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Who am I?

• Professor, Computer Science 
Department, UC Santa Cruz

• Director, UCSC/LANL Institute 
for Scalable Scientific Data 
Management (ISSDM)

• Co-Director, UCSC Systems 
Research Laboratory (SRL)

• Background

• 1999 Ph.D. CS, Colorado

• 1987/1993 B. Math/MS CS, Minnesota

• 1982-1994 Programmer/Research 
Scientist/VP, CPT, B-Tree, Honeywell 
SRC, Theseus Research, Alliant 
TechSystems RTS, Secure Computing

• My Research

• High-performance petascale 
storage and data management

• Real-time systems

• Performance management and 
virtualization

• Other Research

• Secure operating systems

• Asynchronous circuits

• Real-time image processing

• Recent Highlights

• Ceph in Linux as of 2.6.34

• Best Papers at SIGMOD, 
ECRTS, HPDC
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Distributed systems need performance 
guarantees

• High-performance scientific 
simulation and visualization

• Virtual machines

• Cloud services

• Real-time data capture

• Sensor networks

• Smart power grid

• Automotive systems

• Integrated medical systems

• Aerospace systems

• Radio telescopes

• Even so-called best-effort 
applications

• Distributed systems with many independent, autonomous 
players

... many of which are providing mission- or life-critical 
operations or control
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The model before

The system! Not the system!

Other systems, maybe!
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The model now

A sea of components—no sharp boundaries  
A multipolar/multiuser/coalition world"
Long term existence and constant change "

Implement control systems in a world that looks like:"
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A sea of components

Many pieces, deployed and evolving separately!
Where is the boundary of the “application”?!
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Long-term existence and constant change

Different pieces get replaced, fail, upgraded independently!
Some piece of the system is always in flux!
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Example: System F6 (DARPA)

• Modular clustered communication satellite(s)
• Coordinated navigation 

• Fully cooperative communication functionality

• Need a new capability? Add a new satellite to 
the cluster.
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Example: Cloud virtualization (Nat’l Labs)

• Provide isolated “virtual” clouds within a larger 
cloud
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Example: Virtual servers (SAP)

• Provide isolated virtual servers within a cloud
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Example: Supercomputer virtualization
(Nat’l Labs)

• Provide guaranteed service within a large-scale 
distributed supercomputer system
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Example: Virtual machine services 
(VMware & startup)

• Provide virtual services (e.g., storage) to virtual 
machines on shared infrastructure
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Challenge: real-time computation

• How do we keep guarantees in such a chaotic 
world?

• How do we specify what an application needs 
so that it can be interpreted for different  
distributed hardware resources?

• How do we know that a mixture of unknown 
applications from different organizations doing 
different things is going to work?
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Challenge: real-time communication

• How do we make pieces of the system talk to 
each other predictably over a chaotic network?

• How do we say what we need in a concise and 
precise way?

• How do we get it to work on networks that 
change performance and topology?
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Challenge: Real-time IO/data storage

• How do we make intrinsically unpredictable 
devices predictable?

• How do we specify requirements in a uniform 
way?

• How do we maintain requirements on different 
hardware?
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More challenges

• Interacting resources

• Dynamic workloads

• Interfering workloads (2+2=3)

• Decentralized control

• Non-commensurable metrics
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In a nutshell

• Big distributed systems
• Serve many unrelated 

users/jobs

• Process lots of data

• Current design
• Use rules of thumb

• Over-provision

• Isolate

• Ad hoc performance management leads to 
expensive and fragile solutions

• A better system guarantees each application 
the per formance i t needs from a l l 
components : CPUs , memor y, d i sks , 
network, ...
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What we want

1. Guaranteed performance

2. Isolation between workloads

3. High performance
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... in a bit more detail

• Resource management algorithms and 
architectures capable of providing
• High performance
• Arbitrarily hard or soft performance 

guarantees with
• Arbitrary resource allocations

• Arbitrary timing / granularity

• Complete isolation between workloads 
• All resources: CPU, storage, network, cache
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What we really want

Virtual resources 

indistinguishable from “real” resources 

with fractional performance
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Isolation is key

• CPU
• 20% of a 3 Ghz CPU should be indistinguishable 

from a 600 Mhz CPU

• Running: compiler, editor, audio, video

• Disk
• 20% of a disk with 100 MB/second bandwidth 

should be indistinguishable from a disk with 20 
MB/second bandwidth

• Serving:1 stream, n streams, sequential, random
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Scott’s epistemology of virtualization

• Virtual Machines and LUNs provide good HW 
virtualization

• Question: Given perfect HW virtualization, how 
can a process tell the difference between a virtual 
resource and a real resource?

• Answer: By not getting its share of the 
resource when it needs it
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What we really want (part ii)

• Virtualized performance

• Arbitrarily hard or soft performance 
guarantees on each resource
• Hardware-independent

• Workload-independent

• Application-independent

• Commensurable

• Globally reservable, locally enforceable

• Changeable
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Our approach

1. Develop a uniform model for performance 
management

2. Apply it to each resource

3. Integrate the solutions
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Observation

• Resource management consists of two 
distinct decisions
• Resource Allocation: How much resources to 

allocate?
• Dispatching: When to provide the allocated 

resources?

• Most resource managers conflate them
• Best-effort, proportional-share, real-time
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Separating them is powerful!

• Separately managing 
resource allocation 
and dispatching 
gives direct control 
over the delivery of 
resources to tasks

• Enables direct, 
integrated support 
of all types of 
timeliness needs
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The resource allocation/dispatching 
(RAD) scheduling model

Rate

Deadlines

Dispatcher
Series of 
jobs w/

budgets and 
deadlines

Share of 
resources

Times at 
which allocation 
must equal share

Process
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Supporting different timeliness 
requirements with RAD

Hard
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Rate-
based

Best-
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Soft 
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Rate-Based Earliest Deadline (RBED) CPU scheduler
[RTSS 2003]

Rate

Deadlines

EDF + 
timers

Scheduling
Policy

Scheduling
Mechanism

Runtime
System

Set of 
jobs w/

budgets and 
deadlines

• Processes have rate & period
• ∑rates ≤ 100%

• Periods based on processing 
characteristics, latency needs, etc.

• Jobs have budget & deadline
• budget = rate * period

• Deadlines based on period or 
other characteristics

• Jobs dispatched via Earliest 
Deadline First (EDF)
• Budgets enforced with timers 

• Guarantees all budgets & 
deadlines = all rates & periods
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Adapting RAD to disk, network, and buffer cache

• Fahrrad—Guaranteed disk request 
scheduling [Eurosys 2008]
Anna Povzner

• RADoN—Guaranteeing storage 
network performance [FAST08 WiP]
Tim Kaldewey & Andrew Shewmaker

• RAD-FLOWS—Buffer management for I/O 
guarantees [RTAS 2010]
Roberto Pineiro & Kleoni Iouannidou

• Horizon—I/O management for 
distributed storage systems [HPDC 2010]
Anna Povzner

• Plus two more (time permitting)

Disk
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Guaranteed disk request scheduling

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because disk I/O is:
• Stateful

• Non-deterministic

• Non-preemptable, and

• Best- and worst-case times vary by 3–4 orders of 
magnitude



Fahrrad

• Manages disk time instead 
of disk throughput

• Adapts RAD/RBED to 
disk I/O

• Reorders aggressively to 
provide good 
performance, without 
violating guarantees

A B C BE 

Disk 

I/O streams 

Fahrrad 

Anna Povzner, Tim Kaldewey, Scott A. Brandt, Richard Golding, Theodore Wong, and Carlos 
Maltzahn, ”Efficient Guaranteed Disk Request Scheduling with Fahrrad”, Eurosys 2008.



Fahrrad details



Fahrrad outperforms Linux FS

• Workload
• Media 1: 400 sequential I/Os per second (20%)

• Media 2: 800 sequential I/Os per second, (40%)

• Transaction: short bursts of random I/Os at random times (30%)

• Background: random (10%)

• Result: Better isolation AND better throughput

Linux Linux w/Fahrrad



Fahrrad virtual disks

• Provide workload-independent performance 
guarantees

• Isolate from other workloads concurrently 
accessing the device

• LUNs virtualize 
storage capacity

• Fahrrad virtualizes 
storage performance



Fahrrad virtual disks

• Implemented with Fahrrad

• Guarantee share of storage device time
• Hard guarantees on isolation 

• Throughput = equivalent standalone throughput

• Amount of data transferred:
• Di(x%, t)   =   Di(100%, x%·t)

• Reservation: disk share (utilization)
and time granularity (period)
+ overhead 

Share of
disk

Time Share of
disk

Time

  

25%, 1 sec

30%, 250 ms 

19%, 1 min

Disk time



• Throughput is fully determined by reservation & workload

• Virtual disk are completely isolated from each other

Each virtual disk 
reserves 20% 
with 1 second 

granularity
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Fahrrad guarantees latency

• Latency is bounded by deadlines

Upper bounds
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Fahrrad virtual disks work

• Fahrrad Virtual Disks provide Cello99 and OpenMail performance 
very close to standalone

• Cello99 and OpenMail virtual disks share the system with random background stream.
•

Time

Fahrrad Virtual Disks
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Guaranteeing storage network performance

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because network I/O is:
• Distributed

• Non-deterministic (due to collisions or switch 
queue overflows)

• Non-preemptable

• Assumption: closed network



What we want

Client 

Client 

Client 

Server 

Server 

Server 

30% 

50% 

20% 



What we have

• Switched fat tree w/full bisection bandwidth

• Issue 1: Capacity of shared links

• Issue 2: Switch queue contention



Congestion in a simple switch model

• Delayed packets 
from unrelated 
streams affect each 
other on the 
queue

switch fabric
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RADoN

• Each reservation has a network share (utilization) 
and a time granularity (period)

now deadline
laxity

release

• Flow control: throttle senders

• Execution time (per period) e = 
utilization / period

• Budget in packets m = e / 
packets_per_second

• Congestion control: avoid switch 
contention by adjusting wait time 
between packets

• Percent budget %budget = (1 - 
%laxity) = e/(d-t)

• Packet wait time w = wmin / %budget

• Size change w∆ = -|wi - wmin|/2

• New wait time wi+1 = min(wmax, 
max(wmin, w∆))



Userspace RADoN prototype

• Detects congestion using Relative Forward 
Delay 

• Responds to congestion using RAD real-time 
theory 

• Decreases packet loss significantly

• Improves goodput 

• Requires no global knowledge or 
synchronization

• Ongoing: RADoN kernel implementation



Buffer management for I/O guarantees

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Improved I/O performance

• Challenging because:
• Buffer is space-shared rather than time-shared

• Space limits time guarantees

• Best- and worst-case are opposite of disk

• Buffering affects performance in non-obvious ways

Disk



Buffering roles

• Decoupling
• Allows sender and receiver to operate 

asynchronously

• Speed matching
• Allows slower and faster devices to communicate

• Traffic shaping
• Shapes traffic to optimize performance of 

interfacing devices

Disk



Radium

• I/O into and out of buffer have 
rates and time granularities 
(periods)

• Translate time requirements into 
space requirements

• Cache policies enhance 
performance within constraints 
determined by I/O requirements
• Use slack to prefetch reads and 

delay writes

Disk

App 1

Disk Scheduler

Buffer-Cache

Disk

App 2 App 3

Roberto Pineiro, Kleoni Iouannidou, Carlos Maltzahn, and Scott Brandt, “RAD-FLOWS: 
Buffering for Predictable Communication,” RTAS 2011
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Disk



Analysis when pc > pp

 
[Consumer/Producer] 

Disk



Managing combined workloads
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Controlling throughput w/mixed workloads

Precise control over the service times of each stream

Disk



Controlling latency w/mixed workloads
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Results w/complex workloads
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Horizon

• Big storage systems are shared, have many disks, and 
application workloads compete and interfere

• Real distributed systems have
• Different data layouts

• Multiple data entry points

• Different data paths

• Horizon goals
• Meet performance targets

• Fully utilize system resources

• Not rely on reservations

• Decentralized solution

Anna Povzner, Darren Sawyer, Scott A. Brandt, ”Horizon: Efficient Deadline-Driven Disk I/O 
Management for Distributed Storage Systems,” HPDC 2010. Best Paper



Multi-layered approach

• Workloads specify 
performance targets
• Throughput and latency

• Upper layer control 
mechanism
• Throughput limiting

• Deadline assignment based 
on throughput and latency 
targets

• Low-level disk schedulers
• Meet individual request 

deadlines

Throughput limiting

Deadline assignment

Disk schedulers

Deadline: time that 
a request must 

complete in order to 
meet its 

performance target

I/Os tagged
w/deadlines



Horizon disk scheduling

• Manage I/O in terms of 
disk time

• Estimate service times 
based on service time 
measurements

• Reorder requests 
within “slack time” 
before earliest 
deadline

• Adjust based on 
optimizations, 
overload, latency



Horizon disk scheduling

• Horizon set to earliest deadline

• Reordering set = everything that 
will fit before horizon

• Execution times measured as 
requests complete

• Optimizations
• Squeeze in more sequential I/Os

• Use optimistic estimates

• Increase reordering set (esp. under 
overload)

• Increase device queue
• Larger = better performance

• Smaller = tighter deadlines



Horizon in use
• Implemented in NetApp’s Data ONTAP (data from FAS3040)

• Performance targets associated with volumes
• Control mechanism at FS entry point

• Schedulers between RAID and disks

Thoughput
targets met

> 92% of latency
targets met



Beyond horizon

• Horizon applied to black box storage

• Problem: 
• Storage device may have many disks

• Example: big shared storage

• Competing streams of requests

• e.g., from virtual machines

• How to manage the performance of 
each stream?

1

n

... Our 
box

Disk

Disk

Disk

Closed storage device

stream n

stream 1

Clients



Solution: Horizon++

• Average over large numbers of requests

• Assume fixed cost ratio between random and 
sequential requests

• Measure time for 1000 requests

• Compute performance of random and 
sequential requests

• Charge streams accordingly
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Sequential
Random

Indication that given a proper update method we can solve the original problem.
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Intersection update

If the execution costs (x,y) are the same in z1 and z2 then,

a1x + b1y = z1
a2x + b2y = z2

we can find the average execution cost of a sequential/random request
(unless the lines are parallel.)

time window z1

time window z2

1

2

a1=15, b1=2

a2=19, b2=1

random cost
sequential cost

random cost
sequential cost
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Intersection update works

• Costs may not always be stable, so

• Average over sliding-window intervals and 
update smoothly

• Result: Horizon++ will work



And one more: TiVo for telescopes
[MSST 2010, RTAS 2012?]

• Many systems generate huge volumes of data
• Accelerators, telescopes, simulations, internet 

traffic generate MB/s, GB/s, or TB/s of data

• Most of the data is uninteresting
• But some of it is extremely interesting

• How can we capture, index, search, and 
maintain it in real-time?



Understanding disk performance

• Each disk has a 
unique deterministic 
performance curve

• Performance 
degrades over the 
course of the disk

• Understanding the 
curves enables 
performance 
guarantees



Existing systems



Solution - use the disk as a ring buffer

• Fixed disk size

• Fixed data rate and 
write size

• Limited data lifetime

• Expires automatically

• Highly predictable

• In-place preservation

• Indexing on the fly

• Maintained in 
memory

• Archived with data

• Gang together as 
needed



Results for large elements



Results for small elements



Conclusion

• Distributed system performance management is 
needed

• It is challenging, yet feasible

• A unified approach seems to work well

• RAD is one basis for a unified solution
• CPU, disk, network, buffer cache, system

• It is in use in real systems

• More in the works
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Thank you!


