
A Model-Based Approach to Support the Automatic

Safety Analysis of Multiple Product Line Products
André L. de Oliveira

1
, Rosana T. V. Braga

1
, Paulo C. Masiero

1
, Yiannis Papadopoulos

2
, Ibrahim Habli

3
, Tim Kelly

3

1Mathematics and Computer Science Institute, University of São Paulo, São Carlos-SP, Brazil
2Department of Computer Science, University of Hull, Hull, United Kingdom

3Department of Computer Science, University of York, Deramore Lane, York, United Kingdom

{andre_luiz, rtvb, masiero}@icmc.usp.br, y.i.papadopoulos@hull.ac.uk, {ibrahim.habli, tim.kelly}@york.ac.uk

Abstract—Software product lines (SPL) have been

successfully used in the development of automotive and avionics

critical embedded systems. Hazards and their causes may change

according to the selection of variants in a particular SPL

product. Thereby, lower-level assets like fault trees and FMEA

(Failure Modes and Effects Analysis) cannot be reused because

they are dependent upon the selection of product variants. In this

paper, model-based safety analysis techniques and SPL

variability management tools are used together to reduce the

effort of product safety analysis by: reusing SPL hazard analysis,

and providing automatic safety analysis for each SPL product.

Therefore, we propose a model-based approach to support the

generation of safety analysis assets for multiple safety-critical

SPL products. The proposed approach is illustrated using the

Hephaestus variability management tool and the HiP-HOPS

model-based safety analysis tool to generate fault trees and

FMEA for the products of an automotive hybrid braking system

SPL. Applying the approach reduced the effort to perform

product safety analysis.

Keywords—safety-critical product lines; product, model-based

safety analysis.

I. INTRODUCTION

Critical embedded systems are computer systems ranging
from small devices to complex monitoring and process
management systems. Response time and worst case execution
time are important design concerns in these systems, and they
should also satisfy safety, reliability, and availability
requirements [1]. Failures in critical embedded systems can
lead to catastrophic consequences causing injuries or the loss
of human’s life.

Software Product Lines (SPL) have been successfully used
in the development of critical embedded systems in
automotive [2] and avionics [3] domains. SPL [4] is an
integrated approach in which early life-cycle development and
assessment artefacts such as requirements and analysis models
can be reused as long as they adhere to the context,
architectural constraints and variation rules defined in the
SPL. The ability to reuse safety analysis, and not just
implementation assets, is important for safety-critical product
lines [5] by reducing the effort in performing product safety
analysis. Otherwise, the value of a safety-critical SPL can be
easily undermined if there is a need to derive fault trees and
FMEA analysis by performing safety analysis from scratch, or
in an ad-hoc manner, for each SPL product.

Variation in safety-critical product lines is spread
throughout architecture, hazards and their causes. As safety is

context-dependent, hazards and their causes are not simple to
reuse, as they may change according to the selection of
product variants. Moreover, it is not possible to reuse low-
level analysis assets such as Fault Tree Analysis (FTA) and
FMEA results, because they are also dependent upon the
selection of product variations. Existing techniques to support
product line safety analysis such as Software FTA [6][7][8][9]
are not sensible to an individual product and just provide
semi-automated capabilities to support the generation of safety
analysis assets, thus not addressing multiple SPL products.

Model-based safety analysis tools like HiP-HOPS
(Hierarchically Performed Hazard Origin & Propagation
Studies) [10] provide the capability to generate fault trees and
FMEA analysis for a single product. Product line variability
management tools like Hephaestus [11] provide a mean to
establish the mapping between product line architecture design
elements, hazards and their causes by means of feature
expressions and transformation rules applied to these elements
to derive safety-critical products. So, these tools and
techniques could be combined to support the generation of
fault trees and FMEA analysis for multiple SPL products,
reducing the effort to perform product safety analysis.

In this paper, we propose a model-based approach to
support the generation of safety analysis assets addressing
multiple SPL products. The approach was used to generate
fault trees and FMEA analysis for the products of an
automotive hybrid braking system SPL developed based on
the ISO 26262 [12] standard. Section II presents the proposed
approach. Section III presents a case study conducted to
evaluate the approach. Section IV presents related work.
Section V presents the conclusions and future research.

II. A MODEL-BASED APPROACH TO SUPPORT MULTI-PRODUCT

SAFETY ANALYSIS AND ASSESSMENT

An important requirement of safety-critical product line
development processes is the inclusion of safety analysis
activities such as hazard, risk, and causal analyses during
product line domain engineering. These activities provide a
preliminary safety assessment of the product line architecture
by means of Fault Trees and FMEA assets. Such assets
provide the causal information about the impact of failures in
SPL design elements in the occurrence of hazards, and
allocation of safety requirements necessary to minimize the
hazard effects.

Fig. 1 presents the proposed approach. It was built upon
the automotive domain and the HiP-HOPS tool, but it can also

be generalized and applied to other domains and model-based
safety assessment (MBSA) tools. HiP-HOPS [10] is a MBSA
tool that has an interface to the Simulink modeling package.
HiP-HOPS provides a graphical failure editor to specify
hazards to the system functions, and the failure logic (i.e.
output and input deviations, and internal failures of a
component that may lead to hazards) that describes how
individual components can fail.

HiP-HOPS failure editor allows safety analysts to annotate
the system models with the failure information in the form of
extend HAZOP (HaZards & Operability) safety analysis
technique [10]. An editor for annotating the system models
with failure logic was built as an extension of Simulink, using
its application programming interface. Once the system
models have been annotated with hazards and the component
failure logic, HiP-HOPS synthetizes fault trees for every
system hazard in the model, and combines them to create the
FMEA. HiP-HOPS presents the fault trees and FMEA analysis
results in the form of hyperlinked web pages.

Product line variability management tools [2][11] were
also used in the proposed approach to manage the variation in
safety-critical product line design and safety analysis (i.e.
Definition of Product Line Configuration Knowledge); and to
support the Product Derivation according to the feature
selection. Product line feature and context models are the
starting point of the approach, while the main outputs are the
fault trees and FMEA analysis for each SPL product. The
feature model captures structural or conceptual relationships
between common and variable functions of products of a
domain [13]. As the approach stands on model-based
development, tools like MATLAB/Simulink and HiP-HOPS
can be used to support both design of the SPL architecture and
safety analysis. SPL development and safety analysis activities
can be performed concurrently. In the diagram of Fig. 1, n

means the current product, and m represents the number of
products involved in the analysis. The next subsections
describe each step, its inputs and outputs.

A. Design of Product Line Architectures

In our approach, the design of a product line architecture
consists of implementing the system functions specified in a
product line feature model using model-based development
tools like MATLAB/Simulink. The output of this activity is a
set of hierarchical data-flow style models that represents the
product line architecture. Simulink variability patterns
available in the literature [14][15] can be used for modeling
variation in SPL architectures developed with model-based
development tools. Botterweck et al. [15] proposes the use of
variability mechanisms of Simulink blocks to represent
optional (Enabler subsystems), alternative (Switch blocks), and
inclusive-or (Integration blocks) features.

Steiner et al. [14] have extended the Simulink variability
mechanisms with two patterns to configure features with
hierarchical or dependency relationships in the data flow part
of Simulink models; and two patterns to configure variability
in finite state machines. These patterns are also applicable to
models designed in modeling environments other than
Simulink. Steiner et al. [14] also proposed an approach to
support variability modeling in Simulink models using

variability patterns, Pure::variants, and Hephaestus variability
management tools applied to an UAV-SPL. Details on how to
represent variability in product line models using these
patterns and tools is outside the scope of this paper.

Fig. 1. Multi-product model-based safety analysis.

B. Product Line Hazard Analysis

Hazards, their causes, and the allocated safety
requirements may change according to the selection of product
variations. Variations in an SPL architecture are expressed in
its feature model [13]. Safety requirements placed to a
particular hazard may also change according to contextual
elements such as operational environment, safety standards,
and regulations. These elements can be represented in product
line context models. For the proposal of this paper we have
considered to perform the hazard analysis based only on the
product line feature model. Product line features in this paper
stand for system functions implemented by design elements
(e.g. system, subsystems, components).

The product line hazard analysis aims to identify the
possible hazards that can arise from failures in common and
variable design elements and to allocate requirements to
minimize the effects of these hazards. As it would be
prohibitive performing a hazard analysis covering all possible
product variants, we suggest constraining the scope of the
analysis to a set of clearly defined products. Products can be
defined by deriving instantiation scenarios from the analysis
of the product line feature model. The criteria to constrain the
scope of the analysis can be the SPL variations that are most
relevant for the stakeholders.

After scoping the analysis to a set of common and
variation points, model-based hazard analysis can be
performed, for example using the extended HAZOP analysis
technique supported by HiP-HOPS tool [10]. Hazards and
safety requirements can be specified via the HiP-HOPS failure
editor. HiP-HOPS hazard analysis can be performed in parallel
with the SPL architecture design. In HiP-HOPS, hazards are
specified by means of logical expressions involving possible
failures in design elements. These failures are generally stated
in terms of failure types that typically include omission,
commission, value, early, and late failures. Product line hazard
analysis using HiP-HOPS can be performed by identifying the
hazards associated to system functions common to all
products; and by identifying the hazards associated to system
functions standing for SPL variation. Next, safety
requirements are allocated to the identified hazards. HiP-
HOPS stores the hazard analysis data in a failure model.

C. Augmentation of Product Line Architecture with Failure

Logic

Variation in product line architecture may change the
causes of a particular hazard. Describing how product line
architectural design elements (i.e. product line components)
can fail and contribute to the occurrence of each hazard
identified in Product Line Hazard Analysis is the main goal of
this step. We should specify the failure data inherent to each
SPL design element, by stating what can go wrong with such
element and how it responds to failures elsewhere in the
architecture. Such information is called component failure
logic. HiP-HOPS allows to annotate the product line
architecture with a set of failure expressions showing how
deviations in component outputs can be caused either by
internal failures in the component or corresponding deviations
in component inputs.

Deviations may include unexpected omission of an output
or unintended commission of output, or incorrect outputs
values, or the output being too early or late [10]. HiP-HOPS
failure editor also provides a graphical user interface to
specify the failure logic of each individual product line
component. HiP-HOPS stores such failure logic in a library, so
that other components of the same type can reuse the failure
logic. The failure logic inherent to each product line design
element is stored by HiP-HOPS into the product line failure
model together with the hazard analysis information.

It is important to state that this local failure analysis can
reflect either real characteristics or simply the design intention
for the analyzed design elements. In both cases the analysis is
useful. For example, at early stages when components are
under design and only design intentions are encoded, it is still
possible, using model-based safety analysis, to assess the
suitability of the proposed design under these encoded
intentions about failure logic, fault propagation, fault
mitigation and fault tolerance of various design elements.
Such analysis can help to identify weaknesses and decide how
to improve the design e.g. by introducing elements with
improved characteristics or fault tolerant features. Qualitative
analysis is only needed for this purpose, while difficult to
obtain or unavailable failure rates for software elements are
not necessary.

D. Definition of Product Line Configuration Knowledge

Up to this point, we have identified the product line
variabilities during the design of the SPL architecture (II-A
subsection) by means of variation mechanisms such as
Switches and Enabler Subsystems. We also have specified the
variations in product line safety analysis by assigning hazards
and placing requirements to common and variable SPL design
elements (II-B subsection); and by specifying the failure logic
inherent to each SPL design element (II-C subsection). In this
step, the SPL configuration knowledge is established through
a set of rules to manage the variation in both design and safety
analysis assets. Such rules describe how these assets can be
composed in a product according to the feature selection.

The main information required to specify the product line
configuration knowledge is derived from the SPL feature
model. Product line variability management tools can be used
to support the configuration knowledge definition. Tools like
Pure::variants [2] provide support for negative variability, i.e.
product derivation is based on the activation and deactivation
of design elements according to the feature selection. Model
transformation tools like Hephaestus/Simulink [14] support
positive variability, i.e. the product derivation includes only
the SPL design elements that correspond to the features
specified in the feature selection.

Product line configuration knowledge can be specified
using model transformations tools like Hephaestus/Simulink
[14] by applying the following steps: 1) specify the feature
expressions in the scope of the usage scenarios considered in
the hazard analysis. A feature expression may include a single
feature or a combination between two or more features; 2) for
each feature expression, determine the product line design
elements to be included and excluded; and 3) specify the
hazards, the allocated safety requirements, and the failure
logic to be included/excluded in each feature expression. After
performing these steps, we obtain the mapping between
product line features, design elements, hazards and the
allocated safety requirements, and component failure logic.
Additional details on how to use product line variability
management tools to specify the configuration knowledge can
be found elsewhere [14].

E. Product Derivation

After establishing the rules to compose design and safety
analysis assets (i.e. hazard, and failure logic), products can be
derived. Variability management tools used for specifying the
configuration knowledge can also be used to provide the
automated support for product derivation according to the
specified feature selection. The output of product derivation is
the product architecture model, hazards and allocated
requirements, and the failure logic (i.e. HiP-HOPS product
failure model) corresponding to the feature selection of a
particular product. This information will be further used to
perform automatic fault trees and FMEA analysis for a
particular product.

F. Product Model-Based Safety Assessment

Product line safety analysis activities may reduce the effort
in performing product safety analysis and assessment by
providing not all, but a set of product-specific hazards and

failure logic. After the product derivation, HiP-HOPS can be
used to perform product safety analysis by adding product-
specific hazards, and failure logic to the product failure model.
Next, HiP-HOPS can be used for generating product-specific
fault trees and FMEA results from the product architecture
model and its HiP-HOPS failure model. HiP-HOPS stores
product-specific fault trees and FMEA analysis results in a
“fault trees” XML file, and presents it in the form of
hyperlinked HTML pages. n is incremented at the end of the

loop until it reaches m (i.e. the number of products involved in
the analysis). The accuracy of product-specific HiP-HOPS
fault trees and FMEA analysis depends on whether product
line safety analysis activities were performed aware of safety-
related variation.

III. CASE STUDY

The Hybrid Braking System [16] automotive product line
(HBS-SPL) was chosen to evaluate the proposed model-based
approach to support automatic safety analysis of multiple SPL
products. Three different HBS-SPL products were considered
in this case study. The results of applying the proposed
approach to HBS-SPL products were used as a proof of
concept.

A. Hybrid Braking System Product Line

HBS-SPL is a real world automotive braking system
product line designed in MATLAB/Simulink. HBS-SPL is
meant for electrical vehicles integration, in particular for
propulsion architectures that integrate one electrical motor per
wheel [16]. The term hybrid comes from the fact that braking
is achieved throughout the combined action of the electrical
In-Wheel Motors (IWMs) and frictional Electromechanical
Brakes (EMBs). One of the most important features of this
system is that the integration of IWM in the braking process
allows an increase in the vehicle’s range: while braking,
IWMs work as generators and transform the vehicles kinetic
energy into electrical energy that is fed into the powertrain
battery.

HBS-SPL components can be combined in different ways
according to the constraints specified in HBS-SPL feature
model presented in Fig. 2. It includes wheel braking
alternative features: Brake_Unit1_Front, Brake_Unit2_Front,

Brake_Unit3_Rear, and Brake_Unit4_ Rear aimed to provide
the braking for each wheel; Mechanical Pedal, a hardware
device aimed to capture driver presses; Electronic Pedal, a
hardware device that senses and processes the actions from the
mechanical pedal; Bus1 and Bus2 features send the wheel
braking forces to the wheel braking units; Auxiliary Battery
feature, a hardware device responsible for feeding the
electromechanical brakes while braking; and Powertrain
Battery, a hardware device that receives the electrical energy
produced by the in-wheel motors. HBS-SPL feature model
also presents the constraints showing how features can be
composed in a product.

B. HBS Product Line Hazard Analysis

Hazards can arise from the interaction between HBS-SPL
design assets in a range of usage scenarios. Different hazards
can arise according to how HBS-SPL design elements can be
composed in a product. Performing a hazard analysis covering
all possible usage scenarios for HBS-SPL design elements
would be prohibitive. Nevertheless, scoping the HBS-SPL
hazard analysis to a set of products brought some degree of
reuse for safety analysis assets. The extended HAZOP analysis
technique [10] and HiP-HOPS were used to perform the HBS-
SPL hazard analysis. Wheel Braking variation point specified
in the HBS-SPL feature model was considered in the hazard
analysis. From the analysis of Wheel Braking variation point
and mandatory elements of HBS-SPL, the following usage
scenarios were established: HBS four wheels braking (HBS-
4WB); HBS front wheels braking (HBS-FWB); and HBS rear
wheels braking (HBS-RWB). These scenarios were analyzed
from the safety perspective. Table I presents the identified
hazards, their causes, and the allocated ASILs (Automotive
Safety Integrity Levels) to minimize their effects. Table I also
presents the association between the hazards and the usage
scenarios by means of the column “Usage Scenario”.

In order to simplify the case study, we have not assigned
ASILs to product line hazards on the basis of the full ISO
26262 [12] risk assessment process. We have derived such
ASILs only considering the hazard severity. In a product line
hazard analysis, different ASILs can be assigned to the same
hazard considering different usage scenarios for product line
design elements. For example, the ASIL allocated to the “No
braking rear” hazard is more stringent in HBS-RWB scenario

Fig. 2. HBS-SPL feature model.

TABLE I. HBS PRODUCT LINE HAZARDS AND ASILS.

Usage Scenario Hazard Causes ASIL

HBS-4WB

No braking four

wheels

Omission of all brake unit actuators outputs.

D

No braking rear Omission of brake unit3 and brake unit4 actuators outputs. C

Value braking Incorrect value of all brake unit actuators outputs C

HBS-FWB No braking front Omission of brake unit1 and brake unit2 actuators outputs. D

Value braking Incorrect value of brake unit1 and brake unit2 actuators outputs. D

HBS-RWB No braking rear Omission of brake unit3 and brake unit4 actuators outputs. D

Value braking Incorrect Value of brake unit3 and brake unit4 actuators outputs. D

and less stringent in HBS-4WB. Causes for a particular hazard
can also change according to how product line design
elements can be composed in a product. The causes for the
“Value braking” hazard in HBS-FWB are different from the
causes for that hazard in HBS-RWB. HBS-SPL hazards and
ASIL allocation are stored by HiP-HOPS in the failure model.

C. Augmentation of HBS Product Line Architecture with

Failure Logic

From product line hazards, 77 failure logic expressions
inherent to 30 HBS-SPL design elements were added to the
product line failure model via HiP-HOPS failure editor.
Failure logic of a design component is stated in HiP-HOPS by
specifying output deviations and the possible input and
internal failures that may lead to the output deviations. Table
II presents the failure logic for the Wheel Node Controller
(WNC) component. Omission, commission, value, early, and
late guidewords were used to express the failure logic of HBS-
SPL components. Input and internal failures contributing to
the occurrence of output deviations were specified by means
of failure expressions. For example, the omission of the WNC
output can be caused by an internal failure in WNC or the
omission of its inputs.

TABLE II. WNC COMPONENT FAILURE LOGIC.

Component Output

Deviation

Failure Expression

WNC

Omission-Out1 WNCOFailure1 or (Omission-In1

and Omission-In2)

Value-Out1 WNCVFailure1 or Value-In1 or

(Omission-In1 and Value-In2)

D. Definition of the Configuration Knowledge

The Hephaestus/Simulink [11][14] variability management
tool was used to specify the HBS-SPL configuration
knowledge. HBS-SPL design elements (i.e. Simulink model
components), hazards, and component failure logic were
mapped to feature expressions in Hephaestus. Feature
expressions were defined from the HBS-SPL feature model.
Transformation rules were also established to determine how
HBS-SPL components, hazards, and component failure logic
can be composed in a SPL product.

E. HBS Product Derivation

Hephaestus/Simulink [11][14] was also used to support the
automated derivation of the following HBS-SPL products:
HBS-4WB, HBS-FWB, and HBS-RWB. HBS-4WB
architecture includes mechanical pedal and electronic pedal
that sends the braking outputs to the communications buses.

Communication buses send the braking commands to
Brake_Unit1_Front, Brake_Unit2_Front, Brake_Unit3_Rear,
and Brake_Unit4_Rear model components. HBS-FWB
product differs from HBS-4WB by the absence of rear wheels
braking units. HBS-RWB product differs from HBS-4WB by
the absence of front wheels brake units. Hazards, causes, and
components are different in each one of these products. For
each product, the hazard analysis data is stored together with
the product Simulink model in the product failure model.

F. HiP-HOPS Model-Based Safety Assessment

After the derivation of HBS-SPL products and their failure
models using Hephaestus, each product was used as input to
HiP-HOPS [10] to perform the safety assessment. From HiP-
HOPS analysis, fault trees, failure cut sets, and FMEA results
were generated for each HBS-SPL product. Fault trees were
generated for each product-specific hazard described on Table
I. HiP-HOPS FMEA results describe the relationships between
direct and further effects of a hazard and the failure modes.
From the analysis of HBS-SPL products FMEA results, we
have identified 9 single-point and 39 multi-point failure modes
for HBS-4WB, 5 single-point and 33 multi-point failure
modes for HBS-RWB, 5 single-point and 33 multi-point
failure modes for HBS-FWB. This analysis has given insights
into the design of the product line, for instance common single
points of failure that affect different products and contribute to
significant hazards that arise across the SPL, but also more
subtle findings about the failures of individual SPL products.

An example of the above is the failure mode “Omission of
Brake_Unit3_Rear and Omission of Brake_Unit4_Rear” of
the Wheel Braking component which causes “No braking
rear” hazard in HBS-4WB and HBS-RWB products.
Unfortunately, due to space limitation it is not possible to
present in detail the results of the generated analysis. We
should note that HiP-HOPS can also be used for allocating
system safety requirements to elements of a design. So, from
the ASILs allocated to HBS-SPL hazards, it is possible to
automatically allocate ASILs to design elements, and thereby
determine the safety requirements for those elements that must
be met to fulfill the safety requirements of the product line
[10]. This is indeed the subject of current research that extends
the proposed framework for MBSA of product lines.

IV. RELATED WORK

Research in product line safety analysis has focused on
adapting traditional safety analysis techniques, such as FTA
and FMEA to suit product line processes. The most notable
work addressed to this topic is the extension of Software FTA

(SFTA) to address the impact of SPL variation on safety
analysis [6][7][8]. This approach is based on a technique for
the development of a product line SFTA in the domain
engineering phase, and a pruning technique to reuse such
SFTA for the analysis of SPL instances. It offers a systematic
approach to treat SFTA results as a reusable asset. Such
approach was later extended to integrate product line SFTA
analysis results with model-based development using state-
based models [9]. However, the product line SFTA approach
provides a semi-automated generation of SPL fault trees that
requires support of domain expert reviews. It does not support
the generation of FTA that reflects the complexity of product
line features with context (product variants). SFTA approach
is purely hierarchical and not sensible to the different SPL
products. The novelty of our approach is the provision of
guidelines to reuse product-specific hazards and their causal
information, and to use the HiP-HOPS tool to generate
product-specific fault trees and FMEA analysis from the
product hazards and causes. Different from [6][7][8] [9], the
proposed approach is sensible to product variants and does not
require support of domain expert reviews. In our approach, the
domain expert knowledge is stored in the configuration
knowledge. Variability management tools use the
configuration knowledge to provide automated consistency
verification of the composition of product line design and
safety analysis assets in a product.

Blessing and Huhn [17] proposed a model-based formal
safety analysis approach addressing a Pacemaker product line.
The approach uses Common Variability Language (CVL) [18]
for variability modeling, and the SCADE suite for system
modeling. In their approach, SCADE automated model
checking was used to prove the validity of safety requirements
of Pacemaker variants. Their formal safety analysis approach
is focused in automatic derivation of Pacemaker products
using CVL, and in the formal verification of product safety
requirements. The approach proposed in this paper uses
variability management tools like Hephaestus for product
derivation, and it is focused in automated generation of fault
trees and FMEA addressing multiple SPL products using HiP-
HOPS tool. CVL could be a possible way to manage the
variation in SPL design and safety analysis in our approach.

V. CONCLUSION

Safety is highly connected to the system, so it should be
considered early in domain engineering, when establishing the
SPL architecture. Achieving the reuse of SPL safety analysis
assets requires performing the safety analysis aware of
interactions between SPL design assets in possible usage
scenarios. The novelty of the approach proposed in this paper
is the provision of guidelines prescribing how model-based
development, safety analysis, and variability management
tools can be used to reduce the effort of product safety
analysis. These guidelines provide a mean to trace product line
variation throughout SPL design and safety analysis. The
proposed approach is tool independent, in which MBSA tools
like HiP-HOPS can be used to automatically generate fault
trees and FMEA results for multiple SPL products. Thus, the
results obtained from this study can be generalized to other
systems from different domains like avionics.

Fault trees and FMEA assets can be used for structuring
the product safety case argument organized into multi-view

point argument modules [5] addressing product-specific
hazards and allocated requirements, and the contribution of
component failures to hazards. As future work, we propose a
safety case pattern for SPL product argumentation using Goal
Structuring Notation (GSN) [19]. We also intend to implement
a tool to support the generation of safety cases, using such
pattern, addressing multiple SPL products.

ACKNOWLEDGMENT

Our thanks to CNPq, process number 152693/2011-4.

References

[1] I., Crnkovic, “Component-based software engineering for embedded
systems” Proceedings of the 27th International Conference on Software
Engineering, St. Louis, MO, EUA, ACM, New York, 2005, p. 712-713.

[2] J., Weiland, “Configuring variant-rich automotive software architecture
models”, 2nd IEEE Conf. on Automotive Electronics, 2006, pp. 73-80.

[3] F., Dordowsky, R., Bridges, H., Tschope, “Implementing a Software
Product Line for a Complex Avionics System”, Proc. of the 15th Int.
Software Product Line Conference, IEEE, 2011, p. 241-250.

[4] P., Clements, L., Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[5] I., Habli, and T., Kelly, “A safety case approach to assuring configurable
architectures of safety-critical product lines”, Proc. of the 1st Int. Conf.
on Architecting Critical Systems, Springer-Verlag, 2010, pp. 142-160.

[6] J., Dehlinger, R., Lutz, “PLFaultCAT: A Product line Software Fault
Tree Analysis Tool”, Automated Software Engineering, vol. 13, n. 1, pp.
169-193, 2006.

[7] J., Dehlinger, R., Lutz, “Software Fault Tree Analysis for Product
Lines”, Proc. of the 8th IEEE International Symposium on High
Assurance Systems Engineering, Florida, USA, 2004.

[8] Q., Feng, R., Lutz, “Bi-Directional Safety Analysis of Product Lines”,
Journal of Systems and Software, vol. 78, n. 2, pp. 111-127, 2005.

[9] J., Liu, J., Dehlinger, R., Lutz, “Safety Analysis of Software Product
lines Using Stated Modeling”, Journal of Systems and Software, vol. 80,
n. 11, pp. 1879-1892, 2007.

[10] L., Azevedo, D., Parker, M., Walker, Y., Papadopoulos, R., Araujo,
"Assisted Assignment of Automotive Safety Requirements". IEEE
Software 31(1):62-68, 2014, IEEE.

[11] R., Bonifácio, L., Teixeira, P., Borba, “Hephaestus: A tool for managing
product line variabilities”, 3rd Brazilian Symposium on Components,
Architecture, and Software Reuse, pp. 26-34, 2009).

[12] ISO, ISO 26262: Road Vehicles Functional Safety, 2011.

[13] K., Lee, K. C., Kang, J., Lee, J., “Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering”, Proc. of the 7th Int.
Conf. on Software Reuse: Methods, Techniques, and Tools, Springer-
Verlag, London, UK, 62-77, 2002.

[14] E. M., Steiner, P. C., Masiero, “Managing SPL Variabilities in UAV
Simulink Models with Pure::variants and Hephaestus”, CLEI Electronic
Journal, v. 16, n. 1, 2013.

[15] G., Botterweck, A., Polzer, S., Kowalewski, “Using higher-order
transformations to derive variability mechanism for embedded systems"
Models in Software Engineering, pp. 68-82, 2010.

[16] R., De Castro, R. E., Araújo, D., Freitas, “Hybrid ABS with Electric
motor and friction Brakes’, 22nd International Symposium on
Dynamics of Vehicles on Roads and Tracks, Manchester, UK, 2011.

[17] S., Blessing, M., Huhn, "Formal Safety Analysis and Verification in the
Model Driven Development of a Pacemaker Product Line", MBEES,
2012.

[18] O., Haugen, B., Moller-Pedersen, J., Oldevik, G. K., Olsen, A.,
Svendsen, "Adding Standardized Variability to Domain Specific
Languages," 12th International Software Product Line Conference,
pp.139,148, 2008.

[19] T., Kelly, “A systematic approach to safety case management”, SAE
world congress, Society for Automotive Engineers, 2003.

