
Managing the Performance of Large,
Distributed Systems

Scott A. Brandt
University of California, Santa Cruz

Copyright © 2011 Scott A. Brandt

Collaborators

• Carlos Maltzahn, Shinpei Kato, Kleoni
Iouannidou, Roberto Pineiro, and David
Bigelow, Dimitrios Skourtis (University of
California Santa Cruz)

• Richard Golding (Kinsey Technical
Services (w/DARPA))

• Anna Povzner, Tim Kaldewey, and Ted
Wong (IBM Almaden Research Center)

• Andrew Shewmaker (Los Alamos
National Laboratory)

• Darren Sawyer (NetApp)

Who am I?

• Professor, Computer Science
Department, UC Santa Cruz

• Director, UCSC/LANL Institute
for Scalable Scientific Data
Management (ISSDM)

• Co-Director, UCSC Systems
Research Laboratory (SRL)

• Background

• 1999 Ph.D. CS, Colorado

• 1987/1993 B. Math/MS CS, Minnesota

• 1982-1994 Programmer/Research
Scientist/VP, CPT, B-Tree, Honeywell
SRC, Theseus Research, Alliant
TechSystems RTS, Secure Computing

• My Research

• High-performance petascale
storage and data management

• Real-time systems

• Performance management and
virtualization

• Other Research

• Secure operating systems

• Asynchronous circuits

• Real-time image processing

• Recent Highlights

• Ceph in Linux as of 2.6.34

• Best Papers at SIGMOD,
ECRTS, HPDC

Today: Distributed system performance
guarantees

1. Motivation

2. Some philosophy

3. Our approach: a unifying model

4. Solutions for CPU, storage, network, cache

5. Conclusions

Distributed systems need performance
guarantees

• High-performance scientific
simulation and visualization

• Virtual machines

• Cloud services

• Real-time data capture

• Sensor networks

• Smart power grid

• Automotive systems

• Integrated medical systems

• Aerospace systems

• Radio telescopes

• Even so-called best-effort
applications

• Distributed systems with many independent, autonomous
players

... many of which are providing mission- or life-critical
operations or control

1

The model before

The system! Not the system!

Other systems, maybe!

1

The model now

A sea of components—no sharp boundaries  
A multipolar/multiuser/coalition world"
Long term existence and constant change "

Implement control systems in a world that looks like:"

1

A sea of components

Many pieces, deployed and evolving separately!
Where is the boundary of the “application”?!

1

Long-term existence and constant change

Different pieces get replaced, fail, upgraded independently!
Some piece of the system is always in flux!

1

Example: System F6 (DARPA)

• Modular clustered communication satellite(s)
• Coordinated navigation

• Fully cooperative communication functionality

• Need a new capability? Add a new satellite to
the cluster.

1

Example: Cloud virtualization (Nat’l Labs)

• Provide isolated “virtual” clouds within a larger
cloud

1

Example: Virtual servers (SAP)

• Provide isolated virtual servers within a cloud

1

Example: Supercomputer virtualization
(Nat’l Labs)

• Provide guaranteed service within a large-scale
distributed supercomputer system

1

Example: Virtual machine services
(VMware & startup)

• Provide virtual services (e.g., storage) to virtual
machines on shared infrastructure

1

Challenge: real-time computation

• How do we keep guarantees in such a chaotic
world?

• How do we specify what an application needs
so that it can be interpreted for different
distributed hardware resources?

• How do we know that a mixture of unknown
applications from different organizations doing
different things is going to work?

1

Challenge: real-time communication

• How do we make pieces of the system talk to
each other predictably over a chaotic network?

• How do we say what we need in a concise and
precise way?

• How do we get it to work on networks that
change performance and topology?

1

Challenge: Real-time IO/data storage

• How do we make intrinsically unpredictable
devices predictable?

• How do we specify requirements in a uniform
way?

• How do we maintain requirements on different
hardware?

1

More challenges

• Interacting resources

• Dynamic workloads

• Interfering workloads (2+2=3)

• Decentralized control

• Non-commensurable metrics

1

In a nutshell

• Big distributed systems
• Serve many unrelated

users/jobs

• Process lots of data

• Current design
• Use rules of thumb

• Over-provision

• Isolate

• Ad hoc performance management leads to
expensive and fragile solutions

• A better system guarantees each application
the per formance i t needs from a l l
components : CPUs , memor y, d i sks ,
network, ...

1

What we want

1. Guaranteed performance

2. Isolation between workloads

3. High performance

2

... in a bit more detail

• Resource management algorithms and
architectures capable of providing
• High performance
• Arbitrarily hard or soft performance

guarantees with
• Arbitrary resource allocations

• Arbitrary timing / granularity

• Complete isolation between workloads
• All resources: CPU, storage, network, cache

2

What we really want

Virtual resources

indistinguishable from “real” resources

with fractional performance

2

Isolation is key

• CPU
• 20% of a 3 Ghz CPU should be indistinguishable

from a 600 Mhz CPU

• Running: compiler, editor, audio, video

• Disk
• 20% of a disk with 100 MB/second bandwidth

should be indistinguishable from a disk with 20
MB/second bandwidth

• Serving:1 stream, n streams, sequential, random

2

Scott’s epistemology of virtualization

• Virtual Machines and LUNs provide good HW
virtualization

• Question: Given perfect HW virtualization, how
can a process tell the difference between a virtual
resource and a real resource?

• Answer: By not getting its share of the
resource when it needs it

2

What we really want (part ii)

• Virtualized performance

• Arbitrarily hard or soft performance
guarantees on each resource
• Hardware-independent

• Workload-independent

• Application-independent

• Commensurable

• Globally reservable, locally enforceable

• Changeable

2

Our approach

1. Develop a uniform model for performance
management

2. Apply it to each resource

3. Integrate the solutions

3

Observation

• Resource management consists of two
distinct decisions
• Resource Allocation: How much resources to

allocate?
• Dispatching: When to provide the allocated

resources?

• Most resource managers conflate them
• Best-effort, proportional-share, real-time

3

Separating them is powerful!

• Separately managing
resource allocation
and dispatching
gives direct control
over the delivery of
resources to tasks

• Enables direct,
integrated support
of all types of
timeliness needs

R
es

ou
rc

e
A

llo
ca

tio
n

Missed
Deadline

SRT

Dispatching
unconstrained

un
co

ns
tra

in
ed

co
ns

tra
in

ed

Resource
Allocation

SRTSoft
Real-
Time

Best
Effort

CPU-
Bound

 I/O-
Bound

Hard
Real-
Time

Rate-Based

constrained

3

The resource allocation/dispatching
(RAD) scheduling model

Rate

Deadlines

Dispatcher
Series of
jobs w/

budgets and
deadlines

Share of
resources

Times at
which allocation
must equal share

Process

3

Supporting different timeliness
requirements with RAD

Hard
Real-time

Rate-
based

Best-
effort

Soft
Real-time

Rate

Deadlines

Dispatcher

Scheduling
Mechanism

Runtime
System

Rate
Bounds

Period
WCET

Period
ACET

Priority

PiPiPiPi

Set of
jobs w/

budgets and
deadlines

Scheduling
Policy

3

Rate-Based Earliest Deadline (RBED) CPU scheduler
[RTSS 2003]

Rate

Deadlines

EDF +
timers

Scheduling
Policy

Scheduling
Mechanism

Runtime
System

Set of
jobs w/

budgets and
deadlines

• Processes have rate & period
• ∑rates ≤ 100%

• Periods based on processing
characteristics, latency needs, etc.

• Jobs have budget & deadline
• budget = rate * period

• Deadlines based on period or
other characteristics

• Jobs dispatched via Earliest
Deadline First (EDF)
• Budgets enforced with timers

• Guarantees all budgets &
deadlines = all rates & periods

4

Adapting RAD to disk, network, and buffer cache

• Fahrrad—Guaranteed disk request
scheduling [Eurosys 2008]
Anna Povzner

• RADoN—Guaranteeing storage
network performance [FAST08 WiP]
Tim Kaldewey & Andrew Shewmaker

• RAD-FLOWS—Buffer management for I/O
guarantees [RTAS 2010]
Roberto Pineiro & Kleoni Iouannidou

• Horizon—I/O management for
distributed storage systems [HPDC 2010]
Anna Povzner

• Plus two more (time permitting)

Disk

4

Guaranteed disk request scheduling

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because disk I/O is:
• Stateful

• Non-deterministic

• Non-preemptable, and

• Best- and worst-case times vary by 3–4 orders of
magnitude

Fahrrad

• Manages disk time instead
of disk throughput

• Adapts RAD/RBED to
disk I/O

• Reorders aggressively to
provide good
performance, without
violating guarantees

A B C BE

Disk

I/O streams

Fahrrad

Anna Povzner, Tim Kaldewey, Scott A. Brandt, Richard Golding, Theodore Wong, and Carlos
Maltzahn, ”Efficient Guaranteed Disk Request Scheduling with Fahrrad”, Eurosys 2008.

Fahrrad details

Fahrrad outperforms Linux FS

• Workload
• Media 1: 400 sequential I/Os per second (20%)

• Media 2: 800 sequential I/Os per second, (40%)

• Transaction: short bursts of random I/Os at random times (30%)

• Background: random (10%)

• Result: Better isolation AND better throughput

Linux Linux w/Fahrrad

Fahrrad virtual disks

• Provide workload-independent performance
guarantees

• Isolate from other workloads concurrently
accessing the device

• LUNs virtualize
storage capacity

• Fahrrad virtualizes
storage performance

Fahrrad virtual disks

• Implemented with Fahrrad

• Guarantee share of storage device time
• Hard guarantees on isolation

• Throughput = equivalent standalone throughput

• Amount of data transferred:
• Di(x%, t) = Di(100%, x%·t)

• Reservation: disk share (utilization)
and time granularity (period)
+ overhead

Share of
disk

Time Share of
disk

Time

25%, 1 sec

30%, 250 ms

19%, 1 min

Disk time

• Throughput is fully determined by reservation & workload

• Virtual disk are completely isolated from each other

Each virtual disk
reserves 20%
with 1 second

granularity

 0

 100

 200

 300

 400

 500

 0.01 0.1 1 10 100 1000

A
m

o
u

n
t
o
f

d
a
ta

 t
ra

n
sf

e
re

d
 [

M
B

]

Run length of semi-sequential stream [MB]

Sequential, virtual disk (20% share, 150s)
Semi-sequential, virtual disk (20% share, 150s)

Random, virtual disk (20% share, 150s)
Sequential, standalone (100%, 30s)

Semi-sequential, standalone (100%, 30s)
Random, standalone (100%, 30s)

Fahrrad guarantees throughput

Fahrrad guarantees latency

• Latency is bounded by deadlines

Upper bounds

Fr
ac

tio
n

of
 I/

O
s

Latency

U
til

iz
at

io
n

Fahrrad virtual disks work

• Fahrrad Virtual Disks provide Cello99 and OpenMail performance
very close to standalone

• Cello99 and OpenMail virtual disks share the system with random background stream.
•

Time

Fahrrad Virtual Disks

T
hr

ou
gh

pu
t

(I/
O

s
pe

r
se

co
nd

)

Guaranteeing storage network performance

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because network I/O is:
• Distributed

• Non-deterministic (due to collisions or switch
queue overflows)

• Non-preemptable

• Assumption: closed network

What we want

Client

Client

Client

Server

Server

Server

30%

50%

20%

What we have

• Switched fat tree w/full bisection bandwidth

• Issue 1: Capacity of shared links

• Issue 2: Switch queue contention

Congestion in a simple switch model

• Delayed packets
from unrelated
streams affect each
other on the
queue

switch fabric

1 and 2
congest1

2

3

4
3 and 4
congest

2 and 4
congest

5

6

7

8

1 and 2
send to 5

3 and 4
send to 8

RADoN

• Each reservation has a network share (utilization)
and a time granularity (period)

now deadline
laxity

release

• Flow control: throttle senders

• Execution time (per period) e =
utilization / period

• Budget in packets m = e /
packets_per_second

• Congestion control: avoid switch
contention by adjusting wait time
between packets

• Percent budget %budget = (1 -
%laxity) = e/(d-t)

• Packet wait time w = wmin / %budget

• Size change w∆ = -|wi - wmin|/2

• New wait time wi+1 = min(wmax,
max(wmin, w∆))

Userspace RADoN prototype

• Detects congestion using Relative Forward
Delay

• Responds to congestion using RAD real-time
theory

• Decreases packet loss significantly

• Improves goodput

• Requires no global knowledge or
synchronization

• Ongoing: RADoN kernel implementation

Buffer management for I/O guarantees

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Improved I/O performance

• Challenging because:
• Buffer is space-shared rather than time-shared

• Space limits time guarantees

• Best- and worst-case are opposite of disk

• Buffering affects performance in non-obvious ways

Disk

Buffering roles

• Decoupling
• Allows sender and receiver to operate

asynchronously

• Speed matching
• Allows slower and faster devices to communicate

• Traffic shaping
• Shapes traffic to optimize performance of

interfacing devices

Disk

Radium

• I/O into and out of buffer have
rates and time granularities
(periods)

• Translate time requirements into
space requirements

• Cache policies enhance
performance within constraints
determined by I/O requirements
• Use slack to prefetch reads and

delay writes

Disk

App 1

Disk Scheduler

Buffer-Cache

Disk

App 2 App 3

Roberto Pineiro, Kleoni Iouannidou, Carlos Maltzahn, and Scott Brandt, “RAD-FLOWS:
Buffering for Predictable Communication,” RTAS 2011

Analysis when pp > pc
Disk

Analysis when pc > pp

[Consumer/Producer]

Disk

Managing combined workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RADTh

ro
ug

hp
ut

 [t
ho

us
an

d
I/O

 p
er

 s
ec

] no cache

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RAD

Monolithic

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RAD

Radium

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

DiskDisk

Controlling throughput w/mixed workloads

Precise control over the service times of each stream

Disk

Controlling latency w/mixed workloads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 250 500 750

C
um

ul
at

iv
e

di
st

rib
ut

io
n[

%
]

Latency [ms]

Radium+CFQ

Upper boundsUpper bounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 250 500 750
Latency [ms]

Radium+RAD

Upper boundsUpper bounds

period 1 sec
 750 ms
 500 ms
 250 ms

Precise control over the service times of each stream

Disk

Results w/complex workloads

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90

Av
g.

 th
ro

ug
hp

ut
 [I

O
s

pe
r s

ec
]

Time [sec]

Radium+CFQ

 0

 20

 40

 60

 80

 100

 0 15 30 45 60 75 90
Time [sec]

Radium+RAD
Soft stream 1, period 500 ms
Soft stream 2, period 500 ms

Hard stream 3, period 500 ms
Greedy stream 4, period 1 sec
Greedy stream 5, period 1 sec

Reasonable control with complex workloads

Disk

Horizon

• Big storage systems are shared, have many disks, and
application workloads compete and interfere

• Real distributed systems have
• Different data layouts

• Multiple data entry points

• Different data paths

• Horizon goals
• Meet performance targets

• Fully utilize system resources

• Not rely on reservations

• Decentralized solution

Anna Povzner, Darren Sawyer, Scott A. Brandt, ”Horizon: Efficient Deadline-Driven Disk I/O
Management for Distributed Storage Systems,” HPDC 2010. Best Paper

Multi-layered approach

• Workloads specify
performance targets
• Throughput and latency

• Upper layer control
mechanism
• Throughput limiting

• Deadline assignment based
on throughput and latency
targets

• Low-level disk schedulers
• Meet individual request

deadlines

Throughput limiting

Deadline assignment

Disk schedulers

Deadline: time that
a request must

complete in order to
meet its

performance target

I/Os tagged
w/deadlines

Horizon disk scheduling

• Manage I/O in terms of
disk time

• Estimate service times
based on service time
measurements

• Reorder requests
within “slack time”
before earliest
deadline

• Adjust based on
optimizations,
overload, latency

Horizon disk scheduling

• Horizon set to earliest deadline

• Reordering set = everything that
will fit before horizon

• Execution times measured as
requests complete

• Optimizations
• Squeeze in more sequential I/Os

• Use optimistic estimates

• Increase reordering set (esp. under
overload)

• Increase device queue
• Larger = better performance

• Smaller = tighter deadlines

Horizon in use
• Implemented in NetApp’s Data ONTAP (data from FAS3040)

• Performance targets associated with volumes
• Control mechanism at FS entry point

• Schedulers between RAID and disks

Thoughput
targets met

> 92% of latency
targets met

Beyond horizon

• Horizon applied to black box storage

• Problem:
• Storage device may have many disks

• Example: big shared storage

• Competing streams of requests

• e.g., from virtual machines

• How to manage the performance of
each stream?

1

n

... Our
box

Disk

Disk

Disk

Closed storage device

stream n

stream 1

Clients

Solution: Horizon++

• Average over large numbers of requests

• Assume fixed cost ratio between random and
sequential requests

• Measure time for 1000 requests

• Compute performance of random and
sequential requests

• Charge streams accordingly

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 106

Request arrival counter

C
um

ul
at

iv
e

di
sk

 e
xe

cu
tio

n
tim

e
in

 m
ic

ro
se

co
nd

s 50/50 Sequential and Random requests; Queue size: 100; Cost ratio: 20

Sequential
Random

Indication that given a proper update method we can solve the original problem.

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

Total number of requests completed

N
um

be
r o

f r
eq

ue
st

s
co

m
pl

et
ed

 p
er

 ty
pe

50/50 Sequential and random requests; Queue size:100; Cost ratio:20

Sequential
Random

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 106

Request arrival counter

C
um

ul
at

iv
e

di
sk

 e
xe

cu
tio

n
tim

e
in

 m
ic

ro
se

co
nd

s 50/50 Sequential and Random requests; Queue size: 100; Cost ratio: 20

Sequential
Random

#requests completed

Results w/stable workload

Intersection update

If the execution costs (x,y) are the same in z1 and z2 then,

a1x + b1y = z1
a2x + b2y = z2

we can find the average execution cost of a sequential/random request
(unless the lines are parallel.)

time window z1

time window z2

1

2

a1=15, b1=2

a2=19, b2=1

random cost
sequential cost

random cost
sequential cost

0 0.5 1 1.5 2
x 105

0

200

400

600

800

1000

Request arrival counter

Av
g

di
sk

 e
xe

cu
tio

n
tim

e
in

 m
ic

ro
se

co
nd

s

Sequential request inter−arrivals (window length: 5s, queue: 32)

True execution time
Estimated execution time

0 0.5 1 1.5 2
x 105

0

0.5

1

1.5

2 x 104

Request arrival counter

Av
g

di
sk

 e
xe

cu
tio

n
tim

e
in

 m
ic

ro
se

co
nd

s

Random request inter−arrivals (window length: 5s, queue: 32)

Estimated execution time
True execution time

Intersection update works

• Costs may not always be stable, so

• Average over sliding-window intervals and
update smoothly

• Result: Horizon++ will work

And one more: TiVo for telescopes
[MSST 2010, RTAS 2012?]

• Many systems generate huge volumes of data
• Accelerators, telescopes, simulations, internet

traffic generate MB/s, GB/s, or TB/s of data

• Most of the data is uninteresting
• But some of it is extremely interesting

• How can we capture, index, search, and
maintain it in real-time?

Understanding disk performance

• Each disk has a
unique deterministic
performance curve

• Performance
degrades over the
course of the disk

• Understanding the
curves enables
performance
guarantees

Existing systems

Solution - use the disk as a ring buffer

• Fixed disk size

• Fixed data rate and
write size

• Limited data lifetime

• Expires automatically

• Highly predictable

• In-place preservation

• Indexing on the fly

• Maintained in
memory

• Archived with data

• Gang together as
needed

Results for large elements

Results for small elements

Conclusion

• Distributed system performance management is
needed

• It is challenging, yet feasible

• A unified approach seems to work well

• RAD is one basis for a unified solution
• CPU, disk, network, buffer cache, system

• It is in use in real systems

• More in the works

5

Thank you!

