o
(INSTITUTE FOR SCALABLE SCIENTIFIC DATA MANAGEMENT
I onNTH GRL

L

Managing the Performance of Large,
Distributed Systems

Scott A. Brandt
University of California, Santa Cruz

Copyright © 201 | Scott A. Brandt

Collaborators

* Carlos Maltzahn, Shinpei Kato, Kleoni
louannidou, Roberto Pineiro, and David
Bigelow, Dimitrios Skourtis (University of
California Santa Cruz)

* Richard Golding (Kinsey Technical
Services (W/DARPA))

* Anna Povzner, Tim Kaldewey, and Ted
Wong (IBM Almaden Research Center)

* Andrew Shewmaker (Los Alamos
National Laboratory)

* Darren Sawyer (NetApp)

UG SANTH CRZ

Il oI GRUL
JaKTSi

A
° L<‘>?¢. Alamos

NATIONAL LABORATORY

NetApp- ;
ISSDM

UG SHNTH CRUL

Who am |?

* Professor, Computer Science
Department, UC Santa Cruz

 Director, UCSC/LANL Institute
for Scalable Scientific Data
Management (ISSDM)

e Co-Director, UCSC Systems
Research Laboratory (SRL)

* Background
e 1999 Ph.D. CS, Colorado
 1987/1993 B. Math/MS CS, Minnesota

e 1982-1994 Programmer/Research
Scientist/VP, CPT, B-Tree, Honeywell
SRC,Theseus Research, Alliant
TechSystems RTS, Secure Computing

* My Research

* High-performance petascale
storage and data management

* Real-time systems

* Performance management an
virtualization

* Other Research

* Secure operating systems

* Asynchronous circuits

* Real-time image processing
* Recent Highlights

* Ceph in Linux as of 2.6.34

* Best Papers at SIGMOD,
ECRTS, HPDC

ISSDM

UG SANTR CRUL

Today: Distributed system performance
guarantees

|. Motivation

2.Some philosophy

3. Our approach: a unifying model
4.Solutions for CPU, storage, networls, cache

5. Conclusions

ijsnn

Distributed systems need performance
guarantees

High-performance scientific
simulation and visualization

Virtual machines
Cloud services
Real-time data capture
Sensor networks

Smart power grid

Automotive systems
Integrated medical systems
Aerospace systems

Radio telescopes

Even so-called best-effort
applications

e Distributed systems with many independent, autonomous

players

... many of which are providing mission- or life-critical

operations or control

isspM

The model before

Not the system

‘ Other systems, maybe

Liﬁlm
I SN

UG SANTR CRUL

The model now

Implement control systems in a world that looks like:

A sea of components—no sharp boundaries
A multipolar/multiuser/coalition world
Long term existence and constant change

Cath

A sea of components

Many pieces, deployed and evolving separately
Where is the boundary of the “application”?

& if
ks

I SN

@IH

Long-term existence and constant change ®

— —
B

A S e e N
. <3 _.~_-"‘_~‘l e’

~4 .
B S

Different pieces get replaced, fail, upgraded independently
Some piece of the system is always in flux

1B)|
bl

I SN

@IH

Example: System F6 (DARPA)

* Modular clustered communication satellite(s)
* Coordinated navigation

* Fully cooperative communication functionality

* Need a new capability? Add a new satellite to
the cluster.

UG SHNTH CRUL

issnn

Example: Cloud virtualization (Nat’| Labs)

* Provide isolated “virtual” clouds within a larger
cloud

ot
UG SANTA CAUZ

Example:Virtual servers (SAP)

* Provide isolated virtual servers within a cloud

is/snn

Example: Supercomputer virtualization
(Nat’l Labs)

* Provide guaranteed service within a large-scale
distributed supercomputer system

is/snn

Example:Virtual machine services
(VMware & startup)

* Provide virtual services (e.g., storage) to virtual
machines on shared infrastructure

is/snn

Challenge: real-time computation

* How do we keep guarantees in such a chaotic
world?

* How do we specify what an application needs
so that it can be interpreted for different
distributed hardware resources?

* How do we know that a mixture of unknown
applications from different organizations doing
different things is going to work!?

ISsbM
1L SHNTH CAU

Challenge: real-time communication

* How do we make pieces of the system talk to
each other predictably over a chaotic network!?

* How do we say what we need in a concise and
precise way?

* How do we get it to work on networks that
change performance and topology!?

iIssbpM
1L SANTA CAUT /

Challenge: Real-time 10O/data storage

* How do we make intrinsically unpredictable
devices predictable!?

* How do we specify requirements in a uniform
way!?

* How do we maintain requirements on different
hardware?

isspM

UG SHNTH CRUL

More challenges

* Interacting resources

* Dynamic workloads

* Interfering workloads (2+2=3)
* Decentralized control

* Non-commensurable metrics

issnn

In a nutshell

* Big distributed systems * Current design

* Serve many unrelated * Use rules of thumb

users/jobs * Over-provision

* Process lots of data e |solate

e Ad hoc performance management leads to
expensive and fragile solutions

* A better system guarantees each application
the performance it needs from all
components: CPUs, memory, disks,
networlk, ...

is/snn

What we want

|. Guaranteed performance

2. Isolation between workloads

3. High performance

isspM

UG SANTH CRZ

...in a bit more detail

* Resource management algorithms and
architectures capable of providing

* High performance

* Arbitrarily hard or soft performance
guarantees with

* Arbitrary resource allocations
 Arbitrary timing / granularity
* Complete isolation between workloads

* All resources: , storage, , cache

ISSDM

What we really want

Virtual resources
indistinguishable from “real” resources

with fractional performance

iIssbpM
1L SANTA CAUT D

UG SANTH CRZ

Isolation is key

* 20% of a 3 Ghz CPU should be indistinguishable
from a 600 Mhz CPU

* Running: compiler, editor, audio, video

e Disk

e 20% of a disk with 100 MB/second bandwidth
should be indistinguishable from a disk with 20
MB/second bandwidth

* Serving:| stream, n streams, sequential, random

ISSDM

Scott’s epistemology of virtualization

* Virtual Machines and LUNs provide good HW
virtualization

* Question: Given perfect HWV virtualization, how
can a process tell the difference between a virtual
resource and a real resource?

* Answer: By not getting its share of the
resource when it needs it

ISsbM
1L SHNTH CRUZ

What we really want (part ii)

* Virtualized performance

* Arbitrarily hard or soft performance
guarantees on each resource

* Hardware-independent

* Workload-independent

* Application-independent
 Commensurable

* Globally reservable, locally enforceable

e Changeable

UG SHNTH CRUL

ISSDM

UG SHNTH CRUL

Our approach

|. Develop a uniform model for performance
management

2. Apply it to each resource

3. Integrate the solutions

issnn

Observation

* Resource management consists of two
distinct decisions

e Resource Allocation: How much resources to
allocate?

* Dispatching: When to provide the allocated
resources?

* Most resource managers conflate them

* Best-effort, proportional-share, real-time

ISsbM
1L SHNTH CAU

Separating them is powerful!

» Separately managing %% Missed
resource allocation £ LG
. .)
and dispatching S5
gives direct control
. S
over the delivery of =
resources to tasks 3
=
=
3
=¥
e Enables direct, '3
integrated support 2| gffort VO-
Q
of all types of = —ound — _
. . unconstrained constrained
timeliness needs Dispatching

is/snn

UG SANTR CRUL

The resource allocation/dispatching
(RAD) scheduling model

Share of
resources

Series of
jobs w/

Times at
which allocation
must equal share

Cath

Supporting different timeliness
requirements with RAD

Period
WCET

R‘t" Rate
Boun S
w)
ET
Real-tlme
Prlorlty

clon

UG SANT CRUL

Rate-Based Earliest Deadline (RBED) CPU scheduler

[RTSS 2003]

* Processes have rate & period
* drates < 100%

* Periods based on processing
characteristics, latency needs, etc. .

* Jobs have budget & deadline
* budget = rate * period

* Deadlines based on period or
other characteristics

* Jobs dispatched via Earliest
Deadline First (EDF)

* Budgets enforced with timers

* Guarantees all budgets &
deadlines = all rates & periods

OSSR — System
: Scheduling £° :
i Policy : Mechanism

Rate

Set of
jobs w/
budgets and
deadlines

4

Scheduling]

UG SANTR CRUL

Adapting RAD to disk, network, and buffer cache

* Fahrrad—Guaranteed disk request
scheduling [Eurosys 2008]

Anna Povzner

* RADoN—Guaranteeing storage
network performance [FASTO8 WiP]

Tim Kaldewey & Andrew Shewmaker

« RAD-FLOWS—Buffer management for I/0 <<
guarantees [RTAS 2010] [D

Roberto Pineiro & Kleoni louannidou

* Horizon—I/O management for €€ €

distributed storage systems [HPDC 2010]
Anna Povzner

* Plus two more (time permitting)

Jﬁ'"

Guaranteed disk request scheduling

* Goals
* Hard and soft performance guarantees
* |solation between |/O streams

* Good I/O performance

* Challenging because disk I/O is:
* Stateful
* Non-deterministic
* Non-preemptable, and

* Best- and worst-case times vary by 3—4 orders of
magnitude

isspM

Fahrrad

* Manages disk time instead A B C BE
Of disk throughput 11 1 l

* Adapts RAD/RBED to
disk 1/0O

* Reorders aggressively to :
provide good Fahrrad :
performance, without }

violating guarantees @

Anna Povzner, Tim Kaldewey, Scott A. Brandt, Richard Golding, Theodore Wong, and Carlos isspM
00 SHNTH Maltzahn, ”Efficient Guaranteed Disk Request Scheduling with Fahrrad’, Eurosys 2008. /

UG SANTR CRUL

Fahrrad details

- - Stream
queues
Aﬂspatching
policy

DSS
(ordering policy)

-« “reservation

(utilization,
period)

- = = deadline

i/slﬂ:n

Linux —Linux w/Fahrrad
. 1000 = 1000
(&) . 3
8 . ,:; ; . L | .:: ! u f
3, 800 Poom : : L i 5) 800
8" Pomwm ™ L3t -':.3 3 i : ::1-E . .. -. ol
g halb R il : n

-~ 600 [iwiiiie i m SRR TTI) 600
: HE E .' . il‘: ML ':_,." -
= pa ¥y o i g =3
,_% 400 k Sassnnann | 1o A . "Eb Wi [J T VSV ITIIIVETVIVIIVIIVITVIVITVITETIVVIVIIVEVIVITVIVIVIIVIIINIVNIIVITIVVIVEIVIVIVRIINIIIIIP |
.%D - =
o o
= 200t = 200 1
~

() ¥ thid ; ; . A i $ () At et et e R e o e SO s i e e O G o

0 100 200 300 400 500 0 100 200 300 400 500

Fahrrad outperforms Linux FS

Time [sec]

* Workload

Background: random (10%)

* Result: Better isolation AND better throughput

Time [sec]

Media |:400 sequential I/Os per second (20%)
Media 2: 800 sequential I/Os per second, (40%)

Transaction: short bursts of random I/Os at random times (30%)

is;nn

UG SHNTH CRUL

Fahrrad virtual disks

* Provide workload-independent performance

guarantees

* Isolate from other workloads concurrently

accessing the device

][]

VM

* LUNs virtualize
storage capacity

 Fahrrad virtualizes
storage performance

ISSDM

Fahrrad virtual disks

* Implemented with Fahrrad

* Guarantee share of storage device time
* Hard guarantees on isolation

* Throughput = equivalent standalone throughput

« Amount of data transferred:
* Di(z(_o/f’ E) = Di(|00%, X% * t)

2N T

Share of Time Shareof Time
disk disk 19%, 1 min

 Reservation: disk share (utilization)
and time granularity (period)
+ overhead

25%, 1 sec

Disk time

30%, 250 ms

isspM

UG SHNTH CRUL

Fahrrad guarantees throughput

* Throughput is fully determined by reservation & workload

* Virtual disk are completely isolated from each other

Amount of data transfered [MB]

10O U
el
A0
O
400 . 1
."e'
2
300 |- Ed
200 F
':,o Sequential, virtual disk (20% share, 150s) ----%----
5 Semi-sequential, virtual disk (20% share, 150s)
100 F @ Random, virtual disk (20% share, 150s) - LR i
Sequential, standalone (100%, 30s) - -
8 Semi-sequential, standalone (100%, 30s) ----©--
‘ : Random, standalone (100%, 30s) ----@--
O "."'-""".'"'I'"'""""."""."'"'i"."'."'I'.""".".'"'""'-‘"'"'."-‘"'""'-'"""'"""'.'""'-"T'"'"'""T'""'"""'"'.""'".""'I"!"'"'.'"'""'"'"'"".'""""'.'"T""'""""'.'!""'"""!
0.01 0.1 1 10 100 1000

Run length of semi-sequential stream [MB]

Each virtual disk
reserves 20%
with | second

granularity

isspM

Fahrrad guarantees latency

* Latency is bounded by deadlines

Fraction of I/Os

0.8

=
=)

—
=

—
)

Upper bounds

period 200 ms
period 300 ms

period 400 ms. -

,period 500 ms oo

Utilization

0 200

400 600

Latency

800

1000

i/sslpn

Fahrrad virtual disks work

* FahrradVirtual Disks provide Cello99 and OpenMail performance
very close to standalone

* Cello99 and OpenMail virtual disks share the system with random background stream.

250 . . | J |
Fahrrad Virtual Disks OpenMail, virtual disk -8

OpenMail, standalone
Cello99, virtual disk ----#---

Cello99, standalone
Random == eee-

200

B \ 4
o 1 i ¥ i i -
]5(] F], 1 LA et
iy = h A Y

-|t'=.
L

100

Throughput (I/Os per second)

3

1
H

4

e Goals

* Hard and soft performance guarantees
* Isolation between I/O streams

* Good I/O performance
* Challenging because network I/O is:
* Distributed

* Non-deterministic (due to collisions or switch
queue overflows)

* Non-preemptable

* Assumption: closed network

ISsbM
1L SHNTA CAUT

UG SANTR CRUL

What we want

O T
- - -
OF — "NSC

e

1
H

\iﬁ'"

UG SANTH CRZ

5

1
H

t\V/
/AN

—P tx/rx L—— shared
-¢—— ports FIFO

e Switched fat tree w/full bisection bandwidth

* Issue |: Capacity of shared links

* Issue 2: Switch queue contention

ISSDM

Congestion in a simple switch model
* Delayed packets
from unrelated
streams affect each :,/ 1@5@
other on the f T
queue sendto 5 _—
= . —©

2 and 4
congest

() —)
—_—> —_—
-— switch fabric -—

3and 4
send to 8

NN
‘ e
congest
- -

_ /
ijsnn
I SANTA CAU

* Each reservation has a network share (utilization)
and a time granularity (period)

* Flow control: throttle senders « Congestion control: avoid switch
+ Execution time (per period) e = contention by adjusting wait time
utilization / period between packets
* Budget in packets m=-e/ * Percent budget %budget = (I -
packets_per_second Zlaxity) = e/(d-t)

* Packet wait time w = wmin / %budget
* Size change WA = -|wi - Wmin|/2

* New wait time wi+| = min(Wmax,
max(Wmin, WA))

: laxity

release NOowW deadline

ISsbM
1L SHNTA CAUT

3

1
H

4

* Detects congestion using Relative Forward
Delay

* Responds to congestion using RAD real-time
theory

* Decreases packet loss significantly

* Improves goodput

* Requires no global knowledge or
synchronization

* Ongoing: RADoN kernel implementation

ISsbM
1L SHNTA CAUT

Buffer management for 1/O guarantees

* Goals
* Hard and soft performance guarantees

* |solation between /O streams

* Improved I/O performance

* Challenging because:

* Buffer is space-shared rather than time-shared
* Space limits time guarantees

* Best- and worst-case are opposite of disk

* Buffering affects performance in non-obvious ways

iIssbpM
1L SANTA CAUT D

UG SHNTH CRUL

Buffering roles

* Decoupling

* Allows sender and receiver to operate
asynchronously

* Speed matching

* Allows slower and faster devices to communicate

* Traffic shaping

 Shapes traffic to optimize performance of
interfacing devices

ISSDM

UG SANTH CRZ

Radium

* |/O into and out of buffer have
rates and time granularities

perods i G =)
* Translate time requirements into

QOO

=)

Buffer-Cache

OO ooH|—

space requirements [

0]e);(e]6)
N ——
N

[0l

* Cache policies enhance

o . || Disk Scheduler
performance within constraints E
4
determined by I/O requirements Pi—
* Use slack to prefetch reads and W
delay writes
Roberto Pineiro, Kleoni louannidou, Carlos Maltzahn, and Scott Brandt, “RAD-FLOWS: P
issoMm

Buffering for Predictable Communication,” RTAS 2011

UG SANTA €

Analysis when p, > pc

3.5

2.5

1.5

0.5

buffering space / max data produced
N

Buffer Space B < 2rypp+max(0,rppp— (| 22| — 1)rep,))

, Buffer Time T < 3py

I T T T T
- optimal-simulation
calculated worst-case -------

2 4 6 8 10 12

Ratio of Periods
[Producer/Consumer]

Pc

14

@ | [
I = 0

Ca

| |
I = 0

Analysis when pc > p;

35 I T
30
25
20
15
10

| | T
optimal-simulation
calculated worst-case -------

0 | | | | | | |
2 - 6 8 10 12 14

Ratio of Periods
[TBr=irnernPooducen]

buffering space / max data produced

Buffer Space B < 2 (“:_p“‘ + 1) "pPp — TpPp

~~ o
It SHNTH L Buffer Time T < 2p. (

Managing combined workloads

Combined throughput of rand.(top) and seq.(bottom) workloads

no cache Monolithic Radium

i 1L | Aarget performance

N W A O
I

Throughput [thousand I/O per sec]

] | | = —
RO NS, O NOA N O NOA N
/5)00%% Gy 7S S 2 S 3,
%%, % P T, % s %
%, % 0% issom
10 SHNTA AU Z vz 7

Controlling throughput w/mixed workloads

Radium+RBAD
1229 1091 953 815 677
6000 || T | | |
5000
4000
3000
2000
1000
0 7 | | | L
1500 2500 3500 4500
Target throughput

[1/Os per sec]

Precise control over the service times of each stream

“ ijsnn

OO

: :
Controlling latency w/mixed workloads
Radium+CFQ Radium+RAD
1 | I 1 | | |
((period 1 sec ——
750ms ——
500 ms ——

T 08| . 0.8 | 250ms ——
o\ . .
c
9
=]
Q 06 | - 0.6 | s
: N AN AN N AN
§2
©
o
= 04F - 0.4 H =
o
-
=
O 0.2 Upper bounds - 0.2 Upper bounds -

O | | | O | | |

0 250 500 750 0 250 500 750
Latency [ms] Latency [ms]

Precise control over the service times of each stream ij’p"
I SHNT |

Avg. throughput [IOs per sec]

UG SANTR CRUL

Results w/complex workloads

100

80 [

60 -

40

20

0

—
=

A' i
,\A'

Radium+CFQ Radium+RAD
T T T T T 100 T | T T T

Soft stream 1, period 500 ms

Soft stream 2, period 500 ms

Hard stream 3, period 500 ms

80 L Greedy stream 4, period 1 sec

Greedy stream 5, period 1 sec

‘ 1
..v« M g
W " ﬂ’ i " il ‘,.'; b

0

15

75 90 0 15 30 45 60 75 90
Tlme [sec] Time [sec]

Reasonable control with complex workloads

* Big storage systems are shared, have many disks, and
application workloads compete and interfere

* Real distributed systems have

* Different data layouts

* Multiple data entry points
* Different data paths

* Horizon goals Network I Network : Network

protocol
-
system
4

* Meet performance targets

File
system

* Fully utilize system resources

* Not rely on reservations

* Decentralized solution

Anna Povzner, Darren Sawyer, Scott A. Brandt, "Horizon: Efficient Deadline-Driven Disk /O)
Management for Distributed Storage Systems,” HPDC 2010. Best Paper 'S/SDH
U SANTR CAUZ .

Throughput limiting

Deadline assignment

Deadline: time that
a request must
complete in order to
meet its
performance target

I/Os tagged
w/deadlines

Disk schedulers

* Workloads specify
performance targets

@@ \ * Throughput and latency
Pi0

* Upper layer control
mechanism

* Throughput limiting

* Deadline assignment based
on throughput and latency
targets

<« o | ow-level disk schedulers

* Meet individual request
deadlines

isspM

I/Os tagged with deadlines

Manage I/O in terms of
disk time

, Horizon - - -l oo :
: . * Estimate service times
| _— Expected /O | |
Deadline times | i i
o : based on service time
I | measurements
| |
|
| e i * Reorder requests
| C statistics : L o,
: . within “slack time
[v x 1 .
' Re-ordering J | before earliest
| Set i | deadline
l —— — Actual !
| — - seice ;o Adjust based on
! \ optimizations,
: [
s P | overload, latency

UG SHNTH CRUL

Deadline m

Queue * Horizon set to earliest deadline
136 * Reordering set = everything that
130 will fit before horizon
125 : .
| 102 100 * Execution times measured as
horizon= 110 requests complete
83 100 |, 9 P
97 1. * Optimizations
90 : :
83 20 * Squeeze in more sequential I/Os
\ * Use optimistic estimates
Re-ordering SETgq * Increase reordering set (esp. under
83 overload)
100 * Increase device queue
97

* Larger = better performance

* Smaller = tighter deadlines

ISSPM
G St 11 G it

Throughput [IOPS]

* Implemented in NetApp’s Data ONTAP (data from FAS3040)

* Performance targets associated with volumes

* Control mechanism at FS entry point

* Schedulers between RAID and disks

1600
1400 p \
1200 X

1 Thoughput 7
1000 | E
800 targets met %)

Q

600 | g
400
200 f Cpesmerese

N .

0 1 ! 1
0 50 100 150 200 250 300 350

£+ 40% random, 40 in flight
1000 IOPS target

Time [s]
media, 40 I0s / 100ms

random background

80

70 t

60 1

50

40 [

10

target: 400 IOPS, 80 ms latency

7

> 92% of latency
targets met

50 100 150 200 250 300 350
Time [s]

, bursty: 8 10s /40 ms

w bursty: 410s /40 ms 40ms latency target

40ms latency target

Beyond horizon

* Horizon applied to black box storage

* Problem:

* Storage device may have many disks

* Example: big shared storage

* Competing streams of requests

e e.g., from virtual machines

* How to manage the performance of

each stream!?

Clients

stream 1
E)

Our

box

stream n
N >

UG SHNTH CRUL

Closed storage device

)

3
X

issnn

UG SANTH CRZ

Solution: Horizon++

* Average over large numbers of requests

 Assume fixed cost ratio between random and
sequential requests

* Measure time for 1000 requests

* Compute performance of random and
sequential requests

* Charge streams accordingly

ISSDM

Results w/stable workload

«10° 90/50 Sequential and Random requests; Queue size: 100; Cost ratio: 20

4.5
4L | =Sequential
= Random
3.5
3 —
25

Hrequests completed

3000
2500
2000
1500~
1000~

500

0 T n
0 500 1000 1500 2000 250(

| | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Request arrival counter x 10"

Cumulative disk execution time in microseconds

Indication that given a proper update method we can solve the original problem.

UG SHNTH CRUL —

isspM
,/

Intersection update

B sequential cost

B random cost
ai=15, b1=2

1 HEEEEEE S NN —

time window z1

a2=19, bo=1
2 AN NENEEEEENEEE S—

time window z»

If the execution costs (x,y) are the same in z1 and z2 then,

arxX + b1y = z1 B sequential cost
asX + b2y = 7o B random cost

we can find the average execution cost of a sequential/random request
(unless the lines are parallel.)

ot
UG SANTA CAUZ ‘

1000

800+

600+

400

200+

Avg disk execution time in microseconds

Intersection update works

Sequential request inter-arrivals (window length: 5s, queue: 32) x10* Random request inter—arrivals (window length: 5s, queue: 32)

N

—_
(%]
T

o
a
T

== True execution time
== [stimated execution time

Avg disk execution time in microseconds

== [stimated execution time
== True execution time

o

1 1 1 1 1 1 1 1
0.5 1 1.5 2 0.5 1 1.5 2
Request arrival counter x10° Request arrival counter

o

* Costs may not always be stable, so

* Average over sliding-window intervals and
update smoothly

 Result: Horizon++ will work

x10°

isspM

UG SANTR CRUL

And one more: TiVo for telescopes
[MSST 2010, RTAS 20127]

* Many systems generate huge volumes of data

* Accelerators, telescopes, simulations, internet
traffic generate MB/s, GB/s, or TB/s of data

* Most of the data is uninteresting

* But some of it is extremely interesting

* How can we capture, index, search, and
maintain it in real-time!?

oTU
0101101101
o7101101111101110
01101111101110111111011
01111101110111111011110101011
o7111101110111111011110101011011011111
101110111111011110101011011011111011101111
01110111111011110101011011011111011101111110111101
01110111111011110101011011011111011101111110111101010110110
1101110111111011110101011011011111011101111110111101010110110111110111
111011110101011011011111011101111110111101010110110111110111011111101
011101111110111101010110110111110111011111101111010101
410110110111110111011111101111010101101101111
1]11110111101010110110111118 11

Q

Understanding disk performance

* Each disk has a 140 ¢
unique deterministic £ 120 |
performance curve = 140 |

% [

* Performance E

©

degrades over the =
. o

course of the disk <
C

Q

* Understanding the ©
curves enables 0 b
performance
guarantees

80 |
60 |
40 |
20 |

Drive 1 ———
Drive 2

Drive 3 ————
Drive 4 ———
Drive 5 -

0 400 800 1200 1600
Position in disk, GB

isspM

Existing systems

140

120 |

100 |

80 |

60 |

Bandwidth, MB/s

40 |

20 |

Position in Data Cycle

Available Bandwidth — Standard Filesystem — Database

Cath
UG SANTA CAUZ \

UG SANTR CRUL

Solution - use the disk as a ring buffer

* Fixed disk size

* Fixed data rate and

write size New Data

* Limited data lifetime

. . Data Start
* Expires automatically pgint
Position

* Highly predictable Old Data

* In-place preservation

* Indexing on the fly Data

 Maintained in
memory

* Archived with data

* Gang together as
needed

Preserved
Data

Current Write

Preserved Data

ol

New Data

Old

Incoming
Data

Cath

Results for large elements

120
[Valmar, Writes ————
; Valmar, Reads ——
100 | Filesystem, Writes ——
. _ /\ Database, Writes ———
@ 80 }
E L
< [
3 : :
-c 4
S 40 -
20
O
0 1000 2000 3000 4000

UG SANTR CRUL

Data Processed, GB

Results for small elements

1?0 ———— —— —————————t
; Valmar, Writes ;

; Valmar, Reads ——
100 Filesystem, Writes ———
- Database, Writes ————

Bandwidth, MB/s

Data Processed, GB

Cat
UG SANTA CAUZ \

Conclusion

* Distributed system performance management is
needed

* It is challenging, yet feasible

* A unified approach seems to work well

e RAD is one basis for a unified solution
o CPU, disk, , buffer cache,

* It is in use in real systems

* More in the works

iIssbpM
1L SANTA CAUT /

Thank you!

