.A.L., Carro L., Adaptable
Embedded Systems, New York, Springer, 2013.

